首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Control of estrus in dairy heifers with Syncro-Mate-B was evaluated in five experiments with a total of 393 Holstein heifers. Estradiol-17β at implant removal or gonadotropin releasing hormone 40 hr after implant removal did not cause any beneficial effect on fertility. In heifers implanted on selected days of the estrous cycle, 88.3% of heifers treated with SMB only were in estrus within 5 days of implant removal and fertility was not significantly different from that of control heifers. In heifers implanted at random stages of the estrous cycle, estrus occurred within 5 days of implant removal in 88.7% of 159 SMB treated heifers. First service conception rates (heifers pregnant of heifers inseminated) and pregnancy rates (heifers pregnant of heifers assigned) were 72.7% and 60.8% for heifers inseminated 8 to 16 hr after estrus within 5 days of implant removal, 55.0% and 55.0% for heifers inseminated 48 hr after implant removal without regard to estrus and 71.6% and 67.1% for control heifers inseminated over a 25 day period.  相似文献   

2.
The effect of endogenous opioid peptides (EOP) and individual animal temperament on serum luteinizing hormone (LH) were investigated in seasonally anestrous Brahman heifers (n = 24). Animals that had shown behavioral estrus in previous months but that had not returned to estrus for at least 30 d were selected. The heifers were ranked by temperament (tame = 1, normal = 2, wild = 3) and randomly allotted into three groups. Blood was collected from one heifer of each group per day. Blood samples were taken via jugular cannula every 15 min for 6 h and every 30 min for another 4 h. After the first hour of sampling, the heifers received intravenous saline (SAL, n = 8); naloxone (LN, 0.5 mg/kg i.v., n = 8); or naloxone (HN, 1.0 mg/kg i.v., n = 8). Three hours after naloxone treatment, each heifer was given gonadotropin releasing hormone (GnRH, 100 mug i.m.). All samples were processed to yield serum and were assayed for LH by radioimmunoassay (RIA). Hourly samples were assayed for cortisol by RIA. The area under the LH curve 60 min postnaloxone treatment was higher in LN and HN than in SAL (57.0 and 40.8 vs 6.1 units; P<0.01); and the area under the 180 min postnaloxone curve remained higher in LN than in SAL (106.2 vs 35.1 units; P<0.05). Cortisol concentrations 60 min postnaloxone administration were above prenaloxone levels(38.2 vs 26.7 ng/ml; P<0.0002). Temperament scores of heifers were positively correlated with cortisol release. The area under the cortisol curve had a negative correlation with mean LH. Serum LH concentrations appear to be suppressed by EOP in seasonally anestrous Brahman heifers, and EOP appear to reduce serum cortisol concentrations. Excitable heifers had higher concentrations of serum cortisol, which negatively affected serum LH concentrations.  相似文献   

3.
4.
Ten mature Brahman cows were randomly allotted within calving intervals to either a suckled (S) or nonsuckled (NS) treatment group. All cows received a 20 mg intramuscular injection of estradiol-17beta (E2), suspended in 2 ml of corn oil, to determine the effect of suckling on the estrogen induced LH surge. Starting on day 21 postpartum the S cows were suckled at six hour intervals for 24 hours, at which time they were challenged with a 20 mg E2 injection. The suckling regimen was continued for 48 hours postinjection. The NS cows were separated from their calves on day 21 postpartum and received no suckling stimulus for 72 hours. At 24 hours after calf separation, the NS cows were challenged with a 20 mg E2 injection. Blood samples were removed at two hour intervals beginning 10 hours post E2 injection until 36 hours postinjection, at which time blood samples were removed at four hour intervals until 48 hours postinjection. Blood samples were processed to yield serum and assayed for luteinizing hormone (LH) via radioimmunoassay. The injection of a 20 mg dose of E2 induced an LH surge in all cows. The NS cows were found to exhibit a longer (P<.05) duration of the estrogen induced LH surge than the S cows, 15.6 +/- .98 and 12.4 +/- .75 hours, respectively. The timing parameters (time to start of LH surge, time to peak LH value and time to end of surge) and LH concentration parameters (LH concentration at start of LH surge, peak value of LH surge and LH concentration at end of LH surge) were not different between suckling regimens. No blockage of the LH response to estrogen challenge was found on day 22 postpartum. Suckling did depress the duration of the LH surge indicating some blockage due to suckling stimuli.  相似文献   

5.
Objectives were to determine: 1) whether estradiol, given via implants in amounts to stimulate a proestrus increase, induces preovulatory-like luteinizing hormone (LH) and follicle-stimulating hormone (FSH) surges; and 2) whether progesterone, given via infusion in amounts to simulate concentrations found in blood during the luteal phase of the estrous cycle, inhibits gonadotropin surges. All heifers were in the luteal phase of an estrous cycle when ovariectomized. Replacement therapy with estradiol and progesterone was started immediately after ovariectomy to mimic luteal phase concentrations of these steroids. Average estradiol (pg/ml) and progesterone (ng/ml) resulting from this replacement were 2.5 and 6.2 respectively; these values were similar (P greater than 0.05) to those on the day before ovariectomy (2.3 and 7.2, respectively). Nevertheless, basal concentrations of LH and FSH increased from 0.7 and 43 ng/ml before ovariectomy to 2.6 and 96 ng/ml, respectively, 24 h after ovariectomy. This may indicate that other ovarian factors are required to maintain low baselines of LH and FSH. Beginning 24 h after ovariectomy, replacement of steroids were adjusted as follows: 1) progesterone infusion was terminated and 2 additional estradiol implants were given every 12 h for 36 h (n = 5); 2) progesterone infusion was maintained and 2 additional estradiol implants were given every 12 h for 36 h (n = 3); or 3) progesterone infusion was terminated and 2 additional empty implants were given every 12 h for 36 h (n = 6). When estradiol implants were given every 12 h for 36 h, estradiol levels increased in plasma to 5 to 7 pg/ml, which resembles the increase in estradiol that occurs at proestrus. After ending progesterone infusion, levels of progesterone in plasma decreased to less than 1 ng/ml by 8 h. Preovulatory-like LH and FSH surges were induced only when progesterone infusion was stopped and additional estradiol implants were given. These surges were synchronous, occurring 61.8 +/- 0.4 h (mean +/- SE) after ending infusion of progesterone. We conclude that estradiol, at concentrations which simulate those found during proestrus, induces preovulatory-like LH and FSH surges in heifers and that progesterone, at concentrations found during the luteal phase of the estrous cycle, inhibits estradiol-induced gonadotropin surges. Furthermore, ovarian factors other than estradiol and progesterone may be required to maintain basal concentrations of LH and FSH in heifers.  相似文献   

6.
We studied the effect of alpha-melanotropin hormone (alpha-MSH) on experimental autoimmune oophoritis (EAO), an inflammatory process induced in female rats. During proestrus, serum levels of LH and progesterone in rats with EAO were higher than those of control rats. However, administration of alpha-MSH to these rats decreased the levels of LH. Similarly, in the following diestrus, rats with EAO had high levels of LH but treatment with alpha-MSH decreased the levels to diestrus 2 control values. Treatment with alpha-MSH also reduced the LH levels of control rats in diestrus 2 compared to untreated controls. However, alpha-MSH treatment had no effect on progesterone levels of either control or rats with EAO. Thus, although alpha-MSH induced notable changes in levels of LH, this decrease was unable to block the illness.  相似文献   

7.
The effects on estrus and fertility of 3 estrus synchronization protocols were studied in Brahman beef heifers. In Treatment 1 (PGF protocol; n=234), heifers received 7.5 mg, i.m. prostianol on Day 0 and were inseminated after observed estrus until Day 5. Treatment 2 (10-d NOR protocol; n = 220) consisted of norgestomet (NOR; 3 mg, s.c. implant and 3 mg, i.m.) and estradiol valerate (5 mg, i.m.) treatment on Day -10, NOR implant removal and 400 IU, i.m. PMSG on Day 0, and AI after observed estrus through to Day 5. Treatment 3 (14-d NOR+PGF protocol; n = 168) constituted a NOR implant (3 mg, sc) on Day -14, NOR implant removal on Day 0, PGF on Day 16, and AI after observed estrus through to Day 21. All heifers were examined for return to estrus at the next cycle and inseminated after observed estrus. The heifers were then exposed to bulls for at least 21 d. During the period of estrus observation (5 d) after treatment, those heifers treated with the PGF protocol had a lower (P<0.01) rate of estrual response (58%) than heifers treated with the 10-d NOR (87%) or 14-d NOR+PGF (88%) protocol. Heifers treated with the 10-d NOR protocol displayed estrus earlier and had a closer synchrony of estrus than heifers treated with either the PGF or the 14-d NOR+PGF protocol. Heifers treated with the 14-d NOR+PGF protocol had higher (P<0.05) conception and calving rates (51 and 46%) to AI at the induced estrus than heifers treated with the PGF (45 and 27%) or the 10-d NOR (38 and 33%) protocol. Calving rate to 2 rounds of AI was greater (P<0.05) for heifers treated with the 14-d NOR-PGF (50%) protocol than heifers treated with the 10-d NOR (38%) but not the PGF (43%) protocol. Breeding season calving rates were similar among the 3 protocols. The results show that the 14-d NOR+PGF estrus synchronization protocol induced a high incidence of estrus with comparatively high fertility in Brahman heifers.  相似文献   

8.
A study was conducted to evaluate the effect of feeding a bypass fat on luteinizing hormone (LH) response to gonadotrophin releasing hormone (GnRH) in noncyclic Holstein heifers. Twelve cyclic Holstein heifers were fed a complete diet at 40% net energy for maintenance (NE(m)) until cessation of ovarian activity. Based on weights and condition scores, heifers were assigned to either a control or treatment diet containing 0.45 kg bypass fat and fed at an energy level of 85% NE(m). Diet adjustments were made following weekly weighings. GnRH challenges were conducted at four periods: prior to initial energy deprivation, at termination of 40% NE(m) feeding, and twice more at 21-d intervals after 85% NE(m) feeding began. Blood was sampled via a jugular catheter every 15 min for 5 h, and GnRH was injected after the fourth sample. None of the heifers exhibited estrous activity after the initial energy deprivation. Heifers on the bypass fat diet continued to lose weight during the treatment period, while the control heifers gained a slight amount of weight. Baseline and peak concentrations of LH were not significantly affected by time or diet. Time to GnRH-induced LH peak was longer (53 vs 130 min, P < 0.01) after 40% NE(m) and remained greater at all times thereafter. Serum lipid levels increased 82.5% among heifers being fed the bypass fat. Energy restriction had no effect on the magnitude of LH response to GnRH but did delay response time.  相似文献   

9.
In the first experiment, the effect of the stress of blood collection (via tail vessel puncture) on serum luteinizing hormone (LH) was evaluated in six nonsuckled first calf Brangus heifers. The animals were bled on days 22 and 31 postpartum at 15 minute intervals for a period of two hours. Blood was processed to yield serum and analyzed for LH via radioimmunoassay (RIA). There were no significant differences or fluctuations in serum LH levels between bleeding periods or between cows. Serum LH concentrations in nonsuckled cows were not affected by the stress of blood collection. In the second experiment, 24 first calf Brangus heifers were randomly assigned to one of four treatment groups. Treatment 1 cows were suckled once daily for approximately 30 min starting day 21 postpartum. Treatment 2 cows were suckled twice daily for approximately 30 min each time, starting 21 days postpartum. Treatment 3 cows were suckled once daily for approximately 30 min starting 30 days postpartum. Treatment 4 cows were suckled twice daily for approximately 30 min each time starting 30 days postpartum. Each cow was bled via tail vessel puncture on days one and nine following the start of each treatment. The blood sampling regime was similar to that used in Experiment 1 and consisted of four presuckling samples taken at 15 min intervals, one midsuckling sample (the calf was allowed to suckle for 15 min) and four postsuckling samples taken at 15 min intervals. Blood was collected, processed to yield serum and assayed for LH via RIA. Suckling intensity (SI) was found to have a significant effect on serum LH levels. The once daily suckled cows had higher (P<.01) mean serum LH levels than did the twice daily suckled cows (1.70 +/- .03 and 1.53 +/- .03 ng/ml, respectively). The LH concentrations decreased (P<.01) from the first to last bleeding time (BT). The mean serum LH levels for the presuckling, midsuckling and the first postsuckling samples were higher (P<.05) than the last postsuckling sample. The mean serum LH level for the first time period prior to suckling was higher (P<.05) than the last postsuckling sample. The mean serum LH level for the first time period prior to suckling was higher (P<.05) than the last two periods after suckling (1.73 +/- .08 ng/ml vs 1.51 +/- .06 and 1.41 +/- .06 ng/ml). Bleeding day (BD) and weaning day (WD) did not alter serum LH levels. The interactions found to be significant (P<.01) were SIxBD, SIxWD, BDxWD and BTxSIxBDxWD.  相似文献   

10.
Administering gonadotropin-releasing hormone (GnRH) improved conception rates in our previous studies. Our objective was to determine if the effect of GnRH was mediated through serum luteinizing hormone (LH) and/or by altered secretion of serum progesterone (P) and estradiol-17 beta (E) during the periestrual and post-insemination periods. Cattle were given either GnRH (n = 54) or saline (n = 55) at 72 h and inseminated artificially (AI) 80 h after the second of two injections of either prostaglandin F2 alpha or its analog, cloprostenol. Progesterone and E were measured in blood serum collected during 3 wk after AI (estrus) from 60 females. Blood was collected for LH determinations via indwelling jugular cannulae from 14 cows and 11 heifers. Collections were taken every 4 h from 32 to 108 h after the second PGF injection (PGF-2) (periestrual period) and at more frequent intervals during 240 min after administration of GnRH (n = 18) or saline (n = 7). Ten females had a spontaneous preovulatory LH surge before GnRH treatment (GnRH-spontaneous), whereas GnRH induced the preovulatory LH surge in six females. A spontaneous LH surge appeared to be initiated in two heifers at or near the time of GnRH treatment (spontaneous and/or induced). The remaining seven cows had spontaneous LH surges with no subsequent change in LH after saline treatment. Serum P during the 21 days after estrus was lower (p less than 0.05) in both pregnant and nonpregnant (open) cattle treated previously with GnRH compared with saline. Serum P during the first week after estrus was greater (p less than 0.01) and increased (p less than 0.05) more rapidly in saline controls and in GnRH-spontaneous cattle than in those exhibiting GnRH-induced or GnRH-spontaneous and/or-induced surges of LH. Conception rate of cattle receiving GnRH was higher (p = 0.06) than that of saline-treated controls. These data suggest that GnRH treatment at insemination initiated the preovulatory LH surge in some cattle, but serum P in both pregnant and open cows was compromised during the luteal phase after GnRH treatment. Improved fertility may be associated with delayed or slowly rising concentrations of serum progesterone after ovulation.  相似文献   

11.
A controlled study was carried out to investigate the effects of suprabasal plasma progesterone concentrations on blood plasma patterns of progesterone, LH and estradiol-17beta around estrus. Heifers were assigned to receive subcutaneous silicone implants containing 2.5 g (n=4), 5 g (n=4), 6 g (n=3), 7.5 g (n=3) or 10 g (n=4) of progesterone, or implants without hormone (controls, n=5). The implants were inserted on Day 8 of the cycle (Day 0=ovulation) and left in place for 17 d. The time of ovulation was determined by ultrasound scanning. Blood was collected daily from Days 0 to 14 and at 2 to 4-h intervals from Days 15 to 27. Control heifers had the lowest progesterone concentrations on Days 20.5 to 21 (0.5 +/- 0.1 nmol L(-1)); a similar pattern was observed in heifers treated with 2.5 and 5 g of progesterone. In the same period, mean progesterone concentrations in the heifers treated with 6, 7.5 and 10 g were larger (P < 0.05) than in the controls, remaining between 1 and 2.4 nmol L(-1) until implant removal. A preovulatory estradiol increase started on Days 16.4 to 18.4 in all the animals. In the controls and in heifers treated with 2.5 and 5 g of progesterone, estradiol peaked and was followed by the onset of an LH surge. In the remaining treatments, estradiol release was prolonged and increased (P < 0.05), while the LH peak was delayed (P < 0.05) until the end of the increase in estradiol concentration. The estrous cycle was consequently extended (P < 0.05). In all heifers, onset of the LH surge occurred when progesterone reached 0.4 to 1.2 nmol L(-1). The induction of suprabasal levels of progesterone after spontaneous luteolysis caused endocrine asynchronies similar to those observed in cases of repeat breeding. It is suggested that suprabasal concentrations of progesterone around estrus may be a cause of disturbances oestrus/ovulation.  相似文献   

12.
Estrus synchronization trials with mares were carried out using progesterone impregnated vaginal sponges and pregnant mare serum gonadotropin (PMSG) injections. In Phase 1, 10 non-pregnant, non-lactating mares were administered 1 g progesterone via vaginal sponges (5 x 6 cm) without regard to stage of estrous cycle. Sponges were replaced on day 7 of trial for an additional seven days. On day 12, PMSG (1000 IU, IM) was administered to five mares (Group A); five control mares (Group B) received no injections. There was no difference (P>.05) in estrus synchronization between Group A and Group B. Total sponge retention was 75%. In Phase 2, 11 non-pregnant, non-lactating mares were administered 2 g progesterone via vaginal sponges (10 x 6 cm) without regard to stage of estrous cycle. Sponges were replaced on day 7 of trial for an additional seven days. Estrus behavior was exhibited in 54.5% of mares by day 19. Total sponge retention was 95.4%. There was no difference (P>.05) in estrus synchronization or sponge retention between Phase 1 and Phase 2. The larger Phase 2 sponges showed less (P<.01) posterior movement within the vagina than the smaller Phase 1 sponges.  相似文献   

13.
Five primiparous, 3-year-old Hereford cows suckled ad libitum , were cannulated via the jugular vein and stanchioned for 2-day sampling periods, every 14 days starting 14 days after the mean calving date. On the second day of each period, calves were removed to a pen away from the cows, for 9 hours. Blood was sampled 5 min before calves were returned to their dams, as soon as possible after initiation of suckling (IOS), and at 15-min intervals for 45 min, thereafter. Cortisol, progesterone and luteinizing hormone (LH) concentrations in the serum were quantitated by radioimmunoassay. Mean serum cortisol concentrations were 7.3 +/- .7, 9.4 +/- .7, 12.1 +/- .9, 7.5 +/- .5 and 5.7 +/- .4 ng/ml (mean +/- S.E.) at -5, 0, 15, 30 and 45 min after IOS, respectively, for all cows across all periods. Cortisol concentrations, during and after suckling, tended (P<.06) to differ among sampling periods, during the postpartum interval. Serum progesterone concentrations were .28 +/- .02, .28 +/- .02, .32 +/- .05 and .24 +/- .03 ng/ml at 0, 15, 30 and 45 min after IOS, respectively, for all cows across all period, indicating that suckling had no effect on serum progesterone, and were similar at all sampling periods during the postpartum interval. Serum LH concentrations were .81 +/- .07, .77 +/- .06, .71 +/- .04, and .72 +/- .04 ng/ml at 0, 15, 30 and 45 min after IOS, respectively. During the postpartum interval, serum LH concentrations were greater (P<.01) at 71 and 85 days postpartum than at any other time.  相似文献   

14.
The objectives of this experiment were to determine the effects of 0.5 mg estradiol benzoate, administered intramuscularly 24 h after removal of CIDR-B progesterone containing intravaginal devices, on the time to estrus, ovulation and peak LH concentration in dairy heifers. Ovulatory responses and plasma LH concentrations were examined using 14 Friesian dairy heifers in 2 separate treatment periods. All heifers received a CIDR-B progesterone-containing intravaginal device with an attached 10-mg estradiol benzoate capsule for 12 d. Within each period, 24 h after CIDR-B removal, 7 heifers received an intramuscular injection of 0.5 mg estradiol benzoate while the remaining 7 heifers received an intramuscular injection of a placebo. Blood samples for LH assay were collected at 0, 6 and 12 h, and then every 4 h for 60 h after estradiol injection. Detection of estrus was conducted at 4-h intervals, and ultrasonographical examination to detect ovulation was conducted every 8 h for 88 h after removal of the CIDR-B device. Treatment with estradiol benzoate tended to reduce the time from device removal to the LH peak in Period 1 (median time to LH peak 40.1 vs 63.9 h; P = 6.07). In Period 2, treatment with estradiol had no significant effect on the time to the LH peak, standing estrus or ovulation. We hypothesize that the period effect was due to the stage of cycle at the time of treatment. For heifers treated in Period 1, the stage of cycle was random. However, because of the prior synchronization of estrus, which was implicit in the experimental design, heifers in Period 2 tended to be in late diestrus. The administration of estradiol benzoate after treatment with exogenous progesterone appears to overcome the variability in timing of LH peaks typically occurring in a herd of synchronized heifers due to different stages of follicular development.  相似文献   

15.
To evaluate the roles of FSH and LH in follicular growth, GnRH-immunized anestrous heifers (n = 17) were randomly assigned (Day 0) to one of three groups (n = 5 or 6). Group 1 received i.m. injections of 1.5 mg porcine FSH (pFSH) 4 times/day for 2 days; group 2 received i.v. injections of 150 microg pLH 6 times/day for 6 days; group 3 received both pFSH and pLH as described for groups 1 and 2. After slaughter on Day 6, measurements were made of follicle number and size, and follicular fluid concentrations of progesterone (P(4)), estradiol (E(2)), and aromatase activity. Injection of pFSH increased (P: < 0.01) the serum concentrations of FSH between 12 and 54 h. Infusion of pLH increased (P: < 0.05) mean and basal concentrations of LH and LH pulse frequency. Serum E(2) concentrations were higher (P: < 0.05) for heifers given pFSH + pLH than those given either pFSH or pLH alone. There was no difference (P: > or = 0.24) between treatments in the number of small follicles (<5 mm). Heifers given pFSH or pFSH + pLH had more (P: < or = 0.02) medium follicles (5.0-9.5 mm) than those that were given pLH alone (none present). Heifers given pFSH + pLH had more (P: = 0.04) large follicles (> or =10 mm) than those given either pLH or pFSH alone (none present). Overall, only 1 of 35 small follicles and 2 of 96 medium follicles were E(2)-active (i.e., E(2):P(4) >1.0), whereas 18 of 21 large follicles (all in the pFSH + pLH treatment) were E(2)-active; of these, 8 of 18 had aromatase activity. Concentrations of E(2) and E(2) activity in follicular fluid were correlated (r > or = 0.57; P: < 0.0001) with aromatase activity in heifers given pLH + pFSH. In conclusion, pLH failed to stimulate follicle growth greater than 5 mm; pFSH stimulated growth of medium follicles that were E(2)-inactive at slaughter and failed to increase serum E(2) concentrations; whereas pFSH + pLH stimulated growth of medium follicles and E(2)-active large follicles, and a 10- to 14-fold increase in serum E(2) concentrations.  相似文献   

16.
Two experiments were conducted to examine the effects of repeated low-dose injections of gonadotropin releasing hormone (GnRH) 30 to 40 d post partum on reproductive characteristics in multiparous suckled Brahman cross cows. In Experiment I, 39 cows were injected (i.v.) with GnRH (5 mug/injection) at 2-h intervals for either 0 (control), 6, 12, or 24 h at 30 to 37 d post partum. GnRH injections for short periods (6h) increased the number of cows exibiting estrus within 45 d of treatment, but cows injected for 24 h failed to exhibit estrus during this period. The period from treatment to first estrus was shorter in the 6-h GnRH group compared to the control group. Injections for 6h significantly (P < 0.05) increased in serum luteinizing hormone (LH) concentrations 1 d after GnRH treatment. In Experiment II we examined the effect of i.v. GnRH injections (5 mug/injection at 2-h intervals) for 6h in a larger group of cows (n = 70). The days from treatment to first estrus were reduced (P < 0.05) in GnRH-treated cows; however, first-service conception rates were significantly lower (P < 0.01) in treated compared to control cows (46.4 and 80.0%, respectively). The results led us to believe that GnRH injections for short periods reduce postpartum interval to first estrus, but fertility at first estrus is lowered.  相似文献   

17.
18.
Aminoglutethimide (AG), an inhibitor of steroidogenesis, was administered s.c. to 5 groups of laying hens at a dose of 200 mg AG/kg body weight 9 h before expected midsequence ovulation. This dose has previously been demonstrated to consistently block ovulation. The injection of AG was followed by s.c. injections of: Group 1, 1.0 mg progesterone; Group 2, 0.1 mg estradiol-17 beta; Group 3, 1.5 mg corticosterone, all at 6 h prior to expected ovulation; Group 4, 1.0 mg testosterone at both 8 h and 5 h before expected ovulation; and Group 5, 25 micrograms of ovine luteinizing hormone (LH) at 8 and 50 micrograms ovine LH at 6 h before expected ovulation. For each group, 4 control hens were injected with AG and the appropriate vehicle. Blood samples were taken at 1- or 2-h intervals from the time of AG injection to the expected time of ovulation. The hens were killed 4 h after expected ovulation and examined for the occurrence of ovulation. In all hens injected with vehicle, ovulation and the preovulatory surges of progesterone, testosterone, estradiol-17 beta and LH were inhibited. The plasma concentration of corticosterone was not reduced following an injection of AG. Four of 6 hens ovulated in response to injection of ovine LH, although neither endogenous LH nor progesterone were released. Thus, LH appears to play a direct role in follicular rupture and extrusion of the ovum. The administration of progesterone induced a significant and prolonged rise in LH, restoring AG-blocked ovulation in all hens treated (n = 6). Injections of testosterone restored LH release in all hens and ovulation in 2 of 7 hens treated. Three of 7 hens ovulated in response to the corticosterone injection. A preovulatory rise in LH was not observed, indicating that corticosterone may exert its ovulation-inducing effect directly on the mature follicle. Estradiol-17 beta did not restore LH release or ovulation in any of the hens treated with AG.  相似文献   

19.
Three trials utilizing 231 beef heifers were conducted in 1993 to determine if a timed insemination would result in similar synchronized pregnancy rates as insemination by estrus following synchronization of estrus using the 14-d MGA-prostaglandin system. All heifers were fed 0.5 mg MGA/h/d fof 14 d and given a 25 mg injection of PGF(2)alpha im 17 d after the final day of MGA feeding. Heifers in Group 1 (timed AI treatment) were inseminated at 72 h after the prostaglandin injection independent of whether or not they were observed in estrus. Heifers in Group 2 (AI by estrus) were inseminated 12 to 18 h after the onset of estrus. Since the trial was a significant source of variation for synchronized pregnancy rate, the effect of treatment on pregnancy rate was analyzed for each trial. Synchronized pregnancy rates in Trials 2 and 3 were similar in both treatment groups; 37 vs 35% and 61 vs 58% for the timed AI vs AI by estrus (Groups 1 and 2) in Trials 2 and 3, respectively. In both of these trials the degree of estrous synchrony was high. In Trial 1, the synchronized pregnancy rate in heifers that were time-inseminated was significantly lower than that of heifers that were inseminated by estrus (29 vs 57%). The lower synchronized pregnancy rate of Group 1 (timed AI) heifers in Trial 1 appeared to be due to the low degree of estrous synchrony in this trial. Our results indicate that using timed insemination with the 14-d MGA-prostaglandin system will give similar synchronized pregnancy rates as inseminating by estrus in groups of beef heifers where the degree of synchrony is high. However, in heifers where the degree of estrous synchrony is low, a timed insemination reduces synchronized pregnancy rates.  相似文献   

20.
Estrous cycles of 10 postpartum cyclic Holstein cows were synchronized using prostaglandin f(2alpha) (PGF(2alpha)) given twice 12 d apart to study the relationship of the onset of estrus, body temperature, milk yield, luteinizing hormone (LH) and progesterone concentration to ovulation. Blood samples and body temperatures (vaginal and rectal) were taken every 4 h until ovulation, starting 4 h prior to the second PGF(2alpha) treatment. All cows were observed for estrus following the second administration of PGF(2alpha). Ultrasound scanning of the ovaries commenced at standing estrus and thereafter every 2 h until the disappearance of the fluid filled preovulatory follicle (ovulation). Two cows failed to ovulate and became cystic following the second PGF(2alpha) treatment. The remaining eight cows exhibited a decline in progesterone to <1.0 ng/ml within 28 h, standing estrus and a measurable rise (> 1.0 degrees C) in vaginal but not rectal temperature, and ovulated 90 +/- 10 h after the second PGF(2alpha) treatment. Onset of standing estrus, LH peak and vaginal temperature were highly correlated (P<0.05) with time of ovulation (0.82, 0.81 and 0.74, respectively). Intervals to ovulation tended to depend upon parity. Pluriparous (n = 4) and biparous (n = 4) cows ovulated within 24 and 30 +/- 3 h from the onset of standing estrus; 22 and 31 +/- 2 h from the LH peak; and 22 and 27 +/- 3 h from peak vaginal temperature (mean +/- standard error of the mean), respectively. The results indicated that the onset of standing estrus and rise in vaginal temperature are good practical parameters for predicting ovulation time in dairy cattle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号