首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Matrin 3 is a nuclear matrix protein that has been implicated in interacting with other nuclear proteins to anchor hyperedited RNAs to the nuclear matrix, in modulating the activity of proximal promoters, and as the main PKA substrate following NMDA receptor activation. In our proteome-wide selections for calmodulin (CaM) binding proteins and for caspase substrates using mRNA-displayed human proteome libraries, matrin 3 was identified as both a Ca(2+)-dependent CaM-binding protein and a downstream substrate of caspases. We report here, the in vitro characterization of the CaM-binding motif and the caspase cleavage site on matrin 3. Significantly, the Ca(2+)/CaM-binding motif is partially overlapped by the RRM of matrin 3 and is also very close to the bipartite NLS that is essential for its nuclear localization. The caspase cleavage site is downstream of the NLS but upstream of the second U1-like zinc finger. Our results suggest that the functions of matrin 3 could be regulated by both Ca(2+)-dependent interaction with CaM and caspase-mediated cleavage.  相似文献   

3.
4.
UV radiation induces DNA lesions that are repaired by the nucleotide excision repair (NER) pathway. Cells that are NER deficient such as those derived from xeroderma pigmentosum (XP) patients are susceptible to apoptosis after 10J/m(2) UV radiation, a dose largely survivable by repair proficient cells. Herein, we report that RNA polymerase II large subunit (RNAP II-LS) undergoes caspase-mediated cleavage, yielding a 140kDa C-terminal fragment in XP lymphoblasts but not NER proficient lymphoblasts after 10J/m(2) UV irradiation. Cleavage could also be induced by cisplatin or oxaliplatin, but not transplatin, an isomer of cisplatin that does not induce DNA adducts. The cleavage of RNAP II-LS was blocked by a panel of caspase inhibitors but not by proteasomal inhibitors or inhibitors of other proteases. In vitro cleavage with caspase 8 yielded the same 140kDa RNAP II-LS fragment observed in vivo. Using site-directed mutagenesis, the RNAP II-LS cleavage site was localized to an LETD sequence ending at residue 1339, which is near its C-terminal domain.  相似文献   

5.
Reperfusion after myocardial ischemia is associated with a rapid influx of calcium, leading to activation of various enzymes including calpain. Isolated perfused adult rabbit hearts subjected to global ischemia and reperfusion were studied. Calpain or a calpain-like activity was activated within 15 min after reperfusion, and preconditioning suppressed calpain activation. In contrast, caspase activation was not detected although cytochrome c was released after ischemia and reperfusion. The pro-apoptotic BH3-only Bcl-2 family member, Bid, was cleaved during ischemia/reperfusion in the adult rabbit heart. Recombinant Bid was cleaved by calpain to a fragment that was able to mediate cytochrome c release. The calpain cleavage site was mapped to a region within Bid that is extremely susceptible to proteolysis. These findings suggest that there is cross-talk between apoptotic and necrotic pathways in myocardial ischemia/reperfusion injury.  相似文献   

6.
Matrix extracellular phosphoglycoprotein (MEPE) is an extracellular matrix protein that is mainly expressed in mineralizing tissues, including the dental pulp. The purposes of this study were to clarify the localization of MEPE in the tooth germ and to investigate the roles of MEPE in the differentiation of odontoblasts. The immunohistochemical staining in the tooth germ of the upper first molars of male Wistar rats (postnatal day 3) revealed that MEPE was mainly localized in odontoblasts during dentinogenesis. Stable MEPE-overexpressing and MEPE-knockdown cell lines, which were established in odontoblast-lineage cells (OLCs), showed lower and higher differentiation capabilities, respectively. Eukaryotic proteins of the N-terminal fragment of MEPE produced in HEK cells had no effect on the differentiation of OLCs, whereas the C-terminal fragment containing an RGD sequence inhibited their differentiation. These results indicated that the C-terminal fragment of MEPE containing an RGD sequence, cleaved in odontoblasts, appeared to be the active form of MEPE, which may play important roles in dentinogenesis and pulpal homeostasis by keeping the odontoblasts in immature condition.  相似文献   

7.
8.
alpha 2-Macroglobulin is cleaved by human immunodeficiency virus-1 protease. The cleavage site is the Phe684-Tyr685 bond in the "bait region", an exposed part of alpha 2-macroglobulin, creating the "F-form". The methylamine derivative of alpha 2-macroglobulin is also cleaved at the same bond. The homologous chicken ovomacroglobulin does not form an F-form structure with the protease, although, F-form generation by other enzymes is known. This is possibly due to the lack of a suitable cleavage sequence in the corresponding region of ovomacroglobulin. In human alpha 2-macroglobulin, the interdomain segment between the main part of the molecule and the receptor-binding C-terminal domain is not cleaved by the HIV protease although typical cleavage sequences occur. In AIDS, therefore, HIV protease from infected cells in unlikely to interfere with receptor-binding of alpha 2-macroglobulin.  相似文献   

9.
Park SM  Yoon JB  Lee TH 《FEBS letters》2004,566(1-3):151-156
Receptor interacting protein (RIP) is recruited to tumor necrosis factor-alpha receptor 1 (TNFR1) complex upon stimulation and plays a crucial role in the receptor-mediated NF-kappaB activation. Among the components of the TNFR1 complex are proteins that possess ubiquitin-protein isopeptide ligase (E3) activities, such as TNFR1-associated factor 2 (TRAF2), cellular inhibitor of apoptosis proteins (c-IAPs) namely, c-IAP1 and c-IAP2. Here, we showed that ectopically expressed RIP is ubiquitinated, and either the intermediate or death domain of RIP is required for this modification. Expression of c-IAP1 and c-IAP2 decreased the steady-state level of RIP, which was blocked by inhibition of the 26S proteasome. RIP degradation requires intact c-IAP2 containing the RING domain. Our in vitro ubiquitination assay revealed that while TRAF2 had no effect, both c-IAP1 and c-IAP2-mediated RIP ubiquitination with similar efficiency, indicating that c-IAPs can function as E3 toward RIP.  相似文献   

10.
An essential component of normal development is controlling the transition from cell proliferation to differentiation. One such transition occurs during Drosophila oogenesis. In early oogenesis, germ cells undergo mitotic proliferation and contain a specialized organelle called a fusome, whereas later post-mitotic cells differentiate and lose the fusome as F-actin-rich ring canals form. The hts gene encodes the only Drosophila Adducin, and is a female-sterile mutant that affects both the fusome and ring canals. We show that one Hts protein, Ovhts, is a polyprotein that is cleaved to produce two products, Ovhts-Fus and Ovhts-RC. Whereas Ovhts-Fus localizes to the fusome in mitotic cells, Ovhts-RC localizes to ring canals throughout later oogenesis. We demonstrate that an uncleavable version of Ovhts delays the transition from fusome-containing cells to those that have ring canals. Ovhts is the first polyprotein shown to produce proteins that function in separate structures.  相似文献   

11.
12.
Seven rabbits were immunized with a synthetic C-terminal glucagon fragment [15--29] conjugated with bovine serum albumin by means of glutaraldehyde. Antisera for glucagon were produced in all the animals after six injections of the conjugate. One of them revealed a higher titer antiserum (G42), which did not cross react with gut glucagon-like immunoreactive material, secretin, insulin, gastric inhibitory polypeptide or vasoactive intestinal peptide. From the results of inhibition of 125 I-glucagon in binding with the antiserum by various glucagon-related fragments the immunogenic determinant of the antiserum was proved to be in the C-terminal residue of the glucagon molecule, although peptide [17--29] or [21--29] reacted weakly with the antiserum. The plasma glucagon levels measured by antiserum G 42 during an arginine test in five normal subjects were superposed on those obtained by other antiserum (G21), specific for pancreatic glucagon. Furthermore, a comparable standard curve for glucagon was obtained using antiserum G42, when a labelled p-hydroxyphenylacetylated glucagon fragment [15--29] was employed as a tracer. The present study clearly demonstrated that the C-terminal glucagon fragment could yield a specific antiserum for pancreatic glucagon, supporting the proposal that the C-terminal fragment of glucagon is responsible for such specific antisera. Furthermore, it is concluded that immunoassay for glucagon could be performed using the labelled glucagon fragment as a tracer.  相似文献   

13.
Oh YS  Turner RJ 《Biochemistry》2005,44(35):11821-11828
Mutations of human presenilin 1 (PS1) have been genetically linked to early-onset familial Alzheimer's disease. PS1 contains 10 hydrophobic regions (HRs) sufficiently long to be alpha-helical membrane spanning segments. Most previous topology studies agree that the N-terminus of PS1 is cytosolic and HRs 1-6 span the membrane but HR 7 does not. However, whether HRs 8 and 9 are membrane spanning segments remains controversial. Here we study the topology and biogenesis of this region of PS1 using a reporter gene fusion approach, where portions of the PS1 sequence containing possible membrane spanning segments were fused up- or downstream of a reporter sequence whose translocation into the endoplasmic reticulum could be monitored via its glycosylation. We provide strong evidence, supported by cysteine accessibility studies in full-length PS1, that HRs 8 and 9 are indeed membrane spanning and that the integration of HR 8 into the membrane is dependent on the presence of HR 9. We also explain how our results reconcile previous apparently divergent conclusions regarding the topology of HRs 8 and 9.  相似文献   

14.
Bid is a proapoptotic, BH3-domain-only member of the Bcl-2 family. In Fas-induced apoptosis, Bid is activated through cleavage by caspase 8 into a 15.5-kDa C-terminal fragment (t(c)Bid) and a 6.5 kDa N-terminal fragment (t(n)Bid). Following the cleavage, t(c)Bid translocates to the mitochondria and promotes the release of cytochrome c into the cytosol by a mechanism that is not understood. Here we report that recombinant t(c)Bid can act as a membrane destabilizing agent. t(c)Bid induces destabilization and breaking of planar lipid bilayers without appearance of ionic channels; its destabilizing activity is comparable with that of Bax and at least 30-fold higher than that of full-length Bid. Consistently, t(c)Bid, but not full-length Bid, permeabilizes liposomes at physiological pH. The destabilizing effect of t(c)Bid on liposomes and planar bilayers is independent of the BH3 domain. In contrast, mutations in the BH3 domain impair t(c)Bid ability to induce cytochrome c release from mitochondria. The permeabilizing effect of t(c)Bid on planar bilayers, liposomes, and mitochondria can be inhibited by t(n)Bid. In conclusion, our results suggest a dual role for Bid: BH3-independent membrane destabilization and BH3-dependent interaction with other proteins. Moreover, the dissociation of Bid after cleavage by caspase 8 represents an additional step at which apoptosis may be regulated.  相似文献   

15.
HS 1-associated protein X-1 is cleaved by caspase-3 during apoptosis   总被引:2,自引:0,他引:2  
Caspase-3 (CASP3) plays a key role in apoptosis. In this study, HAX-1 was identified as a new substrate of CASP3 during apoptosis. HAX-1 was cleaved by CASP3 during etoposide-(ETO) induced apoptosis, and this event was inhibited by a CASP3-specific inhibitor. The cleavage site of HAX-1, at Asp(127), was located using N-terminal amino acid sequencing of in vitro cleavage products of recombinant HAX-1. Overexpression of HAX-1 inhibited ETO-induced apoptotic cell death. It also inhibited CASP3 activity. Together, these results suggest that HAX-1, a substrate of CASP3, inhibits the apoptotic process by inhibiting CASP3 activity.  相似文献   

16.
Recent studies have suggested a possible role for presenilin proteins in apoptotic cell death observed in Alzheimer's disease. The mechanism by which presenilin proteins regulate apoptotic cell death is not well understood. Using the yeast two-hybrid system, we previously isolated a novel protein, presenilin-associated protein (PSAP) that specifically interacts with the C terminus of presenilin 1 (PS1), but not presenilin 2 (PS2). Here we report that PSAP is a mitochondrial resident protein sharing homology with mitochondrial carrier protein. PSAP was detected in a mitochondria-enriched fraction, and PSAP immunofluorescence was present in a punctate pattern that colocalized with a mitochondrial marker. More interestingly, overexpression of PSAP caused apoptotic death. PSAP-induced apoptosis was documented using multiple independent approaches, including membrane blebbing, chromosome condensation and fragmentation, DNA laddering, cleavage of the death substrate poly(ADP-ribose) polymerase, and flow cytometry. PSAP-induced cell death was accompanied by cytochrome c release from mitochondria and caspase-3 activation. Moreover, the general caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone, which blocked cell death, did not block the release of cytochrome c from mitochondria caused by overexpression of PSAP, indicating that PSAP-induced cytochrome c release was independent of caspase activity. The mitochondrial localization and proapoptotic activity of PSAP suggest that it is an important regulator of apoptosis.  相似文献   

17.
SGLT1 as a sodium/glucose cotransporter is strongly inhibited by phlorizin, a phloretin 2'-glucoside that has strong interactions with the C-terminal loop 13. We have examined phlorizin recognition by the protein by site-directed single Trp scanning mutagenesis experiments. Six mutants (Q581W, E591W, R601W, D611W, E621W, and L630W) of truncated loop 13 (amino acids 564-638) were expressed in Escherichia coli and purified to homogeneity. Changes in Trp quenching and positions of the emission maxima were determined after addition of phlorizin. D611W displayed the largest quenching of 80%, followed by R601W (67%). It also exhibited the maximum red shift in Trp fluorescence ( approximately 14 nm), indicating an exposure of this region to a more hydrophilic environment. Titration experiments performed for each mutant showed a similar affinity for all mutants, except for D611W, which exhibited a significantly lower affinity (Kd approximately 54 microm). Also the maximum change in the collisional quenching constant by acrylamide was noted for D611W (KSV = 11 m-1 in the absence of phlorizin and 55 m-1 in its presence). Similar results were obtained with phloretin. CD measurements and computer modeling revealed that D611W is positioned in a random coil situated between two alpha-helical segments. By combining gel electrophoresis, enzymatic fragmentation, and matrix-assisted laser desorption ionization mass spectrometry, we also analyzed truncated loop 13 photolabeled with 3-azidophlorizin. The attachment site of the ortho-position of aromatic ring B of phlorizin was localized to Arg-602. Taken together, these data indicate that phlorizin binding elicits changes in conformation leading to a less ordered state of loop 13. Modeling suggests an interaction of the 4- and 6-OH groups of aromatic ring A of phlorizin with the region between amino acids 606 and 611 and an interaction of ring B at or around amino acid 602. Phloretin seems to interact with the same region of the protein.  相似文献   

18.
Voltage-gated K(+) channel subunits must reach the plasma membrane to repolarize action potentials. Yet the efficiency of cell surface targeting varies among Kv subunits with some requiring auxiliary subunits for optimal expression. Here we identify a conserved motif located in the variable C-terminal region of Kv1 channels that controls the efficiency of functional channel expression. Variations among wild type channels in the optimal sequence VXXSL produce differences in distribution and the requirement for auxiliary subunits. Furthermore, deletion of this motif decreases subunit glycosylation and surface localization but does not prohibit subunit multimerization. Finally, the action of the essential sequence is shown to be independent of the chaperone effect of Kvbeta subunits. Thus, the newly identified C-terminal motif governs processing and cell surface expression of Kv1 voltage-gated K(+) channels.  相似文献   

19.
c-IAP1 cooperates with Myc by acting as a ubiquitin ligase for Mad1   总被引:1,自引:0,他引:1  
Xu L  Zhu J  Hu X  Zhu H  Kim HT  LaBaer J  Goldberg A  Yuan J 《Molecular cell》2007,28(5):914-922
c-IAP1, a member of the inhibitor of apoptosis protein (IAP) family and a RING finger ubiquitin ligase (E3), has been proposed to be an important oncogene. In many types of cancers, the levels of c-IAP1 are upregulated, which contributes positively to tumorigenesis. However, the mechanism by which c-IAP1 promotes tumorigenesis has proven elusive. Although proteins in the IAP family may function as caspase inhibitors, c-IAP1 was shown to be a poor inhibitor of caspases. Here we show that c-IAP1 catalyzes ubiquitination of Max-dimerization protein-1 (Mad1), a cellular antagonist of Myc. Ubiquitination of Mad1 by c-IAP1 accelerates its degradation by the 26S proteasome pathway, and this reduction of the Mad1 levels cooperates with Myc to promote cell proliferation. Our results demonstrate that c-IAP1 exerts its oncogenic functions by promoting the degradation of an important negative regulator in the Myc pathway.  相似文献   

20.
The anti-apoptotic molecule Aven was originally identified in a yeast two-hybrid screen for Bcl-x(L)-interacting proteins and has also been found to bind Apaf-1, thereby interfering with Apaf-1 self-association during apoptosome assembly. Aven is expressed in a wide variety of adult tissues and cell lines, and there is increasing evidence that its overexpression correlates with tumorigenesis, particularly in acute leukemias. The mechanism by which the anti-apoptotic activity of Aven is regulated remains poorly understood. Here we shed light on this issue by demonstrating that proteolytic removal of an inhibitory N-terminal Aven domain is necessary to activate the anti-apoptotic potential of the molecule. Furthermore, we identify Cathepsin D (CathD) as the protease responsible for Aven cleavage. On the basis of our results, we propose a model of Aven activation by which its N-terminal inhibitory domain is removed by CathD-mediated proteolysis, thereby unleashing its cytoprotective function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号