首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increased blood pressure (BP) in genetic hypertension is usually caused by high activity of sympathetic nervous system (SNS) which is enhanced by central angiotensin II but lowered by central nitric oxide (NO). We have therefore evaluated NO synthase (NOS) activity as well as neuronal NOS (nNOS), inducible NOS (iNOS) and endothelial NOS (eNOS) protein expression in brainstem and midbrain of adult spontaneously hypertensive rats (SHR) characterized by enhanced sympathetic vasoconstriction. We also studied possible participation of brain NO in antihypertensive effects of chronic captopril treatment of adult SHR. NOS activity was increased in midbrain of SHR compared to Wistar-Kyoto (WKY) rats. This could be ascribed to enhanced iNOS expression, whereas nNOS expression was unchanged and eNOS expression was reduced in this brain region. In contrast, no significant changes of NOS activity were found in brainstem of SHR in which nNOS and iNOS expression was unchanged, but eNOS expression was increased. Chronic captopril administration lowered BP of adult SHR mainly by attenuation of sympathetic tone, whereas the reduction of angiotensin II-dependent vasoconstriction and the decrease of residual BP (amelioration of structural remodeling of resistance vessels) were less important. This treatment did not affect significantly either NOS activity or expression of any NOS isoform in the two brain regions. Our data do not support the hypothesis that altered brain NO formation contributes to sympathetic hyperactivity and high BP of adult SHR with established hypertension.  相似文献   

2.
The fetal llama responds to hypoxemia, with a marked peripheral vasoconstriction but, unlike the sheep, with little or no increase in cerebral blood flow. We tested the hypothesis that the role of nitric oxide (NO) may be increased during hypoxemia in this species, to counterbalance a strong vasoconstrictor effect. Ten fetal llamas were operated under general anesthesia. Mean arterial pressure (MAP), heart rate, cardiac output, total vascular resistance, blood flows, and vascular resistances in cerebral, carotid and femoral vascular beds were determined. Two groups were studied, one with nitric oxide synthase (NOS) blocker N(G)-nitro-L-arginine methyl ester (L-NAME), and the other with 0.9% NaCl (control group), during normoxemia, hypoxemia, and recovery. During normoxemia, L-NAME produced an increase in fetal MAP and a rapid bradycardia. Cerebral, carotid, and femoral vascular resistance increased and blood flow decreased to carotid and femoral beds, while cerebral blood flow did not change significantly. However, during hypoxemia cerebral and carotid vascular resistance fell by 44% from its value in normoxemia after L-NAME, although femoral vascular resistance progressively increased and remained high during recovery. We conclude that in the llama fetus: 1) NO has an important role in maintaining a vasodilator tone during both normoxemia and hypoxemia in cerebral and femoral vascular beds and 2) during hypoxemia, NOS blockade unmasked the action of other vasodilator agents that contribute, with nitric oxide, to preserving blood flow and oxygen delivery to the tissues.  相似文献   

3.
(6R)-5,6,7,8-Tetrahydro-L-biopterin (R-THBP) is a cofactor not only for aromatic amino acid hydroxylases in mammalian tissues but also for nitric oxide synthase (NOS) induced by endotoxins or cytokines in some kinds of cells. Recently it has been reported that nitric oxide (NO) has biological activity in endothelium and in brain as well. NO activates soluble guanylate cyclase (sGC). Superoxide reacts with NO easily and shortens the half-life of NO actions. We found, in a study using rat cerebellar cytosol fraction, that R-THBP itself did not directly activate sGC, but activated sGC at concentrations ranging from 0.1 to 10 microM only under NO generating conditions of activated NOS and in the presence of sodium nitroprusside. In addition, R-THBP (1 microM) did not alter the NOS activity, which was determined by L-citrulline formation. These results suggest that R-THBP may regulate sGC activity associated with NO formation in the central nervous system.  相似文献   

4.
Increased sympathetic nervous system (SNS) activity plays a role in the genesis of hypertension in rats with chronic renal failure (CRF). The rise in central SNS activity is mitigated by increased local expression of neuronal nitric oxide synthase (NOS) mRNA and NO(2)/NO(3) production. Because interleukin (IL)-1beta may activate nitric oxide in the brain, we have tested the hypothesis that IL-1beta may modulate the activity of the SNS via regulation of the local expression of neuronal NOS (nNOS) in the brain of CRF and control rats. To this end, we first found that administration of IL-1beta in the lateral ventricle of control and CRF rats decreased blood pressure and norepinephrine (NE) secretion from the posterior hypothalamus (PH) and increased NOS mRNA expression. Second, we observed that an acute or chronic injection of an IL-1beta-specific antibody in the lateral ventricle raised blood pressure and NE secretion from the PH and decreased NOS mRNA abundance in the PH of control and CRF rats. Finally, we measured the IL-1beta mRNA abundance in the PH, locus coeruleus, and paraventricular nuclei of CRF and control rats by RT-PCR and found it to be greater in CRF rats than in control rats. In conclusion, these studies have shown that IL-1beta modulates the activity of the SNS in the central nervous system and that this modulation is mediated by increased local expression of nNOS mRNA.  相似文献   

5.
6.
Both brain and peripheral nitric oxide (NO) play a role in the control of blood pressure and circulatory homeostasis. Central NO production seems to counteract angiotensin II-induced enhancement of sympathetic tone. The aim of our study was to evaluate NO synthase (NOS) activity and protein expression of its three isoforms--neuronal (nNOS), endothelial NOS (eNOS) and inducible (iNOS)--in two brain regions involved in blood pressure control (diencephalon and brainstem) as well as in the kidney of young adult rats with either genetic (12-week-old SHR) or salt-induced hypertension (8-week-old Dahl rats). We have demonstrated reduced nNOS and iNOS expression in brainstem of both hypertensive models. In SHR this abnormality was accompanied by attenuated NOS activity and was corrected by chronic captopril treatment which prevented the development of genetic hypertension. In salt hypertensive Dahl rats nNOS and iNOS expression was also decreased in the diencephalon where neural structures important for salt hypertension development are located. As far as peripheral NOS activity and expression is concerned, renal eNOS expression was considerably reduced in both genetic and salt-induced hypertension. In conclusions, we disclosed similar changes of NO system in the brainstem (but not in the diencephalon) of rats with genetic and salt-induced hypertension. Decreased nNOS expression was associated with increased blood pressure due to enhanced sympathetic tone.  相似文献   

7.
Chronic arsenic exposure is associated with nervous system damage, vascular disease, hepatic and renal damage as well as different types of cancer. Alterations of nitric oxide (NO) in the periphery have been detected after arsenic exposure, and we explored here NO production in the brain. Female Wistar rats were exposed to arsenite in drinking water (4–5 mg/kg/day) from gestation, lactation and until 4 months of age. NOS activity, NO metabolites content, reactive oxygen species production (ROS) and lipid peroxidation (LPx) were determined in vitro in the striatum, and NO production was estimated in vivo measuring citrulline by microdialysis. Exposed animals showed a significantly lower response to NMDA receptor stimulation, reduction of NOS activity and decreased levels of nitrites and nitrates in striatum. These markers of NO function were accompanied by significantly higher levels of LPx and ROS production. These results provide evidence of NO dysfunction in the rat brain associated with arsenic exposure.  相似文献   

8.
The free radical nitric oxide (NO) has emerged as a simple and unique signalling molecule that can serve as neurotransmitter, paracrine substance or hormone. NO is a gas, formed by various neuronal cells, both centrally and peripherally. NO regulates cyclic GMP synthesis. The production of NO can be detected using the NADPH diaphorase (NADPH-d) histochemical stain for nitric oxide synthase (NOS). NOS was detected in two parasitic flatworms, Diphyllobothrium dendriticum and Hymenolepis diminuta, and two free-living flatworms, Planaria torva and Girardia tigrina. The staining for NOS was very strong in the nervous system of both parasitic worms. The main nerve cords, the transverse ring commmissures, nerves in association with the musculature, especially the cirrus musculature and sensory nerve endings showed NADPH-d staining. The NADPH-d staining in the free-living flatworms was much weaker. Still NOS activity was found in the neuropile of the brain and in association with the pharynx musculature. The demonstration of NOS in flatworms, indicates that NO is an old signal molecule in evolutionary terms. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Nitric oxide (NO) is a free radical with multiple functions in the nervous system. NO plays an important role in the mechanisms of neurodegenerative diseases including Alzheimer's disease. The main source of NO in the brain is an enzymatic activity of nitric oxide synthase (NOS). The aim of the present study was to analyze the expression and activity of both neuronal (nNOS) and inducible (iNOS) isoenzymes in the cerebral cortex and hippocampus of rats after intracerebroventricular administration of amyloid-beta (A beta) peptide fragment A beta(25-35). NADPHd histochemistry as well as immunohistochemistry were also used to investigate nNOS and iNOS expression in rat brain. The data presented here show that A beta(25-35) did not influence levels of nNOS or iNOS mRNA or protein expression in both structures studied. A beta(25-35) activated nNOS in the cerebral cortex and hippocampus without effect on iNOS activity. A beta(25-35) decreased the number of NADPHd-expressing neurons in the neocortex, but it did not significantly influence the number NADPHd-positive cells in the hippocampus. The peptide had no effect on the number of nNOS containing cells. We hypothesize that increased synthesis of NO induced by A beta(25-35) is related to qualitative alterations of nNOS molecule, but not to changes in NOS protein expression.  相似文献   

10.
Previous in vivo studies indicate that inhaled nitric oxide (NO) decreases nitric oxide synthase (NOS) activity and that this decrease is associated with significant increases in pulmonary vascular resistance (PVR) upon the acute withdrawal of inhaled NO (rebound pulmonary hypertension). In vitro studies suggest that superoxide and peroxynitrite production during inhaled NO therapy may mediate these effects, but in vivo data are lacking. The objective of this study was to determine the role of superoxide in the decrease in NOS activity and rebound pulmonary hypertension associated with inhaled NO therapy in vivo. In control lambs, 24 h of inhaled NO (40 ppm) decreased NOS activity by 40% (P<0.05) and increased endothelin-1 levels by 64% (P<0.05). Withdrawal of NO resulted in an acute increase in PVR (60.7%, P<0.05). Associated with these changes, superoxide and peroxynitrite levels increased more than twofold (P<0.05) following 24 h of inhaled NO therapy. However, in lambs treated with polyethylene glycol-conjugated superoxide dismutase (PEG-SOD) during inhaled NO therapy, there was no change in NOS activity, no increase in superoxide or peroxynitrite levels, and no increase in PVR upon the withdrawal of inhaled NO. In addition, endothelial NOS nitration was 18-fold higher (P<0.05) in control lambs than in PEG-SOD-treated lambs following 24 h of inhaled NO. These data suggest that superoxide and peroxynitrite participate in the decrease in NOS activity and rebound pulmonary hypertension associated with inhaled NO therapy. Reactive oxygen species scavenging may be a useful therapeutic strategy to ameliorate alterations in endogenous NO signaling during inhaled NO therapy.  相似文献   

11.
Human African trypanosomiasis, or sleeping sickness, evolves toward a meningoencephalitic stage, with a breakage in the blood-brain barrier, perivascular infiltrates, and astrocytosis. The involvement of nitric oxide (NO) has been evoked in the pathogenic development of the illness, since NO was found to be increased in the brain of animals infected with Trypanosoma brucei (T. b.) brucei. An excessive NO production can lead to alterations of neuronal signaling and to cell damage through the cytotoxicity of NO and its derivatives, especially peroxynitrites. In African trypanosomiasis, the sites of NO production and its role in the pathogenicity of lesions in the central nervous system (CNS) are unknown. In a chronic model of African trypanosomiasis (mice infected with T. b. brucei surviving with episodic suramin administration), NADPH-diaphorase staining of brain slides revealed that NO synthase (NOS) activity is located not only in endothelial cells, choroid plexus ependymal cells, and neurons as in control mice but also in mononuclear inflammatory cells located in perivascular and parenchyma infiltrates. An immunohistochemical study showed that the mononuclear inflammatory cells expressed an inducible NOS activity. Furthermore, the presence of nitrotyrosine in inflammatory lesions demonstrated an increased NO production and the intermediate formation of peroxynitrites. The detection of extensive formation of nitrotyrosine in the CNS parenchyma was observed in mice having shown neurological disorders, suggesting the role of peroxynitrites in the appearance of neurological troubles. In conclusion, this study confirmed the increased NO synthesis in the CNS of mice infected with T. b. brucei and suggests a deleterious role for NO, through the formation of peroxynitrites, in the pathogenesis of African CNS trypanosomiasis.  相似文献   

12.
The central nervous system plays an important role in the regulation of blood pressure via the sympathetic nervous system. Abnormal regulation of the sympathetic nerve activity is involved in the pathophysiology of hypertension. In particular, the brain stem, including the nucleus tractus solitarii (NTS) and the rostral ventrolateral medulla (RVLM), is a key site that controls and maintains blood pressure via the sympathetic nervous system. Nitric oxide (NO) is a unique molecule that influences sympathetic nerve activity. Rho-kinase is a downstream effector of the small GTPase, Rho, and is implicated in various cellular functions. We developed a technique to transfer adenovirus vectors encoding endothelial nitric oxide synthase and dominant-negative Rho-kinase into the NTS or the RVLM of rats in vivo. We applied this technique to hypertensive rats to explore the physiological significance of NO and Rho-kinase.  相似文献   

13.
Fan YH  Zhao LY  Zheng QS  Xue YS  Yang XD  Tian JW  Xu L 《生理学报》2003,55(4):417-421
本文探讨了精氨酸血管升压素(AVP)刺激下体外培养的大鼠心肌成纤维细胞(CFs)内一氧化氮(NO)含量、一氧化氮合酶(NOS)活性、诱导型一氧化氮合酶基因表达的变化及其与核因子κB(NF-κB)的关系。用胰酶消化法分离培养Sprague Dawley仔鼠的CFs,分别采用硝酸还原酶法、分光光度法、逆转录-聚合酶链式反应(RT-PCR)、免疫荧光-共聚焦显微镜和蛋白质印迹检测AVP干预下CFs的NO含量、NOS活性、iNOS mRNA表达和NF-κB的活化。结果显示,AVP浓度依赖性(0.001—0.1μmol/L)地增加CFs的NO含量,提高NOS活性,增加iNOS mRNA表达;AVP能够活化NF—κB,使其由细胞浆转位于细胞核;NF-κB特异性抑制剂吡咯啉烷二甲基硫脲(PDTC)能够抑制AVP诱导的CFs NO含量增加、NOS活性提高和iNOS mRNA表达增加。上述结果提示,AVP干预下CFs iNOS mRNA表达增加、NOS活性增高、NO合成增多可能通过NF-κB激活途径,NF-κB激活参与心肌纤维化的发生和发展。  相似文献   

14.
Neuronal nitric oxide (NO) levels are modulated through the control of catalytic activity of NO synthase (NOS). Although signals limiting excess NO synthesis are being extensively studied in the vertebrate nervous system, our knowledge is rather limited on the control of NOS in neurons of invertebrates. We have previously reported a transient inactivation of NOS in hibernating snails. In the present study, we aimed to understand the mechanism leading to blocked NO production during hypothermic periods of Helix pomatia. We have found that hypothermic challenge translocated NOS from the cytosol to the perinuclear endoplasmic reticulum, and that this cytosol to membrane trafficking was essential for inhibition of NO synthesis. Cold stress also downregulated NOS mRNA levels in snail neurons, although the amount of NOS protein remained unaffected in response to hypothermia. Our studies with cultured neurons and glia cells revealed that glia-neuron signaling may inhibit membrane binding and inactivation of NOS. We provide evidence that hypothermia keeps NO synthesis "hibernated" through subcellular redistribution of NOS.  相似文献   

15.
We characterized enzymatic activity of nitric oxide synthase (NOS) in the central nervous system of Aplysia californica, a popular experimental model in cellular and system neuroscience, and provided biochemical evidence for NO-cGMP signaling in molluscs. Aplysia NOS (ApNOS) activity, determined as citrulline formation, revealed its calcium-/calmodulin-(Ca/CaM) and NADPH dependence and it was inhibited by 50% with 5mM of W7 hydrochloride (a potent Ca/CaM-dependent phosphodiesterase inhibitor). A representative set of inhibitors for mammalian NOS isoforms also suppressed NOS activity in Aplysia. Specifically, the ApNOS was inhibited by 65-92% with 500 microM of L-NAME (a competitive NOS inhibitor) whereas d-NAME at the same concentration had no effect. S-Ethylisothiourea hydrobromide (5mM), a selective inhibitor of all NOS isoforms, suppressed ApNOS by 85%, l-N6-(1-iminoethyl)lysine dihydrochloride (L-NIL, 5mM), an iNOS inhibitor, by 78% and L-thiocitrulline (5mM) (an inhibitor of nNOS and iNOS) by greater than 95%. Polyclonal antibodies raised against rat nNOS hybridized with a putative purified ApNOS (160 kDa protein) from partially purified central nervous system homogenates in Western blot studies. Consistent with other studies, the activity of soluble guanylyl cyclase was stimulated as a result of NO interaction with its heme prosthetic group. The basal levels of cGMP were estimated by radioimmunoassay to be 44.47 fmol/microg of protein. Incubation of Aplysia CNS with the NO donors DEA/NONOate (diethylammonium (Z)-1-(N,N-diethylamino) diazen-1-ium-1,2-diolate - 1mM) or S-nitroso-N-acetylpenicillamine (1mM) and simultaneous phosphodiesterase inhibition with 3-isobutyl-1-methylxanthine (1mM) prior to the assay showed a 26-80 fold increase in basal cGMP levels. Addition of ODQ (1H-[1,2,4]oxadiazolo[4,3-a] quinoxaline-1-one - 1mM), a selective inhibitor of soluble guanylyl cyclase, completely abolished this effect. This confirms that NO may indeed function as a messenger in the molluscan CNS, and that cGMP acts as one of its effectors.  相似文献   

16.
M Ikeda  T Komiyama  I Sato  T Himi  S Murota 《Life sciences》1999,64(18):1623-1630
To test for a possible role of nitric oxide (NO) in the neurotoxicity of ethanol, we studied the effects of ethanol on the neuronal NO synthase (nNOS) both in vitro and in vivo. Ethanol, up to 200 mM, did not change the NOS activity in the cerebellar homogenate or the production of NO by the cultured cerebellar granule cells. The number of NADPH diaphorase-positive cells in the culture did not change after the exposure to 200 mM ethanol in vitro. The NOS activity in the various brain regions of mice remained similar to the controls after the acute (3 g/kg) and the chronic (33 g/kg/day, 3.5 days) administration of ethanol. N(omega)-nitro-L-arginine, a NOS inhibitor, did not affect the ethanol-withdrawal behavior. These results indicate that nNOS is resistant to ethanol at clinically relevant concentrations and that ethanol affects the NO-operated system in the brain through a pathway other than that of nNOS.  相似文献   

17.
We describe here a fluorescence assay for nitric oxide synthase activity in skeletal muscle based on a new indicator, 4,5-diaminofluorescein (DAF-2). The rapid and irreversible binding of DAF-2 to oxidized NO allows real-time measurement of NO production. The method is safer and more convenient than the usual citrulline radioassay and can be used with crude muscle extracts. Rabbit fast tibialis anterior (TA) muscle had a nitric oxide synthase (NOS) activity of 44.3 +/- 3.5 pmol/min/mg muscle. Addition of NOS blocker N(G)-allyl-L-arginine reduced this activity by 43%. Slow soleus muscle displayed NOS activity of 7.3 +/- 2.5 pmol/min/mg muscle, 16% that of the TA muscle. Continuous stimulation of TA muscle at 10 Hz for 3 weeks reduced NOS activity by 47% to an intermediate value consistent with the associated conversion of the muscle phenotype from fast to slow.  相似文献   

18.
尾加压素对新生大鼠心肌细胞一氧化氮合成的影响   总被引:6,自引:0,他引:6  
Li L  Yuan WJ  Pan XJ  Wang WZ  Qiu JW  Tang CS 《生理学报》2002,54(4):307-310
应用半定量逆转录-多聚酶链反应法,观察尾加压素(urotensin Ⅱ,UⅡ)对培养的新生SD大鼠心肌细胞内皮型一氧化氮合酶(endothelial nitric oxide synthase,eNOS)mRNA表达的影响,并测定UⅡ对心肌细胞内一氧化氮合酶(nitric oxide synthase,NOS)活性和一氧化氮(nitric oxide,NO)释放的影响。结果显示:UⅡ抑制培养的新生大鼠心肌细胞eNOS mRNA表达、抑制NOS的活性及NO释放;0.1μmol/L浓度的UⅡ呈时间依赖性抑制心肌细胞NOS的活性及NO生成。上述实验结果提示UⅡ的心血管作用可能与NO合成系统有关。  相似文献   

19.
Recent studies suggest that NO and its reactive derivative peroxynitrite are implicated in the pathogenesis of multiple sclerosis (MS). Patients dying with MS demonstrate increased astrocytic inducible nitric oxide synthase activity, as well as increased levels of iNOS mRNA. Peroxynitrite is a strong oxidant capable of damaging target tissues, particularly the brain, which is known to be endowed with poor antioxidant buffering capacity. Inducible nitric oxide synthase is upregulated in the central nervous system (CNS) of animals with experimental allergic encephalomyelitis (EAE) and in patients with MS. We have recently demonstrated in patients with active MS a significant increase of NOS activity associated with increased nitration of proteins in the cerebrospinal fluid (CSF). Acetylcarnitine is proposed as a therapeutic agent for several neurodegenerative disorders. Accordingly, in the present study, MS patients were treated for 6 months with acetylcarnitine and compared with untreated MS subjects or with patients noninflammatory neurological conditions, taken as controls. Western blot analysis showed in MS patients increased nitrosative stress associated with a significant decrease of reduced glutathione (GSH). Increased levels of oxidized glutathione (GSSG) and nitrosothiols were also observed. Interestingly, treatment of MS patients with acetylcarnitine resulted in decreased CSF levels of NO reactive metabolites and protein nitration, as well as increased content of GSH and GSH/GSSG ratio. Our data sustain the hypothesis that nitrosative stress is a major consequence of NO produced in MS-affected CNS and implicate a possible important role for acetylcarnitine in protecting brain against nitrosative stress, which may underlie the pathogenesis of MS.  相似文献   

20.
Exposure to Manganese (Mn) is a common phenomenon due to its environmental pervasiveness. To investigate the Mn-induced toxicity on cerebral trace element levels and crucial nitric oxide parameters on brain of birds, 50-day-old male Hyline cocks were fed either a commercial diet or a Mn-supplemented diet containing 600, 900, 1,800 mg kg?1. After being treated with Mn for 30, 60, and 90 days, the following were determined: the changes in contents of copper (Cu), iron (Fe), zinc (Zn), calcium (Ca), selenium (Se) in brain; inducible nitric oxide synthase-nitric oxide (iNOS-NO) system activity in brain; and histopathology and ultrastructure changes of cerebral cortex. The results showed that Mn was accumulated in brain and the content of Cu and Fe increased. However, the levels of Zn and Se decreased and the Ca content presented no obvious regularity. Exposure to Mn significantly elevated the content of NO and the expression of iNOS mRNA. Activity of total NO synthase (T NOS) and iNOS appeared with an increased tendency. These findings suggested that Mn exposure resulted in the imbalance of cerebral trace elements and influenced iNOS in the molecular level, which are possible underlying nervous system injury mechanisms induced by Mn exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号