首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
能源短缺和环境污染是目前人类社会所面临的巨大挑战, 而生物柴油的应用和推广正是现阶段解决能源替代问题的较佳手段。现今国外生物柴油产业发展十分迅速, 产量逐年增长, 而我国的生物柴油产业才刚刚起步。本文介绍了极具潜力的5种木本油料植物麻疯树(Jatropha curcas)、光皮树(Cornus wilsoniana)、文冠果(Xanthoceras sorbifolia)、黄连木(Pistacia chinensis)和欧李(Cerasus humilis)和1种野生草本油料植物海篷子(Salicornia bigelivii), 进而提出运用转基因技术提高燃料油植物种子含油量的优势, 归纳总结了生产生物柴油的4种不同工艺。最后建议政府应对燃料油植物种植和生产加工产业实施补贴和免税等扶植政策。本文对我国生物质能源产业的发展提供了有价值的实施策略, 具有重要的借鉴和参考价值。  相似文献   

2.
发展可再生生物质能源是解决人类能源危机和环境污染的重要途径。利用边际土地发展油脂类生物质能是生物质能的重要组成部分。蓖麻因为适应性强和油脂成份独特被誉为"理想的生物柴油植物"。蓖麻是我国优势油脂类能源植物,利用边际土地,发展蓖麻产业为我国生物柴油产业化提供原料,是我国现阶段生物柴油产业化发展的相对理想而又现实的选择,而且具有重要的发展前景和巨大的发掘潜力。立足我国现阶段生物柴油产业化的瓶颈问题,着重阐述了蓖麻种质资源发掘的现状、优良品种培育的途径和发展前景,以及利用蓖麻种子油生产商业化生物柴油的现状,以期推动我国利用边际土地发展蓖麻产业以及生物柴油商业化生产。  相似文献   

3.
能源植物资源的研究和开发   总被引:7,自引:0,他引:7  
植物能源是一种清洁的、方便的可替代能源,发展植物能源是解决矿石能源危机的可行的措施,生物汽油和生物柴油产业已得到初步发展和应用。按照能源植物所含特定化学物质的对能源植物进行类别划分,并结合我国的实际,提出我国适宜发展的能源植物品种。  相似文献   

4.
发展生物柴油产业的挑战与对策的探讨   总被引:1,自引:0,他引:1  
生物柴油是一种由可再生资源生产的优质清洁燃料,发展生物柴油不仅可以保护环境,减少温室气体排放,而且可以缓解我国石油进口的压力,推动新农村建设。但由于植物油脂价格的飙升,生物柴油产业发展面临仅生产生物柴油燃料在经济上难以立足的挑战。本文从发展生物柴油原料资源,生产技术以及生物柴油化工技术开发的现状与未来发展动态进行分析,探讨了促进我国生物柴油产业健康发展的对策。[编者按]  相似文献   

5.
开发木本油料植物作为生物柴油原料的研究   总被引:15,自引:0,他引:15  
本文根据德国、欧盟和美国制定的生物柴油标准制定了以碘值、十六烷值和脂肪酸组成等参数作为植物油质量的评价体系。通过四条标准,即51<十六烷值<65、碘值<115、亚麻酸<12%和十八碳四烯酸<1%、碳链长度为C12-C22,对国产118种种子含油量超过30%的木本油料植物进行评估,共筛选出53种木本油料植物的种子油可作为发展生物柴油最适合的原料。其中油茶、杏、无患子、臭椿、白檀、海州常山分布广,是值得推广种植的生物柴油植物。富油大科山茶科和无患子科植物的种子油一般都适合发展生物柴油,而富油大科樟科、松科和卫矛科植物的种子油不适合作生物柴油原料。我国各省区可因地制宜选择合适的能源树种,发展生物柴油产业。  相似文献   

6.
为研究海南省现有非粮生物柴油能源植物的资源特点、资源量和分布情况,对海南省现有资源进行了调查。采集样品的含油部位采用索氏提取法测定其含油量,并用碱催化法进行脂肪酸甲酯化。运用相关计算公式和"DPS数据处理系统"对各组分进行数据计算与分析,在第一年度数据基础上,按照生物柴油能源植物初步评价标准,筛选出非粮生物柴油能源植物共计30科、47属、59种(含2变种),其中,罗志藤(Stixis suaveolens)和海南崖豆藤(Millettia pachyloba)是按此评价标准筛选新增加的种。分析了海南省非粮生物柴油能源植物的资源及其分布特点,对其发展潜力、保护和利用提出了建议。  相似文献   

7.
作为替代能源之一的生物柴油已日益受到欧美及亚洲一些能耗大国的重视并获得了较快的发展。仅欧洲诸炼油厂利用油菜籽、大豆及其他能源植物2006年就生产出生物柴油14亿加仑(1加仑=3.78541L,下同),当年全球用于生物柴油的支出达17亿美元,至2020年将达到260亿美元。但亚洲与欧美在发展生物柴油方向侧重点不同。  相似文献   

8.
中国如何突破生物柴油产业的原料瓶颈   总被引:72,自引:4,他引:72  
因应我国日益严峻的能源资源、能源环境和能源安全形势,国家大力倡导发展可再生能源。生物柴油是最重要的液体可再生燃料之一,在能源性质方面可以完全替代化石柴油,而且还具有安全环保等其它优良特性。当前利用动植物油脂生产生物柴油,原料成本偏高,而且稳定、充足的油脂原料供应体系尚未形成。我国是油脂资源短缺国家,近年来植物油进口量逐年增加。同时,我国耕地资源匮乏,粮食供应形势不容乐观,扩大油料作物种植的潜力非常有限。但是,我国宜林地丰富,农林废弃生物质资源量巨大。综合以上因素,我国应重点发展木本油料植物规模化种植和推广,加快微生物油脂发酵技术创新和产业化进程;同时,利用植物遗传育种技术提高油料作物产量以及选择性发展不与粮争地的油料作物。依靠各方面的进步,发展创新的油脂生产技术,保障我国生物柴油产业和油脂化工行业健康发展。  相似文献   

9.
脂肪酶催化制备生物柴油的研究进展   总被引:4,自引:0,他引:4  
生物柴油作为一种可再生的清洁能源,以其良好的环境效应受到越来越多的关注。酶法生产生物柴油具有化学催化法不可比拟的优越性,是工业化生产的发展方向。本文综述了利用固定化脂肪酶、游离酶、全细胞生物催化剂制备生物柴油的研究与应用进展,并探讨了我国生物柴油产业化发展的困境和对策。  相似文献   

10.
我国生物柴油产业的回顾与展望   总被引:3,自引:0,他引:3  
本文回顾了近年来我国生物柴油产业的发展历程,分析了我国生物柴油生产原料的主要来源,并就生物柴油的生产技术及相应的国内代表性企业进行了综述,最后对我国生物柴油的未来发展方向进行了展望。  相似文献   

11.
Plant triacylglycerols as feedstocks for the production of biofuels   总被引:11,自引:5,他引:6  
Triacylglycerols produced by plants are one of the most energy-rich and abundant forms of reduced carbon available from nature. Given their chemical similarities, plant oils represent a logical substitute for conventional diesel, a non-renewable energy source. However, as plant oils are too viscous for use in modern diesel engines, they are converted to fatty acid esters. The resulting fuel is commonly referred to as biodiesel, and offers many advantages over conventional diesel. Chief among these is that biodiesel is derived from renewable sources. In addition, the production and subsequent consumption of biodiesel results in less greenhouse gas emission compared to conventional diesel. However, the widespread adoption of biodiesel faces a number of challenges. The biggest of these is a limited supply of biodiesel feedstocks. Thus, plant oil production needs to be greatly increased for biodiesel to replace a major proportion of the current and future fuel needs of the world. An increased understanding of how plants synthesize fatty acids and triacylglycerols will ultimately allow the development of novel energy crops. For example, knowledge of the regulation of oil synthesis has suggested ways to produce triacylglycerols in abundant non-seed tissues. Additionally, biodiesel has poor cold-temperature performance and low oxidative stability. Improving the fuel characteristics of biodiesel can be achieved by altering the fatty acid composition. In this regard, the generation of transgenic soybean lines with high oleic acid content represents one way in which plant biotechnology has already contributed to the improvement of biodiesel.  相似文献   

12.
In the last few years, biodiesel has emerged as one of the most potential renewable energy to replace current petrol-derived diesel. It is a renewable, biodegradable and non-toxic fuel which can be easily produced through transesterification reaction. However, current commercial usage of refined vegetable oils for biodiesel production is impractical and uneconomical due to high feedstock cost and priority as food resources. Low-grade oil, typically waste cooking oil can be a better alternative; however, the high free fatty acids (FFA) content in waste cooking oil has become the main drawback for this potential feedstock. Therefore, this review paper is aimed to give an overview on the current status of biodiesel production and the potential of waste cooking oil as an alternative feedstock. Advantages and limitations of using homogeneous, heterogeneous and enzymatic transesterification on oil with high FFA (mostly waste cooking oil) are discussed in detail. It was found that using heterogeneous acid catalyst and enzyme are the best option to produce biodiesel from oil with high FFA as compared to the current commercial homogeneous base-catalyzed process. However, these heterogeneous acid and enzyme catalyze system still suffers from serious mass transfer limitation problems and therefore are not favorable for industrial application. Nevertheless, towards the end of this review paper, a few latest technological developments that have the potential to overcome the mass transfer limitation problem such as oscillatory flow reactor (OFR), ultrasonication, microwave reactor and co-solvent are reviewed. With proper research focus and development, waste cooking oil can indeed become the next ideal feedstock for biodiesel.  相似文献   

13.
Biodiesel is an alternative diesel fuel made from renewable biological resources. During the process of biodiesel production, lipase-catalyzed transesterification is a crucial step. However, current techniques using methanol as acyl acceptor have lower enzymatic activity; this limits the application of such techniques in large-scale biodiesel production. Furthermore, the lipid feedstock of currently available techniques is limited. In this paper, the technique of lipase-catalyzed transesterification of five different oils for biodiesel production with methyl acetate as acyl acceptor was investigated, and the transesterification reaction conditions were optimized. The operation stability of lipase under the obtained optimal conditions was further examined. The results showed that under optimal transesterification conditions, both plant oils and animal fats led to high yields of methyl ester: cotton-seed oil, 98%; rapeseed oil, 95%; soybean oil, 91%; tea-seed oil, 92%; and lard, 95%. Crude and refined cottonseed oil or lard made no significant difference in yields of methyl ester. No loss of enzymatic activity was detected for lipase after being repeatedly used for 40 cycles (ca. 800 h), which indicates that the operational stability of lipase was fairly good under these conditions. Our results suggest that cotton-seed oil, rape-seed oil and lard might substitute soybean oil as suitable lipid feedstock for biodiesel production. Our results also show that our technique is fit for various lipid feedstocks both from plants and animals, and presents a very promising way for the large-scale biodiesel production.  相似文献   

14.
The production of fatty acid methyl esters (FAMEs) from waste activated bleaching earth (ABE) discarded by the crude oil refining industry using lipase from Candida cylindracea was investigated in a 50-L pilot plant. Diesel oil or kerosene was used as an organic solvent for the transesterification of triglycerides embedded in the waste ABE. When 1% (w/w) lipase was added to waste ABE, the FAME content reached 97% (w/w) after reaction for 12 h at 25 degrees C with an agitation rate of 30 rpm. The FAME production rate was strongly dependent upon the amount of enzyme added. Mixtures of FAME and diesel oil at ratios of 45:55 (BDF-45) and 35:65 (BDF-35) were assessed and compared with the European specifications for biodiesel as automotive diesel fuel, as defined by pr EN 14214. The biodiesel quality of BDF-45 met the EN 14214 standard. BDF-45 was used as generator fuel, and the exhaust emissions were compared with those of diesel oil. The CO and SO2 contents were reduced, but nitrogen oxide emission increased by 10%. This is the first report of a pilot plant study of lipase-catalyzed FAME production using waste ABE as a raw material. This result demonstrates a promising reutilization method for the production of FAME from industrial waste resources containing vegetable oils for use as a biodiesel fuel.  相似文献   

15.
Environmental concerns and depletion of fossil fuels along with government policies have led to the search for alternative fuels from various renewable and sustainable feedstocks. This review provides a critical overview of the chemical composition of common commercial plant oils, i.e., palm oil, olive oil, rapeseed oil, castor oil, WCO, and CTO and their recent trends toward potential biofuel production. Plant oils with a high energy content are primarily composed of triglycerides (generally >?95%), accompanied by diglycerides, monoglycerides, and free fatty acids. The heat content of plant oils is close to 90% for diesel fuels. The oxygen content is the most important difference in chemical composition between fossil oils and plant oils. Triglycerides can even be used directly in diesel engines. However, their high viscosity, low volatility, and poor cold flow properties can lead to engine problems. These problems require that plant oils need to be upgraded if they are to be used as a fuel in conventional diesel engines. Biodiesel, biooil, and renewable diesel are the three major biofuels obtained from plant oils. The main constraint associated with the production of biodiesel is the cost and sustainability of the feedstock. The renewable diesel obtained from crude tall oil is more sustainable than biofuels obtained from other feedstocks. The fuel properties of renewable diesel are similar to those of fossil fuels with reduced greenhouse gas emissions. In this review, the chemical composition of common commercial plant oils, i.e., palm oil, olive oil, rapeseed oil, castor oil, and tall oil, are presented. Both their major and minor components are discussed. Their compositions and fuel properties are compared to both fossil fuels and biofuels.  相似文献   

16.
随着人类社会的快速发展和对化石能源的不合理开采,化石能源整体可开采量锐减;另一方面,化石能源的大量使用造成日益凸显的环境污染问题,发展生物质能源对解决能源危机、促进社会可持续发展具有重要意义。囿于人口持续增长和粮食需求不断增加,发展能源植物的重要突破口在于大力开发不与粮食作物争地争水的干旱能源植物。因此,从能源植物概念及其意义入手,论述国内外干旱能源植物应用现状和在实际种植生产过程中存在的问题,综合分析适合作为干旱能源植物的新类型,进而提出干旱能源植物的应用策略。  相似文献   

17.
Biotechnological production of biodiesel has attracted considerable attention during the past decade compared to chemical-catalysed production since biocatalysis-mediated transesterification has many advantages. Currently, there are extensive reports on enzyme-catalysed transesterification for biodiesel production; the related research can be classified into immobilised-extracellular and immobilised-intracellular biocatalysis and this review focusses on these forms of biocatalyst for biodiesel production. The optimisation of the most important operating conditions affecting lipase-catalysed transesterification and the yield of alkyl esters, such as the type and form of lipase, the type of alcohol, the presence of organic solvents, the content of water in the oil, temperature and the presence of glycerol, are discussed. However, there is still a need to optimise lipase-catalysed transesterification and reduce the cost of lipase production before it is applied commercially. Optimisation research of lipase-catalysed transesterification could include development of new reactor systems with immobilised biocatalysts, the use of lipases tolerant to organic solvents, intracellular lipases (whole microbial cells) and genetically modified microorganisms (intelligent yeasts). Biodiesel fuel is expensive in comparison with petroleum-based fuel and 60–70% of the cost is associated with feedstock oil and enzyme. Therefore ways of reducing the cost of biodiesel with respect to enzyme and substrate oils reported in literature are also presented.  相似文献   

18.
Perspectives of microbial oils for biodiesel production   总被引:7,自引:0,他引:7  
Biodiesel has become more attractive recently because of its environmental benefits, and the fact that it is made from renewable resources. Generally speaking, biodiesel is prepared through transesterification of vegetable oils or animal fats with short chain alcohols. However, the lack of oil feedstocks limits the large-scale development of biodiesel to some extent. Recently, much attention has been paid to the development of microbial, oils and it has been found that many microorganisms, such as algae, yeast, bacteria, and fungi, have the ability to accumulate oils under some special cultivation conditions. Compared to other plant oils, microbial oils have many advantages, such as short life cycle, less labor required, less affection by venue, season and climate, and easier to scale up. With the rapid expansion of biodiesel, microbial oils might become one of potential oil feedstocks for biodiesel production in the future, though there are many works associated with microorganisms producing oils need to be carried out further. This review is covering the related research about different oleaginous microorganisms producing oils, and the prospects of such microbial oils used for biodiesel production are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号