首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 743 毫秒
1.
2.
This paper presents a three-dimensional finite element model of human mastication. Specifically, an anatomically realistic model of the masseter muscles and associated bones is used to investigate the dynamics of chewing. A motion capture system is used to track the jaw motion of a subject chewing standard foods. The three-dimensional nonlinear deformation of the masseter muscles are calculated via the finite element method, using the jaw motion data as boundary conditions. Motion-driven muscle activation patterns and a transversely isotropic material law, defined in a muscle-fibre coordinate system, are used in the calculations. Time-force relationships are presented and analysed with respect to different tasks during mastication, e.g. opening, closing, and biting, and are also compared to a more traditional one-dimensional model. The results strongly suggest that, due to the complex arrangement of muscle force directions, modelling skeletal muscles as conventional one-dimensional lines of action might introduce a significant source of error.  相似文献   

3.
The evaluation of three-dimensional occlusal loading during biting and chewing may assist in development of new dental materials, in designing effective and long-lasting restorations such as crowns and bridges, and for evaluating functional performance of prosthodontic components such as dental and/or maxillofacial implants. At present, little is known about the dynamic force and pressure distributions at the occlusal surface during mastication, as these quantities cannot be measured directly. The aim of this study was to evaluate subject-specific occlusal loading forces during mastication using accurate jaw motion measurements. Motion data was obtained from experiments in which an individual performed maximal effort dynamic chewing cycles on a rubber sample with known mechanical properties. A finite element model simulation of one recorded chewing cycle was then performed to evaluate the deformation of the rubber. This was achieved by imposing the measured jaw motions on a three-dimensional geometric surface model of the subject’s dental impressions. Based on the rubber’s deformation and its material behaviour, the simulation was used to compute the resulting stresses within the rubber as well as the contact pressures and forces on the occlusal surfaces. An advantage of this novel modelling approach is that dynamic occlusal pressure maps and biting forces may be predicted with high accuracy and resolution at each time step throughout the chewing cycle. Depending on the motion capture technique and the speed of simulation, the methodology may be automated in such a way that it can be performed chair-side. The present study demonstrates a novel modelling methodology for evaluating dynamic occlusal loading during biting or chewing.  相似文献   

4.
A synchronized system of EMG and jaw motion tracking device was used to observe some chewing parameters of jaw elevator muscles in 15 patients with temporomandibular joint and muscle pain dysfunction syndrome (TMJ) and 15 normal subjects. Duration of tooth contact (DTC), duration of muscle contraction before tooth contact (DMC), total duration of muscle contraction (DTM) and velocity of jaw movement during peanut chewing were observed. Symptoms of the TMJ patients included pain and tenderness at joints and muscles, and limitation and clicking at joints during jaw movements. It was found that the TMJ patients needed more numerous breaking off strokes before trituration at the occlusal level. There was a longer DMC in the earlier trituration period and TMJ patients had longer DMC than in normals. No difference was found between right and left side chewing or between temporalis and masseter muscles. DTM in the TMJ group was only slightly longer than in normals and the difference between early and late chewing periods was statistically not significant. DTC was only slightly shorter in the TMJ group while the difference between early and late chewing periods in both groups was significant. The average and maximum closing velocities were significantly lower in the TMJ group in both right and left chewing. The difference in the opening phase was not as significant. It was concluded that DMC and jaw closing velocity are more sensitive parameters than DTM and DTC on the diagnosis of TMJ dysfunction with or without occlusal interference. DTM and DTC are parameters more closely related to the influence of occlusal factors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Objective: Clinical observations and mathematical models show that dental implants are influenced by the magnitude of loading. Therefore, the knowledge of mandible movement during mastication is important to assess occlusal and masticatory force vectors. The purpose of this study was to detect the path of movement of the lower jaw and to distinguish stages of mastication, duration of bolus processing and peak amplitude of mastication. Method: Motion analysis was used to record three-dimensional mandible movements. Individualized sensors were rigidly attached to the mandible of 51 study participants. At the beginning of the measurement, all subjects were asked to move the mandible in extreme positions (maximal opening and maximal lateral movements). Then, each subject masticated a bite of hard and soft food. Duration of bolus mastication and peak amplitude of mastication movement in mesio-distal, cranio-caudal and vestibulo-oral axes related to peak amplitude of marginal movements were evaluated for each subject. The chewing record of each subject was divided into three phases (chopping, grinding and swallowing), and the duration of mastication and number of closing movements were evaluated. Results: The findings of this pilot study suggest that masticatory movements vary in individuals. Bolus character influences the process duration, but not the frequency of closing movements. Neither gender nor age had any influence on either the time or frequency of bolus processing. Conclusion: Relationships to directions and magnitudes of acting chewing force should be more precisely examined since transversally acted forces during grinding are important factors in tooth/implant overloading.  相似文献   

6.
Cranial kinesis in sparrows refers to the rotation of the upper jaw around its kinetic joint with the braincase. Avian jaw mechanics may involve the coupled motions of upper and lower jaws, in which the postorbital ligament transfers forces from the lower jaw, through the quadrate, pterygoid, and jugal bones, to the upper jaw. Alternatively, jaw motions may be uncoupled, with the upper jaw moving independently of the lower jaw. We tested hypotheses of cranial kinesis through the use of quantitative computer models. We present a biomechanical model of avian jaw kinetics that predicts the motions of the jaws under assumptions of both a coupled and an uncoupled mechanism. In addition, the model predicts jaw motions under conditions of force transfer by either the jugal or the pterygoid bones. Thus four alternative models may be tested using the proposed model (coupled jugal, coupled pterygoid, uncoupled jugal, uncoupled pterygoid). All models are based on the mechanics of four-bar linkages and lever systems and use morphometric data on cranial structure as the basis for predicting cranial movements. Predictions of cranial motions are tested by comparison to kinematics of white-throated sparrows (Zonotrichia albicollis) during singing. The predicted relations between jaw motions for the coupled model are significantly different from video observations. We conclude that the upper and lower jaws are not coupled in white-throated sparrows. The range of jaw motions during song is consistent with a model in which independent contractions of upper and lower jaw muscles control beak motion. © 1996 Wiley-Liss, Inc.  相似文献   

7.
Analysis of lateral and dorsoventral radiographic films shows that ingestion, transport, and mastication in Pedetes capensis (Rodentia) are cyclic and their movement patterns are essentially similar for the three food types offered. During the ingestion cycle, closing of the mouth is accompanied by a backward translation of the condyles, so that movement is predominantly orthal. During the opening stage, the extent of the anterior condylar translation is smaller. As a result the mandibular incisors move ventrally and posteriorly. During the ingestion cycles, food is transported to the back of the tongue, with the transverse rugae and the folds of the upper lip playing important roles. Springhares show a bilateral masticatory pattern; food is chewed on both sides simultaneously. During chewing, the condyles lie in their most forward position at maximum opening of the mouth. The mouth is closed by rotation of the lower jaw around the temporomandibular joint coupled with posterior condylar translation. At the beginning of the slow-closing stage, the upward rotation of the mandible slows and the jaw slowly shifts forward. During the grinding stage, the mandible is shifted forward with both toothrows in occlusion. During the opening stage, the jaw returns to its starting position. Comparison of kinematic and anatomical data on rodent mastication suggests that some dental characteristics form the most important factors regulating the masticatory pattern and consequently allow reasonably reliable prediction of rodent masticatory patterns.  相似文献   

8.
Biologists that study mammals continue to discuss the evolutionof and functional variation in jaw-muscle activity during chewing.A major barrier to addressing these issues is collecting sufficientin vivo data to adequately capture neuromuscular variation ina clade. We combine data on jaw-muscle electromyography (EMG)collected during mastication from 14 species of primates andone of treeshrews to assess patterns of neuromuscular variationin primates. All data were collected and analyzed using thesame methods. We examine the variance components for EMG parametersusing a nested ANOVA design across successive hierarchical factorsfrom chewing cycle through species for eight locations in themasseter and temporalis muscles. Variation in jaw-muscle EMGswas not distributed equally across hierarchical levels. Thetiming of peak EMG activity showed the largest variance componentsamong chewing cycles. Relative levels of recruitment of jawmuscles showed the largest variance components among chewingsequences and cycles. We attribute variation among chewing cyclesto (1) changes in food properties throughout the chewing sequence,(2) variation in bite location, and (3) the multiple ways jawmuscles can produce submaximal bite forces. We hypothesize thatvariation among chewing sequences is primarily related to variationin properties of food. The significant proportion of variationin EMGs potentially linked to food properties suggests thatexperimental biologists must pay close attention to foods givento research subjects in laboratory-based studies of feeding.The jaw muscles exhibit markedly different variance componentsamong species suggesting that primate jaw muscles have evolvedas distinct functional units. The balancing-side deep masseter(BDM) exhibits the most variation among species. This observationsupports previous hypotheses linking variation in the timingand activation of the BDM to symphyseal fusion in anthropoidprimates and in strepsirrhines with robust symphyses. The working-sideanterior temporalis shows a contrasting pattern with littlevariation in timing and relative activation across primates.The consistent recruitment of this muscle suggests that primateshave maintained their ability to produce vertical jaw movementsand force in contrast to the evolutionary changes in transverseocclusal forces driven by the varying patterns of activationin the BDM.  相似文献   

9.
Ankylosaurian dinosaurs were low-browsing quadrupeds that were traditionally thought of as simple orthal pulpers exhibiting minimal tooth occlusion during feeding, as in many extant lizards. Recent studies, however, have demonstrated that effective chewing with tooth occlusion and palinal jaw movement was present in some members of this group. Qualitative and quantitative analysis of feeding characters (i.e. craniodental features, tooth wear patterns, origin and insertion of jaw adductors) reveal at least three different jaw mechanisms during the evolution of Ankylosauria. Whereas, in basal members, food processing was restricted to simple orthal pulping, in late Early and Late Cretaceous North American and European forms a precise tooth occlusion evolved convergently in many lineages (including nodosaurids and ankylosaurids) complemented by palinal power stroke. In contrast, Asian forms retained the primitive mode of feeding without any biphasal chewing, a phenomenon that might relate to the different types of vegetation consumed by these low-level feeders in different habitats on different landmasses. Further, a progressive widening of the muzzle is demonstrated both in Late Cretaceous North American and Asian ankylosaurs, and the width and general shape of the muzzle probably correlates with foraging time and food type, as in herbivorous mammals.  相似文献   

10.
We investigated patterns of jaw-muscle coordination during rhythmic mastication in three species of ungulates displaying the marked transverse jaw movements typical of many large mammalian herbivores. In order to quantify consistent motor patterns during chewing, electromyograms were recorded from the superficial masseter, deep masseter, posterior temporalis and medial pterygoid muscles of goats, alpacas and horses. Timing differences between muscle pairs were evaluated in the context of an evolutionary model of jaw-muscle function. In this model, the closing and food reduction phases of mastication are primarily controlled by two distinct muscle groups, triplet I (balancing-side superficial masseter and medial pterygoid and working-side posterior temporalis) and triplet II (working-side superficial masseter and medial pterygoid and balancing-side posterior temporalis), and the asynchronous activity of the working- and balancing-side deep masseters. The three species differ in the extent to which the jaw muscles are coordinated as triplet I and triplet II. Alpacas, and to a lesser extent, goats, exhibit the triplet pattern whereas horses do not. In contrast, all three species show marked asynchrony of the working-side and balancing-side deep masseters, with jaw closing initiated by the working-side muscle and the balancing-side muscle firing much later during closing. However, goats differ from alpacas and horses in the timing of the balancing-side deep masseter relative to the triplet II muscles. This study highlights interspecific differences in the coordination of jaw muscles to influence transverse jaw movements and the production of bite force in herbivorous ungulates.  相似文献   

11.
A novel reconstructive alternative for patients with severe facial structural deformity is Le Fort-based, face-jaw-teeth transplantation (FJTT). To date, however, only ten surgeries have included underlying skeletal and jaw-teeth components, all yielding sub-optimal results and a need for a subsequent revision surgery, due to size mismatch and lack of precise planning. Numerous studies have proven swine to be appropriate candidates for translational studies including pre-operative planning of transplantation. An important aspect of planning FJTT is determining the optimal muscle attachment sites on the recipient?s jaw, which requires a clear understanding of mastication and bite mechanics in relation to the new donated upper and/or lower jaw. A segmented CT scan coupled with data taken from literature defined a biomechanical model of mandible and jaw muscles of a swine. The model was driven using tracked motion and external force data of one cycle of chewing published earlier, and predicted the muscle activation patterns as well as temporomandibular joint (TMJ) reaction forces and condylar motions. Two methods, polynomial and min/max optimization, were used for solving the muscle recruitment problem. Similar performances were observed between the two methods. On average, there was a mean absolute error (MAE) of <0.08 between the predicted and measured activation levels of all muscles, and an MAE of <7 N for TMJ reaction forces. Simulated activations qualitatively followed the same patterns as the reference data and there was very good agreement for simulated TMJ forces. The polynomial optimization produced a smoother output, suggesting that it is more suitable for studying such motions. Average MAE for condylar motion was 1.2 mm, which reduced to 0.37 mm when the input incisor motion was scaled to reflect the possible size mismatch between the current and original swine models. Results support the hypothesis that the model can be used for planning of facial transplantation.  相似文献   

12.
Cichlids possess a complex pharyngeal jaw apparatus, the osteological components of which are two upper pharyngeal jaws, articulating with the neurocranial base, and a single lower pharyngeal jaw. Quantitative cinera-diography revealed that pharyngeal food processing in Oreochromis niloticus involves transport, mastication, and swallowing, effected by cyclical pharyngeal jaw movements. Transport and swallowing occur by simultaneous retractions of both upper pharyngeal jaws. Food reduction (mastication) is effected by lower jaw elevation (compression) and protraction (shear) during upper jaw retraction. Each movement cycle contains a transport, reduction, and swallowing component, although their relative importance may vary within a feeding sequence. The upper and lower pharyngeal jaws show opposite anteroposterior movements during most of the cycle. Variations in the amplitudes and the durations of the different movement components reflect the consistency and the size of the food.  相似文献   

13.
In this paper we examine the biomechanics of prey processing behavior in the amniotes. Whether amniotes swallow prey items whole or swallow highly processed slurries or boluses of food, they share a common biomechanical system where hard surfaces (teeth or beaks) are brought together on articulated jaws by the actions of adductor muscles to grasp and process food. How have amniotes modified this basic system to increase the chewing efficiency of the system? To address this question we first examine the primitive condition for prey processing representative of many of the past and present predatory amniotes. Because herbivory is expected to be related to improved prey processing in the jaws we review patterns of food processing mechanics in past and present herbivores. Herbivory has appeared numerous times in amniotes and several solutions to the task of chewing plant matter have appeared. Birds have abandoned jaw chewing in favor of a new way to chew--with the gut--so we will detour from the jaws to examine the appearance of gut chewing in the archosaurs. We will then fill in the gaps among amniote taxa with a look at some new data on patterns of prey processing behavior and jaw mechanics in lizards. Finally, we examine evolutionary patterns of amniote feeding mechanism and how correlates of chewing relate to the need to increase the efficiency of prey processing in order to facilitate increased metabolic rate and activity.  相似文献   

14.
Determination of an accurate glenohumeral-joint rotation center (GH-JRC) from marker data is essential for kinematic and dynamic analysis of shoulder motions. Previous studies have focused on the evaluation of the different functional methods for the estimation of the GH-JRC for healthy subjects. The goal of this paper is to compare two widely used functional methods, namely the instantaneous helical axis (IHA) and symmetrical center of rotation (SCoRE) methods, for estimating the GH-JRC in vivo for patients with implanted shoulder hemiarthroplasty. The motion data of five patients were recorded while performing three different dynamic motions (circumduction, abduction, and forward flexion). The GH-JRC was determined using the CT-images of the subjects (geometric GH-JRC) and was also estimated using the two IHA and SCoRE methods. The rotation centers determined using the IHA and SCoRE methods were on average 1.47±0.62 cm and 2.07±0.55 cm away from geometric GH-JRC, respectively. The two methods differed significantly (two-tailed p-value from paired t-Test ~0.02, post-hoc power ~0.30). The SCoRE method showed a significant lower (two-tailed p-value from paired t-Test ~0.03, post-hoc power ~0.68) repeatability error calculated between the different trials of each motion and each subject and averaged across all measured subjects (0.62±0.10 cm for IHA vs. 0.43±0.12 cm for SCoRE). It is concluded that the SCoRE appeared to be a more repeatable method whereas the IHA method resulted in a more accurate estimation of the GH-JRC for patients with endoprostheses.  相似文献   

15.
Two experiments were conducted. In the first, 25 untrained subjects judged the hardness and chewiness of three different food samples following either 0, 60, 120, or 180 s of adaptive chewing on an experimental gum compound. No effect of the adaptive chewing was found, in spite of observable and self-reported masticatory fatigue induced by the experimental procedures. These data fail to support the prevalent use of procedural limits on the number and temporal spacing of samples in sensory texture studies. In the second experiment, six groups of subjects (n = 107) judged the hardness and chewiness of two series of food samples that varied in physical size (volume). The groups differed in the degree to which cues about the true size differences were made available. Results showed both hardness and chewiness judgments to increase as a function of sample size, independently of subject awareness of the size differences. These data support the use of procedural controls on sample size, but fail to provide evidence of a size constancy phenomenon. A rheological explanation is proposed to account for the observed sensory effect.  相似文献   

16.
Aims: To develop and assess a simple test for evaluating the mastication of visco‐elastic foods and prosthodontic success subsequent to treatment of older people. Method: The weight lost from chewing gum during mastication tests and the saliva secreted is weighed. The percentage of the original gum weight that is chewed out in a defined number of strokes is termed the Masticatory Effectiveness (ME) Material: Five edentate and three dentate volunteers were selected to provide a range of dental states and age. Four commercially available chewing gums of different origins and perceived hardness were tested, one without sweetener acted as a control for salivary stimulation. Intervention: Pre‐weighed samples of each gum were chewed, each for defined numbers of strokes. The saliva secreted was collected and weighed. The chewed gum was desiccated and the total weight loss of sweeteners chewed out provided an objective measure of chewing performance. Results: Weight loss showed large differences between gums, between subjects and the number of strokes. ME was significantly correlated with salivary secretion rates for two subjects. The interaction between subject and gum was statistically significant, established by an ANOVA model, the value of which is shown for multivariate studies. Differential success between gums of different thickness may provide evaluation of denture stability. Conclusions: Measuring the weight lost from gums during chewing provides a simple test of masticatory effectiveness of visco‐elastic foods. This has particular value both in functional assessment of older people and in physiological research.  相似文献   

17.
While much is known about the ecological and functional morphology of feeding in lower vertebrates, studies of elasmobranch feeding over ontogeny are broadly lacking. In this study, the ontogeny of feeding behavior and morphology were investigated in neonatal and young-of-the-year leopard sharks Triakis semifasciata using morphometric measurements of growth and high-speed videography in a longitudinal study. Five food types were used during filming sessions to facilitate differentiation of modulation and variation over ontogeny. Functional aspects of muscle and buccal volume scaling were investigated through dissection. Growth over ontogeny was shown to influence numerous kinematic variables, while intra- and inter-individual variability was the dominant factor affecting feeding behavior. Modulation of feeding behavior based on food size and elusiveness was present for timing variables and predator motion during the strike, but not for food motion or the relative extent of buccal expansion. Allometric growth occurred in all aspects of external cranial morphology measured, resulting in a shallower head profile, anterior displacement of the mouth, and relatively larger jaw musculature over ontogeny. While the degree to which morphology constrains or enhances behavior cannot be directly quantified, variability in behavior greatly exceeds variability in morphology over early ontogeny. Maintenance of a behaviorally and morphologically versatile feeding apparatus throughout ontogeny is proposed to enhance the exploitation of resources and facilitate a diverse diet in T. semifasciata under variable environmental conditions.  相似文献   

18.
This study presents a free-fall mechanical supination sprain simulator for evaluating the ankle joint kinematics during a simulated ankle supination sprain injury. The device allows the foot to be in an anatomical position before the sudden motion, and also allows different degrees of supination, or a combination of inversion and plantarflexion. Five subjects performed simulated supination sprain trials in five different supination angles. Ankle motion was captured by a motion analysis system, and the ankle kinematics were reported in plantarflexion/dorsiflexion, inversion/eversion and internal/external rotation planes. Results showed that all sprain motions were not pure single-plane motions but were accompanied by motion in other two planes, therefore, different degrees of supination were achieved. The presented sprain simulator allows a more comprehensive study of the kinematics of ankle sprain when compared with some previous laboratory research designs.  相似文献   

19.
Although chewing has been suggested to be a basal gnathostome trait retained in most major vertebrate lineages, it has not been studied broadly and comparatively across vertebrates. To redress this imbalance, we recorded EMG from muscles powering anteroposterior movement of the hyoid, and dorsoventral movement of the mandibular jaw during chewing. We compared muscle activity patterns (MAP) during chewing in jawed vertebrate taxa belonging to unrelated groups of basal bony fishes and artiodactyl mammals. Our aim was to outline the evolution of coordination in MAP. Comparisons of activity in muscles of the jaw and hyoid that power chewing in closely related artiodactyls using cross-correlation analyses identified reorganizations of jaw and hyoid MAP between herbivores and omnivores. EMG data from basal bony fishes revealed a tighter coordination of jaw and hyoid MAP during chewing than seen in artiodactyls. Across this broad phylogenetic range, there have been major structural reorganizations, including a reduction of the bony hyoid suspension, which is robust in fishes, to the acquisition in a mammalian ancestor of a muscle sling suspending the hyoid. These changes appear to be reflected in a shift in chewing MAP that occurred in an unidentified anamniote stem-lineage. This shift matches observations that, when compared with fishes, the pattern of hyoid motion in tetrapods is reversed and also time-shifted relative to the pattern of jaw movement.  相似文献   

20.
Motion analysis of the lower extremities usually requires determination of the location of the hip joint center. The results of several recent studies have suggested that kinematic and kinetic variables calculated from motion analysis data are highly sensitive to errors in hip joint center location. "Functional" methods in which the location of the hip joint center is determined from the relative motion of the thigh and pelvis, rather than from the locations of bony landmarks, are promising but may be ineffective when motion is limited. The aims of the present study were to determine whether the accuracy of the functional method is compromised in young and elderly subjects when limitations on hip motion are imposed and to investigate the possibility of locating the hip joint center using data collected during commonly studied motions (walking, sit-to-stand, stair ascent, stair descent) rather than using data from an ad hoc trial in which varied hip motions are performed. The results of the study suggested that functional methods would result in worst-case hip joint center location errors of 26mm (comparable to the average errors previously reported for joint center location based on bony landmarks) when available hip motion is substantially limited. Much larger errors ( approximately 70mm worst-case), however, resulted when hip joint centers were located from data collected during commonly performed motions, perhaps because these motions are, for the most part, restricted to the sagittal plane. It appears that the functional method can be successfully implemented when range of motion is limited but still requires collection of a special motion trial in which hip motion in both the sagittal and frontal planes is recorded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号