首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tumor necrosis factor (TNFs) have been shown to be synthesized by ovarian carcinomas, and may therefore affect tumor cells in an autocrine manner. Therefore, we investigated the effects of recombinant TNFs on ovarian carcinoma cells N.1 and examined expression of the proto-oncogenes c-myc and cdc25A which are known to play a prominent role in apoptosis. TNFalpha elicited apoptosis in N.1 cells within 72 h which was shown by typical morphological changes, DNA fragmentation and signature type cleavage of poly(ADP-ribose) polymerase into a 89 kDa proteolytic peptide. TNFalpha-induced apoptosis was accompanied by constitutive c-Myc expression, although the mRNA level of phosphatase cdc25A was suppressed within 24 h of TNFalpha treatment and the protein level decreased after 48 h. Cdc25A tyrosine phosphatase is an activator of the cdk2-cyclin E complex which allows for cell cycle progression. As expected, we found TNFalpha-mediated Cdc25A down-regulation to inhibit Cdk2 activity. Cdc25A suppression was related to TNFalpha-induced apoptosis but not to a TNFalpha-induced G0 arrest because cyclin D1 expression was unaffected and the gene gas6 (growth arrest specific 6) was not induced. Arresting cells by treatment with genistein prevented TNFalpha-triggered apoptosis and inhibited c-myc expression. TNFalpha-induced apoptosis is not accompanied by cell cycle arrest which may be due to constitutive c-Myc expression, although Cdc25A and Cdk2 activity is also down-regulated. High c-Myc and low Cdc25A activity might present conflicting signals to the cell cycle machinery which are incompatible with cell survival.  相似文献   

2.
Glucocorticoids (GC) induce cell cycle arrest and apoptosis in lymphoblastic leukemia cells. To investigate cell cycle effects of GC in the absence of obscuring apoptotic events, we used human CCRF-CEM leukemia cells protected from cell death by transgenic bcl-2. GC treatment arrested these cells in the G1 phase of the cell cycle due to repression of cyclin D3 and c-myc. Cyclin E and Cdk2 protein levels remained high, but the kinase complex was inactive due to increased levels of bound p27(Kip1). Conditional expression of cyclin D3 and/or c-myc was sufficient to prevent GC-induced G1 arrest and p27(Kip1) accumulation but, importantly, did not interfere with the induction of apoptosis. The combined data suggest that repression of both, c-myc and cyclin D3, is necessary to arrest human leukemia cells in the G1 phase of the cell division cycle, but that neither one is required for GC-induced apoptosis.  相似文献   

3.
4.
MicroRNA-218 (miR-218) is a short, noncoding RNA, with multiple biological functions. In this study, we aimed to investigate the potential effects of miR-218 on the apoptosis of human ovarian carcinoma cells and the underlying mechanisms by which miR-218 exerted its actions. After over-expressing miR-218 in human ovarian carcinoma (OVCAR3) cells, cell viability was determined by MTT method, cell apoptosis was observed by flow cytometry (FCM), mRNA expression of miR-218, Bcl2, Bax was measured by RT-PCR and protein expression levels of Wnt, tankyrase and β-catenin were quantified by Western blots. Over-expression of miR-218 potently suppressed cell viability and promoted the apoptosis of human ovarian carcinoma cells in a time-dependent manner. In addition, the down-regulation of tankyrase expression level was detected in miR-218-over-expressed cells. Following the block of the Wnt/β-catenin signaling pathway using the inhibitor XAV-939, the effects of miR-218 on the proliferation and apoptosis of human ovarian carcinoma cells were significantly suppressed. Augmenting expression of miR-218 and/or miRNA-218 mimicking therapeutics may provide viable avenue for the treatment of ovarian cancer.  相似文献   

5.
Taxol is used in chemotherapy regimens against breast and ovarian cancer. Treatment of tumor model cell lines with taxol induces apoptosis, but exact mechanism is not sufficiently understood. Our results demonstrate that in response to taxol, various cell types differentially utilize distinct apoptotic pathways. Using MCF7 breast carcinoma cells transfected with caspase-3 gene, we showed that taxol-induced apoptosis occurred in the absence of caspase-3 and caspase-9 activation. Similar results were obtained with ovarian SKOV3 carcinoma cells, expressing high level of endogenous caspase-3. In contrast, staurosporine-induced apoptosis in these cells was accompanied by proteolytic cleavage of pro-caspase-3 and induction of caspase-3 enzymatic activity. The effect of taxol appears to be cell type-specific, since taxol-induced apoptosis in leukemia U937 cells involved caspase-3 activation step. We conclude that a unique caspase-3 and caspase-9 independent pathway is elicited by taxol to induce apoptosis in human ovarian and breast cancinoma cells.  相似文献   

6.
INTRODUCTION: 2-Methoxyestradiol (2ME2), a natural endogenous product of estradiol (E2) metabolism, has been shown to be a selective apoptotic agent for cancer cells but not for normal cells. In this study, we determined that 2ME2 counteracts E2-stimulated cell growth and induces apoptosis in ovarian carcinoma cells. In addition, we demonstrate that 2ME2 induces apoptosis via p38 and phospho-Bcl2 pathway. METHODS: 2ME2 and/or E2 were administered to the OVCAR-3 (human ovarian cancer) cell line. Cell growth inhibition was analyzed by [3H] Thymidine incorporation assay and DNA fluorometric assay. Cell apoptosis was tested by DNA fragmentation analysis and FACS. The signaling pathway was determined by a series of biochemical assays. RESULTS: 2ME2 inhibited estradiol-stimulated cell growth and induced apoptosis in an ovarian carcinoma cell line. MAPK and p38, but not JNK, were found to be critical mediators in this process. Expression of a dominant negative mutant of p38 kinase or p38 specific inhibitor, SB 203580, almost completely blocked the process. Furthermore, Bcl-2 phosphorylation was required for 2ME2-induced effects. CONCLUSION: Our data suggest that 2ME2 inhibits E2-stimulated proliferation and induces apoptosis in ovarian carcinoma cells. Furthermore, activation of p38 and phosphorylation of Bcl-2 plays a critical role in the mechanism. 2ME2 therefore, may have a clinical application for the treatment of ovarian cancer.  相似文献   

7.
8.
Ovarian cancer is the leading cause of death from gynecological cancer. The anti-apoptotic protein Bcl-xL is frequently overexpressed in ovarian carcinoma which correlates with chemotherapy resistance. It has been demonstrated that Bcl-xL cooperates with another anti-apoptotic protein, Mcl-1, to protect ovarian cancer cells against apoptosis, and that their concomitant inhibition induces massive cell death. Here, we examined the interest of ABT-737, a potent BH3-mimetic molecule targeting Bcl-xL, both alone and in combination with Mcl-1 modulators, in ovarian cancer cell lines. As a single agent, ABT-737 was ineffective at promoting cell death in the four cell lines we tested in vitro. However, the specific inhibition of Mcl-1 by siRNA dramatically increased the sensitivity of chemoresistant cells to ABT-737. Platinum compounds also sensitize to ABT-737 by dose-dependently decreasing Mcl-1 expression or by increasing the expression of pro-apoptotic BH3-only proteins Noxa and, to a lower extent, Bim. Furthermore, we demonstrated that Noxa accumulation was involved in apoptosis occurring in response to the combination of ABT-737 and platinum compounds, since cells were protected from apoptosis by its silencing. Moreover, the combination was also highly cytotoxic ex vivo in sliced SKOV3 tumor nodes. However we observed in these slices a strong basal expression of Noxa and apoptotic cell death in response to ABT-737 alone. Therefore, we have revealed that the modulation of the Mcl-1/Noxa axis by platinum compounds results in a strong sensitization of chemoresistant ovarian carcinoma cells to ABT-737, which could constitute a promising therapeutic in these cancers.  相似文献   

9.
10.
A role for c-myc in chemically induced renal-cell death.   总被引:3,自引:1,他引:2       下载免费PDF全文
A variety of genes, including c-myc, are activated by chemical toxicants in vivo and in vitro. Although enforced c-myc expression induces apoptosis after withdrawing survival factors, it is not clear if activation of the endogenous c-myc gene is an apoptotic signal after toxicant exposure. The renal tubular epithelium is a target for many toxicants. c-myc expression is activated by tubular damage. In quiescent LLC-PK1 renal epithelial cells, c-myc but not max or mad mRNA is induced by the nephrotoxicant S-(1,2-dichlorovinyl)-L-cysteine (DCVC). The kinetics of DCVC-induced c-myc expression and apoptosis suggested an association between cell death and prolonged activation of c-myc expression after toxicant exposure. Accordingly, prolonged activation of an estrogen receptor-Myc fusion construct, but not a construct in which a c-Myc transactivation domain had been deleted, was sufficient to induce apoptosis in LLC-PK1 cells. Moreover, under conditions in which necrosis was the predominant cell death pathway caused by DCVC in parental cells, overexpressing c-myc biased the cell death pathway toward apoptosis. DCVC also induced ornithine decarboxylase (odc) mRNA and activated the odc promoter. Activation of the odc promoter by DCVC required consensus c-Myc-Max binding sites in odc intron 1. Inhibiting ODC activity with alpha-difluoromethylornithine delayed DCVC-induced cell death. Therefore, odc is a target gene in the DCVC apoptotic pathway involving c-myc activation and contributes to apoptosis. Finally, a structurally related cytotoxic but nongenotoxic analog of DCVC did not induce c-myc and did not activate the odc promoter or induce apoptosis. The data support the hypothesis that activation of apoptotic cell death in quiescent renal epithelial cells involves induction of c-myc. This is the first study to demonstrate that c-myc induction by a specific nephrotoxicant leads to gene activation and cell death.  相似文献   

11.
Arsenic trioxide (As2O3) inhibits cell growth and induces apoptosis in certain types of cancer cells including acute promyelocytic leukemia, prostate and ovarian carcinomas, but its effect on response of tumor cells to ionizing radiation has never been explored before. Here we demonstrate that As2O3 can sensitize human cervical cancer cells to ionizing radiation both in vitro and in vivo. As2O3 in combination with ionizing radiation have a synergistic effect in decreasing clonogenic survival and in the regression of established human cervical tumor xenografts. Pretreatment of the cells with As2O3 also synergistically enhanced radiation-induced apoptosis. Apoptosis of the cells by combined treatment of As2O3 and radiation was associated with reactive oxygen species generation and loss of mitochondrial membrane potential, resulting in the activation of caspase-9 and caspase-3. The combined treatment also resulted in an increased G2/M cell cycle distribution at the concentration of As2O3 which did not alter cell cycle when applied alone. These results indicate that As2O3 can synergistically enhance radiosensitivity of human cervix carcinoma cells in vitro and in vivo, suggesting a potential clinical applicability of combination treatment of As2O3 and ionizing radiation in cancer therapies.  相似文献   

12.
Hydroxyurea (HU) increases extrachromosomal DNA elimination in tumor cell lines. The c-myc oncogene is one of the many relevant amplified genes contained within the extrachromosomal DNA compartment. Spontaneous loss of amplified copies of c-myc induces terminal differentiation and apoptosis in the human HL-60 leukemia cell lines. In the present study, we evaluate HU's ability to induce apoptosis by eliminating extrachromosomally located c-myc oncogene in human tumor cell lines. The consequences of eliminating extrachromosomal DNA by HU were explored in two different cell lines using the TdT assay and acridine orange/ethidium bromide labeling. COLO 320 clone 3 and COLO 320 clone 21 cell lines contain the same number of amplified copies of c-myc oncogene, but located respectively on extrachromosomal DNA, and intrachromosomally in homogeneously staining regions. HU induced apoptosis in the COLO 320 clone 3 cell line by a time and concentration dependent mechanism but could not induce apoptosis in the COLO 320 clone 21 cell line. These results suggested that HU-induced apoptosis in COLO 320 cell lines depends on elimination of extrachromosomal amplified copies of the c-myc oncogene. The ability of HU to eliminate extrachromosomally amplified copies of the c-myc oncogene and to induce apoptosis should be considered when targeting malignancies with amplification of the c-myc oncogene in an extrachromosomal site.  相似文献   

13.
Induction of apoptosis in fibroblasts by c-myc protein.   总被引:288,自引:0,他引:288  
Although Rat-1 fibroblasts expressing c-myc constitutively are unable to arrest growth in low serum, their numbers do not increase in culture because of substantial cell death. We show this cell death to be dependent upon expression of c-myc protein and to occur by apoptosis. Regions of the c-myc protein required for induction of apoptosis overlap with regions necessary for cotransformation, autoregulation, and inhibition of differentiation, suggesting that the apoptotic function of c-myc protein is related to its other functions. Moreover, cells with higher levels of c-myc protein are more prone to cell death upon serum deprivation. Finally, we demonstrate that deregulated c-myc expression induces apoptosis in cells growth arrested by a variety of means and at various points in the cell cycle.  相似文献   

14.
15.
The transmembrane receptor Notch1 is a member of the evolutionarily conserved family of developmental regulators originally identified in Drosophila melanogaster. Notch signaling plays essential roles in regulating cell fate in thymic, intestinal, vascular and neuronal development (1-5). Recent studies detect mutations in the Notch1 receptor in roughly half of patients with T cell acute lymphoblastic leukemia (T-ALL) (6). Although expression of an activated Notch1 allele has been shown to cause leukemia in mice, the molecular mechanisms whereby Notch1 mediates cellular transformation are unknown (7). To understand how Notch1 contributes to T cell leukemogenesis, we generated mouse leukemic cell lines where the expression of activated Notch1 was doxycycline-regulated. This cell line was used for gene expression profiling to specifically identify Notch1-regulated genes in leukemia. These studies revealed that Notch1 directly induces the expression of c-myc and that inhibition of Notch1 results in cell cycle arrest and apoptosis and decreased c-myc levels (8). These studies and those performed by Aster, Pear and colleagues in human T-ALL cell lines demonstrate that the direct Notch1-mediated activation of c-myc is required to maintain leukemic growth (8-10). Interestingly, the Notch1/c-Myc oncogenic pathway does not appear limited to T-ALL, as studies by the Efstratiadis group show that expression of intracellular Notch1 leads to mammary tumorigenesis and importantly, transformation appears at least partially c-myc dependent (11). Collectively, these studies begin to delineate how Notch1 mediates cellular transformation and raises the possibility that the Notch1/c-Myc pathway may contribute to human breast cancer and potentially other solid tumors.  相似文献   

16.
Effect of heparin on apoptosis in human nasopharyngeal carcinoma CNE2 cells   总被引:10,自引:0,他引:10  
LiHL YeKH 《Cell research》2001,11(4):311-315
lwTRODUCTIONHeparin is a polysuifated glycosaminoglycanwith a high negatbe charge. Heparin is synthesized in various tissues, especially in the lha, 1ung,and gut. In addition to its allti-coagulant activityheparin is known to have anti-hypertensive[1], auiinflammatory[2], and antiproliferative effects. Be-sides, heparin inhibits leukocyte rol1ing and its adhe-sion to endothelium, its aggregation, degranulation,and the generation of superoxide anion by actndingncotrophils[3~51. Heparin and …  相似文献   

17.
18.
Ormeloxifen is a nonsteroidal selective estrogen receptor modulator (SERM) and has been shown to possess anticancer activities in breast and uterine cancer. Here, we show that ormeloxifen induces apoptosis in dose-dependent manner in a variety of leukemia cells, more strikingly in K562. 2-DE-gel electrophoresis of K562 cells induced with ormeloxifen showed that 57 and 30% of proteins belong to apoptosis and cell-cycle pathways, respectively. Our data demonstrate that ormeloxifen-induced apoptosis in K562 cells involves activation of extracellular signal-regulated kinases (ERKs) and subsequent cytochrome c release, leading to mitochondria-mediated caspase-3 activation. Ormeloxifen-induced apoptosis via ERK activation was drastically inhibited by prior treatment of K562 cells with ERK inhibitor PD98059. Ormeloxifen also inhibits proliferation of K562 cells by blocking them in G0-G1 phase by inhibiting c-myc promoter via ormeloxifen-induced MBP-1 (c-myc promoter-binding protein) and upregulation of p21 expression. We further show that ormeloxifen-induced apoptosis in K562 is translatable to mononuclear cells isolated from chronic myeloid leukemia (CML) patients. Thus, ormeloxifen induces apoptosis in K562 cells via phosphorylation of ERK and arrests them in G0-G1 phase by reciprocal regulation of p21 and c-myc. Therefore, inclusion of ormeloxifen in the therapy of chronic myeloid leukemia can be of potential utility.  相似文献   

19.
20.
Paclitaxel affects microtubule stability by binding to beta-tubulin, thus leading to cell accumulation in the G(2)/M phase, polyploidization, and apoptosis. Because both cell proliferation and apoptosis could be somehow regulated by the protooncogene c-myc, in this work we have investigated whether the c-myc amplification level could modulate the multiple effects of paclitaxel. To this aim, paclitaxel was administered to SW613-12A1 and -B3 human colon carcinoma cell lines (which are characterized by a high and low c-myc endogenous amplification level, respectively), and to the B3mycC5 cell line, with an enforced exogenous expression of c-myc copies. In this experimental system, we previously demonstrated that a high endogenous/exogenous level of amplification of c-myc enhances serum deprivation- and DNA damage-induced apoptosis. Accordingly, the present results indicate that a high c-myc amplification level potentiates paclitaxel cytotoxicity, confers a multinucleated phenotype, and promotes apoptosis to a great extent, thus suggesting that c-myc expression level is relevant in modulating the cellular responses to paclitaxel. We have recently shown in HeLa cells that the phosphorylated form of c-Myc accumulates in the nucleus, as distinct nucleolar and extranucleolar spots; here, we demonstrated that, after the treatment with paclitaxel, phosphorylated c-Myc undergoes redistribution, becoming diffused in the nucleoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号