首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Estrogen has been shown to protect skeletal muscle from damage and to exert antioxidant properties. The purpose of the present study was to investigate the antioxidant and protective properties of estrogens in rodent cardiac and skeletal muscle and H9c2 cells. Female Sprague-Dawley rats were separated into three groups, ovariectomized (OVX), ovariectomized with estrogen replacement (OVX + E2), and intact control (SHAM), and were assessed at two time periods, 4 and 8 weeks. Rodents hearts were analyzed for basal and iron-stimulated lipid peroxidation in the absence and presence of beta-estradiol (betaE2) by measuring thiobarbituric acid reactive species (TBARS). Isolated soleus (SOL) and extensor digitorum longus (EDL) were analyzed for creatine kinase (CK) efflux. Using H9c2 cells, the in vitro effects of betaE2 and its isomer alpha-estradiol were investigated under glucose-free/hypoxic conditions. TBARS assay was also performed on the H9c2 in the presence or absence of betaE2. The results indicate that OVX rodent hearts are more susceptible to lipid peroxidation than OVX + E2 hearts. OVX soleus showed higher cumulative efflux of CK than OVX + E2. Furthermore, H9c2 survival during oxidative stress was enhanced when estrogen was present, and both OVX hearts at 4 weeks and H9c2 cells particularly were protected from oxidative damage by estrogens. We conclude that estrogen protects both skeletal and cardiac muscle from damage, and its antioxidant activity can contribute to this protection.  相似文献   

2.
Muscle mass is decreased with advancing age, likely due to altered regulation of muscle fiber size. This study was designed to investigate cellular mechanisms contributing to this process. Analysis of male Fischer 344 X Brown Norway rats at 6, 20, and 32 mo of age demonstrated that, even though significant atrophy had occurred in soleus muscle by old age, myofiber nuclear number did not change, resulting in a decreased myonuclear domain. Also, the number of centrally located nuclei was significantly elevated in soleus muscle of 32-mo-old rats, correlating with an increase in gene expression of MyoD and myogenin. Whereas total 5'-bromo-2'deoxyuridine (BrdU)-positive nuclei were decreased at older ages, BrdU-positive myofiber nuclei were increased. These results suggest that, with age, loss of muscle mass is accompanied by increased myofiber nuclear density that involves fusion of proliferative satellite cells, resembling ongoing regeneration. Interestingly, centrally located myofiber nuclei were not BrdU labeled. Rats were subjected to hindlimb suspension (HS) for 7 or 14 days and intermittent reloading during HS for 1 h each day (IR) to investigate how aging affects the response of soleus muscle to disuse and an atrophy-reducing intervention. After 14 days of HS, soleus muscle size was decreased to a similar extent at all three ages. However, myofiber nuclear number and the total number of BrdU-positive nuclei decreased with HS only in the young rats. IR was associated with an attenuation of atrophy in soleus muscles of 6- and 20- but not 32-mo-old rats. Furthermore, IR was associated with an increase in BrdU-positive myofiber nuclei only in young rats. These data indicate that altered satellite cell function with age contributes to the impaired response of soleus muscle to an intervention that attenuates muscle atrophy in young animals during imposed disuse.  相似文献   

3.
Sex differences in skeletal muscle regeneration are controversial; comparisons of regenerative events between sexes have not been rigorously defined in severe injury models. We comprehensively quantified inflammation and muscle regeneration between sexes and manipulated sex-specific hormones to determine effects on regeneration. Cardiotoxin injury was induced in intact, castrated and ovariectomized female and male mice; ovariectomized mice were replaced with low- or high-dose 17-β estradiol (E(2)) or progesterone (P4). Extent of injury was comparable between intact mice, but females were more efficient in removal of necrotic debris, despite similar tissue levels of inflammatory cells and chemokines. Myofiber size during regeneration was equivalent between intact mice and after castration or ovariectomy (OVX) but was decreased (P < 0.001) in ovariectomized mice with high-dose E(2) replacement. Intermuscular adipocytes were absent in uninjured muscle, whereas adipocyte area was increased among regenerated myofibers in all groups. Interestingly, intermuscular fat was greater (P = 0.03) in intact females at day 14 compared with intact males. Furthermore, castration increased (P = 0.01) and OVX decreased adipocyte accumulation. After OVX, E(2), but not P4, replacement decreased (P ≤ 0.03) fat accumulation. In conclusion, sex-dependent differences in regeneration consisted of more efficient removal of necrosis and increased fat deposition in females with similar injury, inflammation, and regenerated myofiber size; high-dose E(2) decreased myofiber size and fat deposition. Adipocyte accumulation in regenerating muscle was influenced by sex-specific hormones. Recovery following muscle injury was different between males and females, and sex-specific hormones contributed to these differences, suggesting that sex-specific treatments could be beneficial after injury.  相似文献   

4.
Previous work showed that estrogen replacement attenuates muscle growth in immature rats. The present study examined muscle insulin-like growth factor-1 (IGF-1) and myostatin expression to determine whether these growth regulators might be involved in mediating estrogen's effects on muscle growth. IGF-1 and myostatin message and protein expression in selected skeletal muscles from 7-week-old sham-ovariectomized (SHAM) and ovariectomized rats that received continuous estrogen (OVX/E2) or solvent vehicle (OVX/CO) from an implant for 1 week or 5 weeks was measured. In the 1-week study, ovariectomy increased IGF-1 mRNA expression in fast extensor digitorum longus and gastrocnemius muscles; the increase was reversed by estrogen replacement. A similar trend was observed in the slow soleus muscle, although the change was not statistically significant. In contrast to mRNA, muscle IGF-1 protein expression was not different between SHAM and OVX/ CO animals in the 1-week study. One week of estrogen replacement significantly decreased IGF-1 protein level in all muscles examined. Myostatin mRNA expression was not different among the 1-week treatment groups. One week of estrogen replacement significantly increased myostatin protein in the slow soleus muscle but not the fast extensor digitorum longus and gastrocnemius muscles. There was no treatment effect on IGF-1 and myostatin expression in the 5-week study; this finding suggested a transient estrogen effect or upregulation of a compensatory mechanism to counteract the estrogen effect observed at the earlier time point. This investigation is the first to explore ovariectomy and estrogen effects on skeletal muscle IGF-1 and myostatin expression. Results suggest that reduced levels of muscle IGF-1 protein may mediate estrogen's effect on growth in immature, ovariectomized rats. Increased levels of muscle myostatin protein may also have a role in mediating estrogen's effects on growth in slow but not fast skeletal muscle.  相似文献   

5.
We evaluated the interplay among estrogen, leptin and thyroid function in the regulation of body mass in female rats. Adult female rats were divided into four groups: control (C, sham-operated), ovariectomized (OVX), ovariectomized treated with estradiol benzoate (Eb) 0.7 or 14 μg/100 g bw per day, during 21 days. OVX led to an increase in body mass, food intake and food efficiency (change in body mass as function of the amount of food ingested) which were normalized by the lower Eb dose, and decreased significantly when the higher dose was given. Serum leptin levels were increased more than two-fold in all ovariectomized groups. Serum T4 levels of the Eb treated OVX were significantly lower than in the controls. Serum T3 and TSH were unaffected by OVX or by Eb treatment. Uterine type 2 iodothyronine deiodinase (D2) activity changed in parallel with serum estradiol: decreased after OVX, returned to control levels after the lower E2 treatment, and increased significantly after the high Eb dosage. The hypothalamic D2 activity was reduced around 30% in all castrated groups, treated or not with estrogen, whereas in the brown adipose tissue the enzyme was not changed. Interestingly, although estrogen-treated OVX rats had lower body weight, serum leptin was high, suggesting that estrogen increases leptin secretion. Our results show that estradiol is necessary for the hypothalamic action of leptin, since the increase in leptin levels observed in all ovariectomized rats was associated with a decrease in food intake and food efficiency only in the rats treated with estrogen.  相似文献   

6.
Clinical presentation of temporomandibular joint (TMJ) disorders are more common in women and changes in the female hormone estrogen affect the level of swelling, pro-inflammatory cytokine release and pain in animal models of TMJ arthritis. Estrogen also modulates the expression of the CD16 receptor in vitro. This alters pro-inflammatory cytokine release in monocytes/macrophages when auto-antigens and arthritic factors bind the CD16 receptor. This study investigated the effects of various levels of estrogen on the intensity of inflammation and CD16 expression in a TMJ arthritic animal model. The experiments included rats that were intact or ovariectomized (OVX), eliminating the major source of estrogen output. A portion of the OVX animals had estrogen replaced with 17-beta estradiol (E2) using Alzet pumps. In OVX animals E2 levels were administered for 10 days to create an artificial estrus cycle or to simulate pregnancy. Following E2 treatment the rats were given an intra-articular TMJ injection of saline or complete Freund's adjuvant (CFA). CFA injection significantly increased TMJ swelling, stress induced chromodacryorrhea and attenuated food intake, thus indicating the adjuvant induced TMJ pain/inflammation. Removing endogenous E2 through OVX reduced CFA induced TMJ inflammation, whereas CFA increased the number of TMJ monocytes expressing the CD14 receptor equally in all groups irrespective of plasma E2 levels. Paradoxically, higher levels of E2 reduced the number of TNF-alpha positive, CD16+ and double labeled CD14+/CD16+ cells. The findings indicate that reduced plasma E2 levels attenuated CFA induced TMJ inflammation, whereas increasing E2 levels enhanced TMJ swelling in a dose dependent manner. Estrogenic group differences in CFA induced swelling were independent of TMJ CD14+, CD14+/CD16+ or CD16+ cell numbers suggesting E2 action on the CFA immune response primarily excluded CD16 receptor action.  相似文献   

7.
Bone loss with aging and menopause may be linked to vascular endothelial dysfunction. The purpose of the study was to determine whether putative modifications in endothelium-dependent vasodilation of the principal nutrient artery (PNA) of the femur are associated with changes in trabecular bone volume (BV/TV) with altered estrogen status in young (6 mon) and old (24 mon) female Fischer-344 rats. Animals were divided into 6 groups: 1) young intact, 2) old intact, 3) young ovariectomized (OVX), 4) old OVX, 5) young OVX plus estrogen replacement (OVX+E2), and 6) old OVX+E2. PNA endothelium-dependent vasodilation was assessed in vitro using acetylcholine. Trabecular bone volume of the distal femoral metaphysis was determined by microCT. In young rats, vasodilation was diminished by OVX and restored with estrogen replacement (intact, 82±7; OVX, 61±9; OVX+E2, 90±4%), which corresponded with similar modifications in BV/TV (intact, 28.7±1.6; OVX, 16.3±0.9; OVX+E2, 25.7±1.4%). In old animals, vasodilation was unaffected by OVX but enhanced with estrogen replacement (intact, 55±8; OVX, 59±7; OVX+E2, 92±4%). Likewise, modifications in BV/TV followed the same pattern (intact, 33.1±1.6; OVX, 34.4±3.7; OVX+E2, 42.4±2.1%). Furthermore, in old animals with low endogenous estrogen (i.e., intact and old OVX), vasodilation was correlated with BV/TV (R2 = 0.630; P<0.001). These data demonstrate parallel effects of estrogen on vascular endothelial function and BV/TV, and provide for a possible coupling mechanism linking endothelium-dependent vasodilation to bone remodeling.  相似文献   

8.
Intact, ovariectomized and ovariectomized estradiol (E)-treated female gray short-tailed opossums were placed in a test situation in which they could choose between an intact and a castrated male. Intact females chose to visit intact males first and visited them more frequently and spent more time with intact than with castrated males. Ovariectomized (OVX) females did not show this preference for visiting intact males over castrates. When compared to OVX females with blank implants, OVX females with E implants spent less time with castrated males. Like intact females, OVX and OVX-E-treated females preferred to stay in close proximity to but not actually in the cage of intact rather than castrated males. To our knowledge, this is the first experimental study of partner preference and its relationship to hormonal condition in a female marsupial.  相似文献   

9.
Prior studies suggest that estradiol and progesterone regulate body composition in growing female rats. Because these studies did not consider the confounding effect of changes in food intake, it remains unclear whether ovarian hormones regulate body composition independently of their effects on food intake. We utilized a pair-feeding paradigm to examine the effects of these hormones on body composition. In addition, skeletal muscle protein fractional synthesis rate and adipose tissue lipoprotein lipase activity were measured to examine pathways of substrate deposition into fat and fat-free tissue. Female Sprague-Dawley rats [pubertal: 7-8 wk old; 190 +/- 0.5 (SE) g] were separated into four groups: 1) sham-operated (S; n = 8), 2) ovariectomized plus placebo (OVX; n = 8), 3) ovariectomized plus estradiol (OVX+E; n = 8), and 4) ovariectomized plus progesterone (OVX+P; n = 8). All ovariectomized groups were pair-fed to the S group. Body composition was measured using total body electrical conductivity. The relative increase in fat-free mass was greater (P < 0.01) in the OVX group (31 +/- 2%) than in the S (17 +/- 2%), OVX+E (18 +/- 2%), and OVX+P (22 +/- 2%) groups. The fractional synthetic rates of gastrocnemius muscle protein paralleled changes in fat-free mass: OVX had a higher (P < 0.05) synthesis rate (21 +/- 3%/day) than S (12 +/- 2%/day), OVX+E (11 +/- 2%/day), and OVX+P (8 +/- 1%/day) groups. Body fat increased in the S group (31 +/- 7%; P < 0.01), whereas the OVX groups lost fat (OVX: -10 +/- 7%; OVX+E: -15 +/- 7%; OVX+P: -13 +/- 7%). No differences in lipoprotein lipase were found. Our results suggest that estradiol and progesterone may regulate the growth of fat and fat-free tissues in female rats. Moreover, ovarian hormones may influence skeletal muscle growth through their effects on skeletal muscle protein synthesis.  相似文献   

10.
11.
Beneficial effects of soy protein consumption on bone quality have been reported. The effects of other dietary protein sources such as whey protein hydrolysate (WPH) and rice protein isolate (RPI) on bone growth have been less well examined. The current study compared effects of feeding soy protein isolate (SPI), WPH and RPI for 14 d on tibial bone mineral density (BMD) and bone mineral content (BMC) in intact and ovariectomized (OVX) rapidly growing female rats relative to animals fed casein (CAS). The effects of estrogenic status on responses to SPI were also explored. Tibial peripheral quantitative computerized tomography (pQCT) showed all three protein sources had positive effects on either BMD or BMC relative to CAS (P < 0.05), but SPI had greater effects in both intact and OVX female rats. SPI and E2 had positive effects on BMD and BMC in OVX rats (P < 0.05). However, trabecular BMD was lower in a SPI + E2 group compared to a CAS + E2 group. In OVX rats, SPI increased serum bone formation markers, and serum from SPI-fed rats stimulated osteoblastogenesis in ex vivo. SPI also suppressed the bone resorption marker RatLaps (P < 0.05). Both SPI and E2 increased alkaline phosphatase gene expression in bone, but only SPI decreased receptor activator of nuclear factor-kappaB ligand (RANKL) and estrogen receptor gene expression (P < 0.05). These data suggest beneficial bone effects of a soy diet in rapidly growing animals and the potential for early soy consumption to increase peak bone mass.  相似文献   

12.
This study investigated the effect of sex hormones on mustard oil (MO)-induced visceral hypersensitivity in female rats and analyzed possible involved signaling pathways. Female rats, either intact or ovariectomized (OVX), were prepared for abdominal muscle electromyography in response to colorectal distension after intracolonic instillation of MO. The effect of MO intracolonic sensitization was evaluated in intact rats, OVX rats, and OVX rats pretreated with a single injection of 17beta-estradiol (E), progesterone (P), E+P, or vehicle. cAMP-responsive element-binding protein (CREB) and phosphorylated CREB (pCREB) were detected in the superficial dorsal horn of L6 and S1 in MO or mineral oil-treated OVX rats with/without colorectal distension and estrogen replacement. The distal colorectum was removed for histological evaluation of inflammatory severity in MO-treated intact or OVX rats. The MO-treated rats had significantly higher visceromotor reflex than controls (enhanced visceral hypersensitivity), whereas OVX eliminated this hypersensitivity. After a single injection of E or E+P, the rats rapidly restored MO-induced visceral hypersensitivity within 2 h. Estrogen also rapidly induced a dose-dependent increase in pCREB expression in the superficial dorsal horn neurons in MO-treated, but not mineral oil-treated, OVX rats. The present study suggests that estrogen can rapidly modulate visceral hypersensitivity induced by MO intracolonic instillation in conscious female rats, which may involve spinal activation of the cAMP response element-mediated gene induction pathway.  相似文献   

13.
In this study, we compared endothelial nitric oxide synthase (eNOS)-mediated cerebral vasodilating responses in intact female rats, chronically ovariectomized (OVX) rats, and OVX rats treated for 2 weeks with 17beta-estradiol (E(2)). Under anesthesia, using intravital microscopy and a closed cranial window system, pial arteriolar diameter changes were monitored during sequential cortical suffusions of an eNOS-dependent dilator [acetylcholine (ACh)] and a direct NO donor [S-nitrosoacetylpenicillamine (SNAP)]. In separate rats from the same groups, we compared eNOS and caveolin-1 (CAV-1) protein abundance in pial arterioles (via immunofluorescence analyses). In untreated and low-dose E(2)-treated (1.0 microg x kg(-1) x day(-1)) OVX rats, ACh-induced vasodilations were virtually absent. High-dose E(2) treatment (100 microg x kg(-1) x day(-1)) restored ACh-induced pial arteriolar dilations to levels seen in intact females. The vasodilations elicited by SNAP and ADO were unaffected by chronic estrogen changes, indicating no direct estrogen influence on vascular smooth muscle (VSM) reactivity. Pial arteriolar eNOS protein abundance was diminished by ovariectomy and restored by high-dose E(2) treatment. Pial arteriolar CAV-1 expression was higher in OVX versus intact and E(2)-treated OVX females. These results suggest that long-term changes in estrogen directly influence brain eNOS functional activity. The estrogen-related changes in eNOS-dependent vasodilating function appear to be related, in part, to a capacity for E(2) to increase eNOS protein expression and, in part, to an E(2)-associated diminution in endothelial CAV-1 expression.  相似文献   

14.
Unloading-induced muscle atrophy occurs in the aging population, bed-ridden patients, and astronauts. This study was designed to determine whether dynamic foot stimulation (DFS) applied to the plantar surface of the rat foot can serve as a countermeasure to soleus muscle atrophy normally observed in hindlimb unloaded (HU) rats. Forty-four mature (6 mo old), male Wistar rats were randomly assigned to ambulatory control, HU alone, HU with active DFS (i.e., plantar contact with active inflation), HU with passive DFS (i.e., plantar contact without active inflation), and HU while wearing a DFS boot with no plantar contact groups. Application of active DFS during HU significantly counteracted the atrophic response by preventing approximately 85% of the reduction in type I myofiber cross-sectional area (CSA) in the soleus while preventing approximately 57% of the reduction in type I myofiber CSA and 43% of the reduction in type IIA myofiber CSA of the medial gastrocnemius muscle. Wearing of a DFS boot without active inflation prevented myofiber atrophy in the soleus of HU animals in a fashion similar to that observed in HU animals that wore an actively inflated DFS boot. However, when a DFS boot without plantar surface contact was worn during HU, no significant protection from HU-induced myofiber atrophy was observed. These results illustrate that the application of mechanical foot stimulation to the plantar surface of the rat foot is an effective countermeasure to muscle atrophy induced by HU.  相似文献   

15.
Estrogen can enhance or reduce lymphocyte functions in vitro depending on dose and exposure duration. The purpose of this study was to determine the effect of in vivo 17 beta-estradiol (E2) on apoptosis and necrosis in lymphoid tissue of female C567BL/6 mice. Animals were ovariectomized (OVX), ovariectomized and 17 beta-estradiol supplemented (OVX + E2; 71 micrograms E2 per day for 14 days), sham ovariectomized (SHAM), or unhandled controls (CONTROL). Thymus and spleen were removed aseptically, cells dispersed into single cell suspensions in RPMI-1640, and measures of cell damage performed: an annexin V flow cytometric assay for markers of apoptosis and an enzyme-linked immunoassay for measures of DNA fragmentation and necrosis. OVX + E2 mice had 620 +/- 72 pg/ml 17 beta-estradiol in serum in contrast to OVX mice which had 7.6 +/- 5 pg/ml, the SHAM mice which had 2.8 +/- 1 pg/ml of serum E2, and the CONTROL mice which had 3.9 +/- 0.8 pg/ml of serum E2 (p < 0.001). There was a significantly lower percentage of viable thymocytes in OVX + E2 mice compared to the other treatment conditions (p < 0.001, respectively). There was also a significantly higher percentage of annexin V positive thymocytes in OVX + E2 mice (p < 0.005). Measures of DNA fragmentation by ELISA were higher in splenocytes from OVX + E2 mice than in the OVX, SHAM or CONTROL mice (p < 0.005). These results suggest that supraphysiological levels of estrogen in vivo induce damage in lymphoid cells; however, the impact of estrogen associated lymphoid tissue damage on specific immune functions remains to be determined.  相似文献   

16.
The aim of the present study was to test the hypothesis that the decreased renal tubular reabsorption of calcium observed in estrogen deficiency is associated with a local regulation of either PTHrP or PTH/PTHrP receptor genes in the kidney. Rats were randomly sham-operated (S) or ovariectomized receiving either vehicule (OVX) or 4 μg E2/kg/day (OVX+E4) or 40 μg E2/kg/d (OVX+E40) during 14 days using alzet minipumps. Plasma PTH and calcium levels were lower in untreated OVX animals than in all other groups (P < 0.01). Plasma PTH was higher in OVX+E40 than in OVX+E4 (P < 0.05). PTHrP mRNA expression in the kidney was unaffected by ovariectomy but was increased in OVX+E40 (0.984 ± 0.452 for PTHrP/GAPDH mRNAs expression vs. 0.213 ± 0.078 in sham, P < 0.01). PTH/PTHrP receptor mRNA expression and the cAMP response of renal membranes to PTH were unaffected by ovariectomy and estrogen substitution. In conclusion, renal PTHrP and PTH/PTHrP receptor mRNAs are not modified by ovariectomy. However, 17β-estradiol increases renal expression of PTHrP mRNA without evident changes in its receptor expression and function. This may help to explain the pharmacological action of estrogen in the kidney, especially how it prevents the renal leak of calcium in postmenopausal women. J. Cell. Biochem. 70:84–93, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
Neonatally androgenized (NA) female rats were ovariectomized (OVX) as adults and given 1 mg of testosterone propionate/day for 7 days and the plasma prolactin (PRL) pattern compared with NA intact animals and normal OVX animals given estrogen or TP. NA intact animals had elevated basal (morning values) and an attenuated afternoon surge when compared to normal estrogen-treated animals. Testosterone administration to normal animals induced an afternoon surge similar to that of normal estrogen-treated animals but the magnitude of the surge was less. Testosterone given to NA-OVX animals had little effect on either morning or afternoon PRL levels. The results suggest that in the NA rat the brain region involved in the conversion of testosterone to estrogen may be altered by neonatal androgen exposure.  相似文献   

18.
This study was undertaken in order to provide further insight into the role of leucine supplementation in the skeletal muscle regeneration process, focusing on myofiber size and strength recovery. Young (2-month-old) rats were subjected or not to leucine supplementation (1.35 g/kg per day) started 3 days prior to cryolesion. Then, soleus muscles were cryolesioned and continued receiving leucine supplementation until 1, 3 and 10 days later. Soleus muscles from leucine-supplemented animals displayed an increase in myofiber size and a reduction in collagen type III expression on post-cryolesion day 10. Leucine was also effective in reducing FOXO3a activation and ubiquitinated protein accumulation in muscles at post-cryolesion days 3 and 10. In addition, leucine supplementation minimized the cryolesion-induced decrease in tetanic strength and increase in fatigue in regenerating muscles at post-cryolesion day 10. These beneficial effects of leucine were not accompanied by activation of any elements of the phosphoinositide 3-kinase/Akt/mechanistic target of rapamycin signalling pathway in the regenerating muscles. Our results show that leucine improves myofiber size gain and strength recovery in regenerating soleus muscles through attenuation of protein ubiquitination. In addition, leucine might have therapeutic effects for muscle recovery following injury and in some muscle diseases.  相似文献   

19.
Skeletal muscle contractility and myosin function decline following ovariectomy in mature female mice. In the present study we tested the hypothesis that estradiol replacement can reverse those declines. Four-month-old female C57BL/6 mice (n = 69) were ovariectomized (OVX) or sham operated. Some mice were treated immediately with placebo or 17beta-estradiol (OVX + E(2)) while other mice were treated 30 days postsurgery. Thirty or sixty days postsurgery, soleus muscles were assessed in vitro for contractile function and susceptibility to eccentric contraction-induced injury. Myosin structural dynamics was analyzed in extensor digitorum longus (EDL) muscles by electron paramagnetic resonance spectroscopy. Maximal isometric tetanic force was affected by estradiol status (P < 0.001) being approximately 10% less in soleus muscles from OVX compared with sham-operated mice [168 mN (SD 16.7) vs. 180 mN (SD 14.4)] and was restored in OVX + E(2) mice [187 mN (SD 17.6)]. The fraction of strong-binding myosin during contraction was also affected (P = 0.045) and was approximately 15% lower in EDL muscles from OVX compared with OVX + E(2) mice [0.263 (SD 0.034) vs. 0.311 (SD 0.022)]. Plasma estradiol levels were correlated with maximal isometric tetanic force (r = 0.458; P < 0.001) and active stiffness (r = 0.329; P = 0.044), indicating that circulating estradiol influenced muscle and myosin function. Estradiol was not effective in protecting muscle against an acute eccentric contraction-induced injury (P >or= 0.401) but did restore ovariectomy-induced increases in muscle wet mass caused by fluid accumulation. Collectively, estradiol had a beneficial effect on female mouse skeletal muscle.  相似文献   

20.
The objectives were to study morphological adaptations of soleus muscle to decreased loading induced by hindlimb suspension and the effect of run training during the subsequent recovery period. Adult female Wistar rats were kept for 28 days with hindlimbs suspended. For the next 28 days, rats were assigned to a cage-sedentary or daily running group. Compared with control soleus muscles, 28 days of hindlimb suspension reduced the mass and fiber cross-sectional area to 58 and 53% of control values, respectively, and decreased type I fibers from 92 +/- 2 to 81 +/- 2%. During recovery, clusters of damaged fibers were observed in the soleus muscle, and this observation was more pronounced in trained animals. Type IIc fibers appeared transiently during recovery, and their presence was exacerbated with training, as IIc fibers increased to approximately 20% of the total by day 14 of recovery and were no longer evident at day 28. Although muscle wet mass does not differ as a result of mode of recovery at day 14, training transiently decreased the overall fiber area compared with sedentary recovery at this point. By day 28 of recovery the morphological characteristics of soleus muscle in the trained group did not differ from control muscle, whereas in the sedentary group muscle mass and overall fiber cross-sectional area were approximately 14% less than control values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号