首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Haemoglobin Aalborg (Gly74 (E18)beta----Arg) has a reduced oxygen affinity, in both the absence and the presence of organic phosphates; it has a raised affinity for organic phosphates, and it is moderately unstable. By contrast, haemoglobin Shepherds Bush (Gly74 (E18)beta----Asp) has an increased oxygen affinity in both the absence and the presence of organic phosphates, a diminished affinity for organic phosphates and is also unstable. We have determined the crystal structure of deoxyhaemoglobin Aalborg at 2.8 A resolution and compared it to the structures of deoxy- and oxyhaemoglobin A and of deoxyhaemoglobin Shepherds Bush. The guanidinium group of Arg74(E18)beta protrudes from the haem pocket and donates hydrogen bonds to the E and F helices. The carboxylate group of Asp74(E18)beta forms a hydrogen bond only with residue EF6 and is partially buried, which may be why haemoglobin Shepherds Bush appears to be more unstable than haemoglobin Aalborg. To discover why the latter has a low oxygen affinity, we superimposed the B, G and H helices of haemoglobin A, whose conformation is known to be unaffected by ligand binding, on those of haemoglobin Aalborg. This also brought helices E and the haems into superposition, but revealed a shift of the F helix of deoxyhaemoglobin Aalborg towards the EF-corner. This shift is opposite to that which occurs on ligand binding and on transition to the quaternary oxy-structure, and is linked to an increased tilt of the proximal histidine residue away from the haem axis. Since the relative positions of helices E and F and of the haem group are thought to be the main determinants of the changes in oxygen affinity, the shift of helix F may account for the reduced oxygen affinity of haemoglobin Aalborg. The shift may be due to a combination of steric and electrostatic effects introduced by the arginine residue's side-chain. The effects of the arginine and aspartate substitutions at position E18 beta on the 2,3-diphosphoglycerate affinity are equal and opposite. They can be quantitatively accounted for by the electrostatic attraction or repulsion by the oppositely charged side-chains.  相似文献   

2.
The intertidal polychaete Terebella haplochaeta (Ehlers) shows a high degree of oxyregulation in declining pO2 when confined to its burrow at low tide. This response is achieved by a number of adaptations to the respiratory system. The worm ventilates its burrow in a headward direction by rhythmical conractions of the body. The rate of these pulsations increases at low pO2 and assists the circulation of the coelomic and vascular fluids. Haemoglobin in the vessels has a high affinity for oxygen and a sigmoidal equilibrium curve. Both the shape and position of the oxygen-binding curve are sensitive to changes in pH, pCO2, and temperature in a way that suggests augmentation of oxygen delivery at low tide. The concentration of haemoglobin in the vessels is high and is further raised following warm acclimation, presumably to meet an increase in oxygen demand. The ultrastructure of the gills and blood vessels indicates a design for function at low oxygen tensions where diffusion distances must be short and surface areas large in order to enhance the rate of diffusion of oxygen from the near environment.  相似文献   

3.
Dewanti AR  Xu Y  Mitra B 《Biochemistry》2004,43(33):10692-10700
(S)-Mandelate dehydrogenase from Pseudomonas putida belongs to a FMN-dependent enzyme family that oxidizes (S)-alpha-hydroxyacids. Despite a high degree of sequence and structural similarity, this family can be divided into three subgroups based on the different oxidants utilized in the second oxidative half-reaction. Only the oxidases show high reactivity with molecular oxygen. Structural data indicate that the relative position of a peptide loop and the isoalloxazine ring of the FMN is slightly different in the oxidases compared to the dehydrogenases; the last residue on this loop is either an alanine or glycine. We examined the effect of the G81A, G81S, G81V, and G81D mutations in MDH on the overall reaction and especially on the suppression of activity with oxygen. G81A had a higher specificity for small substrates compared to that of wtMDH, though the affinity for (S)-mandelate was relatively unchanged. The rate of the first half-reaction was 20-130-fold slower for G81A and G81S; G81D and G81V had extremely low activity. Redox-potential measurements indicate that the reduction in activity is due to the decrease in electrophilicity of the FMN. The affinity for oxygen increased 10-15-fold for G81A and G81S relative to wtMDH; the rate of oxidation increased 2-fold for G81A. The increased reactivity with molecular oxygen did not correlate with the redox potentials and appears to primarily result from a higher affinity for oxygen. These results suggest that one of the ways the oxidase activity of MDH is controlled is through steric effects because of the relative positions of the FMN and the Gly81 loop.  相似文献   

4.
Based on the properties of two low oxygen affinity mutated hemoglobins (Hb), we have engineered a double mutant Hb (rHb beta YD) in which the beta F41Y substitution is associated with K82D. Functional studies have shown that the Hb alpha 2 beta 2(C7)F41Y exhibits a decreased oxygen affinity relative to Hb A, without a significantly increased autooxidation rate. The oxygen affinity of the natural mutant beta K82D (Hb Providence-Asp) is decreased due to the replacement of two positive charges by two negative ones at the main DPG-binding site. The functional properties of both single mutants are interesting in the view of obtaining an Hb-based blood substitute, which requires: (1) cooperative oxygen binding with an overall affinity near 30 mm Hg at half saturation, at 37 degrees C, and in the absence of 2,3 diphosphoglycerate (DPG), and (2) a slow rate of autooxidation in order to limit metHb formation. It was expected that the two mutations were at a sufficient distance (20 A) that their respective effects could combine to form low oxygen affinity tetramers. The double mutant does display additive effects resulting in a fourfold decrease in oxygen affinity; it can insure, in the absence of DPG, an oxygen delivery to the tissues similar to that of a red cell suspension in vivo at 37 degrees C. Nevertheless, the rate of autooxidation, 3.5-fold larger than that of Hb A, remains a problem.  相似文献   

5.
In hemoglobin (Hb) Roanne, the aspartate residue α 94(G1) is replaced by a glutamic acid. This residue plays a key role in the structural changes affecting the α1β2 contact area during the deoxy- to oxy-state transition in the hemoglobin molecule. Aspartate α94(G1) is involved in several contacts both in the deoxy- and oxy-structures. The most important of those is a hydrogen bond with asparagine β102 (G4), stabilizing the oxygenated structure. Alteration of this contact usually leads to a decrease in oxygen affinity. Hb Roanne is the first example in which an increased oxygen affinity was found as a result of a structural modification at this position. Functional data suggested that the mechanisms responsible for this altered property are a destabilisation of the T-structure and a modification of the allosteric equilibrium.  相似文献   

6.
We have expressed human alpha-globin to a high level in Escherichia coli as a fusion protein, purified it and removed the N-terminal leader sequence by site-specific proteolysis with blood coagulation factor Xa. The apo globin has been refolded and reconstituted with haem and native beta-globin to form fully functional haemoglobin (Hb) with properties identical to those of native human Hb. By site-directed mutagenesis we have altered the distal residues of the alpha subunits and compared the functional properties of these mutant proteins. The rates of various ligands binding to these proteins in the R-state have been reported by Mathews et al. Here, we present the oxygen equilibrium curves of three E11 alpha mutants and the crystal structures of two of these mutants in the deoxy form. Replacing the distal valine residue of alpha-globin with alanine, leucine or isoleucine has no effect on the oxygen affinity of the protein in either quaternary state, in contrast to the equivalent mutations of beta subunits. The crystal structure of the valine E11 alpha----isoleucine mutant shows that the larger E11 residue excludes water from the haem pocket, but causes no significant movement of other amino acid residues. We conclude that the distal valine residue of alpha-globin does not control the oxygen affinity of the protein by sterically hindering ligand binding.  相似文献   

7.
We report here a combination of site-directed mutations that eliminate the high-affinity Ca(2+) response of the large-conductance Ca(2+)-activated K(+) channel (BK(Ca)), leaving only a low-affinity response blocked by high concentrations of Mg(2+). Mutations at two sites are required, the "Ca(2+) bowl," which has been implicated previously in Ca(2+) binding, and M513, at the end of the channel's seventh hydrophobic segment. Energetic analyses of mutations at these positions, alone and in combination, argue that the BK(Ca) channel contains three types of Ca(2+) binding sites, one of low affinity that is Mg(2+) sensitive (as has been suggested previously) and two of higher affinity that have similar binding characteristics and contribute approximately equally to the power of Ca(2+) to influence channel opening. Estimates of the binding characteristics of the BK(Ca) channel's high-affinity Ca(2+)-binding sites are provided.  相似文献   

8.
The primary structures of the hemoglobin components Hb A and Hb D of the adult Andean Goose (Chloephaga melanoptera) are presented. The globin chains were separated on CM-Cellulose in 8M urea buffer. The amino-acid sequences were established by automatic Edman degradation of the globin chains and of the tryptic peptides in liquid- and gas-phase sequenators. The sequences are aligned with those of Greylag Goose (Anser anser) as a biological reference and other sequences of birds. A detailed evaluation of all residues of Andean Goose hemoglobins on the basis of the 12000 known avian globin sequences leads to a molecular pattern for high-altitude respiration of geese. The replacement of functional and structural importance is the unique occurrence of the residue beta 55 Leu----Ser (all other exchanges are functionally neutral), interrupting the same alpha 1 beta 1-interface contact (alpha 119-beta 55) that accounts for high-altitude respiration of the Barheaded Goose (Anser indicus); there the mutation is found on alpha A 119. Loosening the constraints of this interface must be interpreted as a destabilization of the low-affinity T-structure in favour of the high-affinity R-structure. The structural and functional significance of this interface for the molecular biology of high-altitude respiration of the Andean Goose and Barheaded Goose is discussed. Since Hb A consists of alpha A2 beta 2 and Hb D consists of alpha D2 beta 2 the mutation occurring in blood of the Andean Goose affects both hemoglobins whereas in the case of the Barheaded Goose only Hb A is affected. These results show that Hb D can be considered a biological reserve to enlarge situatively the normal hemoglobin function. A general molecular pattern for permanent (selective advantage of high intrinsic oxygen affinity) and transitory (selective advantage of graded oxygen affinities) adaptation to hypoxia is discussed. A survey on the sequence homology of the globin chains of geese (Anserinae) and ducks (Anatinae) is given.  相似文献   

9.
Antibody 26-10, obtained in a secondary immune response, binds digoxin with high affinity (K(a) = 1.3 x 10(10) M(-1)) because of extensive shape complementarity. We demonstrated previously that mutations of the hapten contact residue HTrp-100 to Arg (where H refers to the heavy chain) resulted in increased specificity for digoxin analogs substituted at the cardenolide 16 position. However, mutagenesis of H:CDR1 did not result in such a specificity change despite the proximity of the H:CDR1 hapten contact residue Asn-35 to the cardenolide 16 position. Here we constructed a bacteriophage-displayed library containing randomized mutations at H chain residues 30-35 in a 26-10 mutant containing Arg-100 (26-10-RRALD). Phage were selected by panning against digoxin, gitoxin (16-OH), and 16-acetylgitoxin coupled to bovine serum albumin. Clones that retained wild-type Asn at position 35 showed preferred binding to gitoxin, like the 26-10-RRALD parent. In contrast, clones containing Val-35 selected mainly on digoxin-bovine serum albumin demonstrated a shift back to wild-type specificity. Several clones containing Val-35 bound digoxin with increased affinity, approaching that of the wild type in a few instances, in contrast to the mutation Val-35 in the wild-type 26-10 background, which reduces affinity for digoxin 90-fold. It has therefore proven possible to reorder the 26-10 binding site by mutations including two major contact residues on opposite sides of the site and yet to retain high affinity for binding for digoxin. Thus, even among antibodies that have undergone affinity maturation in vivo, different structural solutions to high affinity binding may be revealed.  相似文献   

10.
A new variant of haemoglobin A (Hb A) with a high affinity for oxygen has been found in an English family. Five members are affected and all are polycythaemic. This variant (Hb Heathrow) is the first of this class to be found in this country and has the same electrophoretic mobility as Hb A. It was discovered only by measuring the oxygen affinity of the patients'' red cells. This emphasizes the need for measuring the oxygen affinity of haemoglobin in patients with polycythaemia if other clinical and haematological features associated with polycythaemia rubra vera are absent.  相似文献   

11.
2a2 is the most commonly rearranged gene in the human V(lambda )locus. It has been postulated that certain immunoglobulin genes (including 2a2) are rearranged preferentially because their germline sequences encode structures capable of binding to a range of antigens. Somatic mutation could then increase the specificity and affinity of binding to a particular antigen.We studied the properties of five IgG molecules in which the same heavy chain was paired with different light chains derived from 2a2. The pattern of somatic mutations in 2a2 was shown to be crucial in conferring the ability to bind DNA, but two different patterns of mutation each conferred this ability.Computer-generated models of the three-dimensional structures of these antibodies illustrate the ability of 2a2 to form a DNA binding site in different ways. Somatic mutations at the periphery of the DNA binding site were particularly important. In two different light chains, mutations to arginine at different sites in the complementarity determining regions (CDRs) enhanced binding to DNA. In a third light chain, however, mutation to arginine at a different site blocked binding to DNA.  相似文献   

12.
Hemoglobin is a tetrameric protein with two alpha and two beta subunits binds oxygen in a cooperative manner. In dominant tetrameric form of fish hemoglobin carry more than 90 percent of oxygen from gill to tissues at 20° C. The tetrameric form of fish hemoglobin is changed to monomeric form at low oxygen pressure in order to increase its oxygen affinity. This is one of adaptive mechanisms used by different kinds of fish. The major aim of this paper is to study the molecular basis of shirbot hemoglobin adaptation mechanism to various environmental conditions. Using different methods such as ion exchange chromatography, UV-Vis, fluorescence and circular dichroism spectroscopy, we extracted the main tetrameric fraction of shirbot hemoglobin and studied the structural characteristics of shirbot and human hemoglobins in a comparative way. Our results showed that tetrameric form of shirbot hemoglobin has less stable and loosely folded structure in contrast to human hemoglobin. Our data also indicate, in case of exposure to life-threatening environmental factors such as low oxygen level, acidic pH, oxidizing chemicals and other water pollutants especially detergents (surfactants) triggering tetramer to monomer dissociation in shirbot hemoglobin is more prominently than in human hemoglobin. The resulting monomer of hemoglobin has more oxygen affinity and could take up oxygen more strongly even at low pressure. We hypothesize that this mechanism helps shirbot to adapt and to survive at such harsh environment. The mechanism that is may be adapted by other fish species.  相似文献   

13.
Hemoglobin Dallas, an alpha-chain variant with a substitution of lysine for asparagine at position 97(G4), was found to have increased oxygen affinity (p1/2 = 1 mmHg at pH 7.3 and 20 degrees C), diminished cooperativity (n, the Hill coefficient = 1.7) and reduced Bohr effect (about 50%). Addition of allosteric effectors (such as 2,3-diphosphoglycerate, inositol hexakisphosphate and bezafibrate) led to a decrease in oxygen affinity and increase in cooperative energy. Kinetic studies at pH 7.0 and 20 degrees C revealed that (i), the overall rate of oxygen dissociation is 1.4-fold slower than that for HbA and (ii), the carbon monoxide dissociation rate is unaffected. The abnormal properties of this hemoglobin variant can be attributed to a more 'relaxed' T-state.  相似文献   

14.
We examined for the first time the hemoglobin components of the blood of the Australian lungfish, Neoceratodus forsteri and their functional responses to pH and the allosteric modulators adenosine triphosphate (ATP), guanosine triphosphate (GTP), 2,3-bisphosphoglyceric acid (BPG) and inositol hexaphosphate (IHP) at 25 degrees C. Lysates prepared from stripped, unfractionated hemolysate produced sigmoidal oxygen equilibrium curves with high oxygen affinity (oxygen partial pressure required for 50% hemoglobin saturation, p(50)=5.3 mmHg) and a Hill coefficient of 1.9 at pH 7.5. p(50) was 8.3 and 4.5 mmHg at pH 6 and 8, respectively, which corresponded to a modest Bohr coefficient (Delta log p(50)/Delta pH) of -0.13. GTP increased the pH sensitivity of oxygen binding more than ATP, such that the Bohr coefficient was -0.77 in the presence of 2 mmol L(-1) GTP. GTP was the most potent regulator of hemoglobin affinity, with concentrations of 5 mmol L(-1) causing an increase in p(50) from 5 to 19 mm Hg at pH 7.5, while the order of potency of the other phosphates was IHP>ATP>BPG. Three hemoglobin isoforms were present and each contained both alpha and beta chains with distinct molecular weights. Oxygen affinity and pH-dependence of isoforms I and II were essentially identical, while isoform III had a lower affinity and increased pH-dependence. The functional properties of the hemoglobin system of Neoceratodus appeared consistent with an active aquatic breather adapted for periodic hypoxic episodes.  相似文献   

15.
We have purified haemoglobin Philly by isoelectric focusing on polyacrylamide gel, and studied its oxygen equilibrium, proton nuclear magnetic resonance spectra, mechanical stability, and pH-dependent u.v. difference spectrum. Stripped haemoglobin Philly binds oxygen non-co-operatively with high affinity. Inorganic phosphate and 2,3-diphosphoglycerate have little effect on the equilibrium curve, but inositol hexaphosphate lowers the affinity and induces co-operativity. These properties are explained by the nuclear magnetic resonance spectra which show that stripped deoxyhaemoglobin Philly has the quaternary oxy structure and that inositol hexaphosphate converts it to the deoxy structure. An exchangeable proton resonance at ?8.3 p.p.m. from water, which is present in oxy- and deoxyhaemoglobin A, is absent in both these derivatives of haemoglobin Philly and can therefore be assigned to one of the hydrogen bonds made by tyrosine C1-(35)β, probably the one to aspartate H8(126)α at the α1β1 contact. Haemoglobin Philly shows the same pH-dependent u.v. difference spectrum as haemoglobin A, only weaker, so that a tyrosine other than 35β must be mainly responsible for this.  相似文献   

16.
Changes in the slope of haemoglobin-oxygen dissociation curve and its position were studied before and after the influence of long wave u.v. irradiation. Haemoglobin showed a lower than normal affinity for oxygen when exposed to 5.45 x 10(-3) J/cm2 and to lesser extent to doses of 10.90 x 10(-3) J/cm2. The elevation in P50 (representing PO2 at which Hb is half saturated) at these doses is mainly due to the new acidic groups which, by unfolding of this globular protein, become exposed in its surface. The fall in P50 at relatively high doses was found as a result of methaemoglobin increase and the partial dissociation of Hb tetramer to dimer and monomer.  相似文献   

17.
Jensen FB 《The FEBS journal》2008,275(13):3375-3387
The nitrite reductase activity of deoxyhemoglobin has received much recent interest because the nitric oxide produced in this reaction may participate in blood flow regulation during hypoxia. The present study used spectral deconvolution to characterize the reaction of nitrite with carp and rabbit hemoglobin at different constant oxygen tensions that generate the full range of physiological relevant oxygen saturations. Carp is a hypoxia-tolerant species with very high hemoglobin oxygen affinity, and the high R-state character and low redox potential of the hemoglobin is hypothesized to promote NO generation from nitrite. The reaction of nitrite with deoxyhemoglobin leads to a 1 : 1 formation of nitrosylhemoglobin and methemoglobin in both species. At intermediate oxygen saturations, the reaction with deoxyhemoglobin is clearly favored over that with oxyhemoglobin, and the oxyhemoglobin reaction and its autocatalysis are inhibited by nitrosylhemoglobin from the deoxyhemoglobin reaction. The production of NO and nitrosylhemoglobin is faster and higher in carp hemoglobin with high O(2) affinity than in rabbit hemoglobin with lower O(2) affinity, and it correlates inversely with oxygen saturation. In carp, NO formation remains substantial even at high oxygen saturations. When oxygen affinity is decreased by T-state stabilization of carp hemoglobin with ATP, the reaction rates decrease and NO production is lowered, but the deoxyhemoglobin reaction continues to dominate. The data show that the reaction of nitrite with hemoglobin is dynamically influenced by oxygen affinity and the allosteric equilibrium between the T and R states, and that a high O(2) affinity increases the nitrite reductase capability of hemoglobin.  相似文献   

18.
In hemoglobin Richmond (beta102 leads to Lys), amino acid substitution has occurred at the same site as the mutation in hemoglobin Kansas (beta102 Asn leads to Thr), a variant with very low oxygen affinity. Although hemoglobin Richmond has been shown to have increased tetramer-dimer dissociation, its oxygen affinity has been inferred to be normal from studies on hemolysates of carriers. We have isolated hemoglobin Richmond and have further studied its properties. We confirm that the oxygen affinity of pure hemoglobin Richmond under conditions similar to those found in vivo is normal. However, the Bohr effect of the variant hemoglobin is markedly abnormal. Its oxygen affinity is low at high pH and high at low pH, relative to hemoglobin A. The tetramer-dimer equilibrium displays a strong pH dependence such that protons promote dissociation. A model is presented in which the structural change in hemoglobin Richmond results in low oxygen affinity, like hemoglobin Kansas. However, the close linkage between tetramer-dimer dissociation and proton concentration seen with hemoglobin Richmond results in normal oxygen affinity at intracellular pH and hemoglobin concentration, and carriers display no hematological abnormalities.  相似文献   

19.
Physiological characteristics of the blood oxygen transport system and muscle metabolism indicate a high dependence on aerobic pathways in the blue gourami, Trichogaster trichopterus. Haemoglobin concentration and haematocrit were modest and the blood oxygen affinity (P50=2.31 kPa at pH 7.4 and 28 degrees C) and its sensitivity to pH (Bohr factor, phi=-0.34) favour oxygen unloading at a relatively high oxygen pressure (PO2). The intracellular buffering capacity (44.0 slykes) and lactate dehydrogenase (LDH) activity (154.3 iu g(-1)) do not support exceptional anaerobic capabilities. Air-breathing frequency in the blue gourami is expected to increase when aquatic oxygen tensions decline. Under threat of predation, however, this behaviour must be modified at a potential cost to aerobic metabolism. We therefore tested the hypothesis that metabolic responses to predatory challenge and aquatic hypoxia are subject to behavioural modulation. Computer-generated visual stimuli consistently reduced air-breathing frequency at 19.95, 6.65 and 3.33 kPa PO2. Bi-directional rates of spontaneous activity were similarly reduced. The metabolic cost of this behaviour was estimated and positively correlated with PO2 but not with visual stimulation thus indicating down-regulation of spontaneous activity rather than breath-holding behaviour. Neither PO2 nor visual stimulation resulted in significant change to muscle lactate and ATP concentrations and confirm that aerobic breath-hold limits were maintained following behavioural modulation of metabolic demands.  相似文献   

20.
The discovery is reported of a fast-moving alpha chain variant (Hb Natal) which is characterized by a shortened alpha polypeptide chain because of the deletion of the Tyr-Arg carboxy-terminal residues. Through amplification of appropriate segments of DNA and hybridization with synthetic oligonucleotide probes, it was possible to detect a C----A mutation in codon 140 of the alpha 2 globin gene, which causes a change in the codon for tyrosine to a terminating codon. Hb Natal or alpha 2 (minus Tyr-Arg) beta 2 has a high affinity for oxygen without a Bohr effect and heme-heme interaction. These results provide direct evidence for the importance of the tyrosine residue at alpha 140 in the oxygenation-deoxygenation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号