首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since tropical rain forests are widely threatened by conversion to agriculture, even within protected areas, an understanding of recovery processes is important for restoration of forest ecosystems and thus conservation of their biodiversity. Secondary succession following land clearance and crop cultivation was studied in a lower montane rain forest in a protected area of the Venezuelan Cordillera de la Costa Central. Forest recovery was studied using a chronosequence of eight 20 × 20 m plots which represented four forest types ca.10 year-old Secondary Forest, ca. 20 year-old Secondary Forest, ca. 35 year-old (uncultivated) secondary forest and mature forest. Species richness and structural complexity increased during succession, with the oldest secondary forest having a physiognomy comparable to the mature forest. Species diversity was lower in the secondary forests than the mature forest, and their floristic composition was distinct. Four phases are hypothesized to occur in the succession process, each with a distinctive species assemblage: initial colonisation by non-woody vegetation; establishment and canopy closure by short-lived small-seeded woody pioneer species; replacement by longer-lived secondary species; and gradual replacement by mature forest large-seeded climax species. Full recovery of the forests in the protected area is likely to take many years, although it may be assisted through conservation management measures.  相似文献   

2.
The fine root systems of three tropical montane forests differing in age and history were investigated in the Cordillera Talamanca, Costa Rica. We analyzed abundance, vertical distribution, and morphology of fine roots in an early successional forest (10–15 years old, ESF), a mid‐successional forest (40 years old, MSP), and a nearby undisturbed old‐growth forest (OGF), and related the root data to soil morphological and chemical parameters. The OGF stand contained a 19 cm deep organic layer on the forest floor (i.e., 530 mol C/m2), which was two and five times thicker than that of the MSF (10 cm) and ESF stands (4 cm), respectively. There was a corresponding decrease in fine root biomass in this horizon from 1128 g dry matter/m2 in the old‐growth forest to 337 (MSF) and 31 g/m2 (ESF) in the secondary forests, although the stands had similar leaf areas. The organic layer was a preferred substrate for fine root growth in the old‐growth forest as indicated by more than four times higher fine root densities (root mass per soil volume) than in the mineral topsoil (0–10 cm); in the two secondary forests, root densities in the organic layer were equal to or lower than in the mineral soil. Specific fine root surface areas and specific root tip abundance (tips per unit root dry mass) were significantly greater in the roots of the ESF than the MSF and OGF stands. Most roots of the ESF trees (8 abundant species) were infected by VA mycorrhizal fungi; ectomycorrhizal species (Quercus copeyemis and Q. costaricensis) were dominant in the MSF and OGF stands. Replacement of tropical montane oak forest by secondary forest in Costa Rica has resulted in (1) a large reduction of tree fine root biomass; (2) a substantial decrease in depth of the organic layer (and thus in preferred rooting space); and (3) a great loss of soil carbon and nutrients. Whether old–growth Quercus forests maintain a very high fine root biomass because their ectomycorrhizal rootlets are less effective in nutrient absorption than those of VA mycorrhizal secondary forests, or if their nutrient demand is much higher than that of secondary forests (despite a similar leaf area and leaf mass production), remains unclear.  相似文献   

3.
长白山针阔混交林不同演替阶段的昆虫多样性   总被引:6,自引:0,他引:6  
贾玉珍  赵秀海  孟庆繁 《昆虫学报》2009,52(11):1236-1243
昆虫多样性变化对生态系统健康有重要的指示作用, 为研究昆虫群落变化与生境演替之间的关系, 本研究采用网捕、灯诱和诱捕法系统调查了长白山针阔混交林不同演替阶段(次生白桦林、次生针阔混交林、原始阔叶红松林)昆虫群落的组成和多样性, 分析了昆虫在森林演替过程中的规律及与植被群落之间的关系。系统调查共采集昆虫标本8 183头, 隶属于14个目699种, 其中鳞翅目和鞘翅目是主要优势类群。次生针阔混交林昆虫的个体数量最多, 原始阔叶红松林中物种数最多。不同演替阶段昆虫群落的物种数和个体数差异不显著, 但次生针阔混交林、原始阔叶红松林的Fisher’s α指数显著高于次生白桦林。目水平上的昆虫多样性未表现出显著性差异. 昆虫多样性在森林演替过程中和草本植物多样性的变化趋势相同;由于食性和生境选择的不同, 森林演替过程中鳞翅目昆虫多样性逐渐升高, 而鞘翅目多样性逐渐降低。  相似文献   

4.
Species richness, community composition and ecology of cryptogamic epiphytes (bryophytes, macrolichens) were studied in upper montane primary, early secondary and late secondary oak forests of the Cordillera de Talamanca, Costa Rica. Canopy trees of Quercus copeyensis were sampled with the aim of getting insight in patterns and processes of epiphyte succession and recovery of diversity in secondary forest following forest clearing. Species richness of cryptogamic epiphytes in secondary and primary forests were nearly the same, showing that primary forests are not necessarily more diverse than secondary forests. High species richness of secondary forests was presumed due to the closed canopy, resulting in permanently high atmospheric humidity in these forests. Similarity in species composition of secondary and primary forests increases with forest age, but after 40 years of succession one third (46 species) of primary forest species had not re-established in the secondary forest. Community composition in primary and secondary forests differed markedly and indicates that a long time is needed for the re-establishment of microhabitats and re-invasion of species and communities adapted to differentiated niches. Genera and species exclusive to primary forests are relevant as indicator taxa and conservation targets. Forty percent (68 species) of all species recorded are restricted to secondary forests, indicating the important contribution of secondary forest diversity to total species richness of the oak forests of Costa Rica.  相似文献   

5.
Aim We examined changes in the species diversity and faunal composition of arctiid moths along a successional gradient at a fine spatial scale in one of the world's hot spots for moths, the Andean montane rain forest zone. We specifically aimed to discover whether moth groups with divergent life histories respond differentially to forest recovery. Location Southern Ecuador (province Zamora‐Chinchipe) along a gradient from early successional stages to mature forest understorey at elevations of 1800–2005 m a.s.l. Methods Moths were sampled with weak light traps at 21 sites representing three habitat categories (early and late succession, mature forest understorey), and were analysed at species level. Relative proportions were calculated from species numbers as well as from specimen numbers. Fisher's α was used as a measure of local diversity, and for ordination analyses non‐metric multidimensional scaling (NMDS) was carried out. Results Proportions of higher arctiid taxa changed distinctly along the successional gradient. Ctenuchini (wasp moths) contributed more strongly to ensembles in natural forest, whereas Lithosiinae (lichen moths) decreased numerically with forest recovery. Arctiid species diversity (measured as Fisher's α) was high in all habitats sampled. The three larger subordinated taxa contributed differentially to richness: Phaegopterini (tiger moths) were always the most diverse clade, followed by Ctenuchini and Lithosiinae. Local species diversity was higher in successional habitats than in forest understorey, and this was most pronounced for the Phaegopterini. Dominance of a few common species was higher, and the proportion of species represented as singletons was lower, than reported for many other tropical arthropod communities. NMDS revealed a significant segregation between ensembles from successional sites and from forest understorey for all larger subordinated taxa (Phaegopterini, Ctenuchini, Lithosiinae). Abandoned pastures held an impoverished, distinct fauna. Faunal segregation was more pronounced for rare species. Ordination axes reflected primarily the degree of habitat disturbance (openness of vegetation, distance of sites from mature forest) and, to a lesser extent, altitude, but not distance between sampling sites. Main conclusions Despite the geographical proximity of the 21 sites and the pronounced dispersal abilities of adult arctiid moths, local ecological processes were strong enough to allow differentiation between ensembles from mature forest and disturbed sites, even at the level of subfamilies and tribes. Differences in morphology and life‐history characteristics of higher arctiid taxa were reflected in their differential representation (proportions of species and individuals) at the sites, whereas patterns of alpha and beta diversity were concordant. However, concordance was too low to allow for reliable extrapolation, in terms of biodiversity indication, from one tribe or subfamily to the entire family Arctiidae. Phaegopterini (comprising more putative generalist feeders during the larval stages) benefited from habitat disturbance, whereas Ctenuchini (with host‐specialist larvae) were more strongly affiliated with forest habitats.  相似文献   

6.
Secondary succession is well‐understood, to the point of being predictable for plant communities, but the successional changes in plant‐herbivore interactions remains poorly explored. This is particularly true for tropical forests despite the increasing importance of early successional stages in tropical landscapes. Deriving expectations from successional theory, we examine properties of plant‐herbivore interaction networks while accounting for host phylogenetic structure along a succession chronosequence in montane rainforest in Papua New Guinea. We present one of the most comprehensive successional investigations of interaction networks, equating to > 40 person years of field sampling, and one of the few focused on montane tropical forests. We use a series of nine 0.2 ha forest plots across young secondary, mature secondary and primary montane forest, sampled almost completely for woody plants and larval leaf chewers (Lepidoptera) using forest felling. These networks comprised of 12 357 plant‐herbivore interactions and were analysed using quantitative network metrics, a phylogenetically controlled host‐use index and a qualitative network beta diversity measure. Network structural changes were low and specialisation metrics surprisingly similar throughout succession, despite high network beta diversity. Herbivore abundance was greatest in the earliest stages, and hosts here had more species‐rich herbivore assemblages, presumably reflecting higher palatability due to lower defensive investment. All herbivore communities were highly specialised, using a phylogenetically narrow set of hosts, while host phylogenetic diversity itself decreased throughout the chronosequence. Relatively high phylogenetic diversity, and thus high diversity of plant defenses, in early succession forest may result in herbivores feeding on fewer hosts than expected. Successional theory, derived primarily from temperate systems, is limited in predicting tropical host‐herbivore interactions. All succession stages harbour diverse and unique interaction networks, which together with largely similar network structures and consistent host use patterns, suggests general rules of assembly may apply to these systems.  相似文献   

7.
The study of gap dynamics and the effects of gaps on diversity has been at the center of tropical ecology for decades. While most studies have focused on the responses of plant species and communities to gap formation, in this study, we consider the effects of treefall gap disturbances on leaf litter ant assemblages in a Neotropical montane cloud forest. We sampled leaf litter ant assemblages and estimated a suite of abiotic parameters in 12 large (>80‐m2) treefall gaps across a chronosequence and in 12 paired adjacent intact forest sites in the Monteverde Cloud Forest Preserve in Costa Rica. No species were more common in gaps than in intact forests, and in fact, species that were common in gaps were also among the most common in forests. The Chao2 estimate of species richness, however, was higher in gap sites than in intact forest sites. In addition, ant assemblages in gap sites did not become more similar to those in adjacent intact sites as gaps aged. In contrast to other studies, our work demonstrates that ant assemblages in the Monteverde Cloud Forest Preserve are weakly affected by the formation of treefall gaps. Together, these results indicate that treefall gap dynamics probably play little role in promoting ant diversity at more regional scales, or coexistence among species at more local scales.  相似文献   

8.
Question: How does the floristic diversity of Afromontane rainforests change along an altitudinal gradient? What are the implications for conservation planning in these strongly fragmented forest areas that form part of the Eastern Afromontane Biodiversity Hotspot? Location: Bonga, southwestern Ethiopia. Methods: Based on evidence from other montane forests, we hypothesized that altitude has an effect on the floristic diversity of Afromontane rainforests in southwestern Ethiopia. To test this hypothesis, detailed vegetation surveys were carried out in 62 study plots located in four relatively undisturbed forest fragments situated at altitudes between 1600 m and 2300 m. Floristic diversity was evaluated using a combination of multivariate statistical analyses and diversity indices. Results: Ordination and indicator species analyses showed gradual variations in floristic diversity along the altitudinal gradient with a pronounced shift in species composition at ca. 1830 m. Upper montane forest (>1830 m) is characterized by high fern diversity and indicator species that are Afromontane endemics. Lower montane forest (<1830 m) exhibits a greater diversity of tree species and a higher abundance of the flagship species Coffea arabica. Conclusions: Our results provide crucial ecological background information concerning the montane rainforests of Ethiopia, which have been poorly studied until now. We conclude that both forest types identified during this study need to be considered for conservation because of their particular species compositions. Owing to the high degree of forest fragmentation, conservation concepts should consider a multi‐site approach with at least two protected areas at different altitudinal levels.  相似文献   

9.
ABSTRACT Edge effects along tropical forest–pasture margins are thought to cause a shift toward early successional characteristics of the understory forest vegetation. We tested this idea by sampling vegetation at five forest sites in northeast Costa Rica each of which had edges that were established over 20 yr earlier. Four of these sites had been selectively logged. We sampled woody plants >0.2 and ≤1.3 m height in 54 m2 within 0.2 ha plots at edges (N=14), and at 150 m (N=11) and 300 m from edges (N=9). Composition and diversity did not vary with edge distance. Abundance of tree regeneration, mainly of canopy and emergent species, increased at edges. Abundance of lianas and slow‐growing tree species did not differ significantly across the sampling locations. Weighted mean wood density varied little, with a reduction at edges for canopy species. Palms were less abundant at edges, but not less species rich. At edges, these plant assemblages maintain many of the characteristics of forest interior vegetation, though the changes observed may indicate ongoing functional change. Degradation of forest–pasture edges is not a universal feature of tropical forest fragmentation, and forests with high rates of natural turnover might have a high capacity to maintain themselves within forest edges alongside pasture.  相似文献   

10.
Secondary forests constitute a substantial proportion of tropical forestlands. These forests occur on both public and private lands and different underlying environmental variables and management regimes may affect post‐abandonment successional processes and resultant forest structure and biodiversity. We examined whether differences in ownership led to differences in forest structure, tree diversity, and tree species composition across a gradient of soil fertility and forest age. We collected soil samples and surveyed all trees in 82 public and 66 private 0.1‐ha forest plots arrayed across forest age and soil gradients in Guanacaste, Costa Rica. We found that soil fertility appeared to drive the spatial structure of public vs. private ownership; public conservation lands appeared to be non‐randomly located on areas of lower soil fertility. On private lands, areas of crops/pasture appeared to be non‐randomly located on higher soil fertility areas while forests occupied areas of lower soil fertility. We found that forest structure and tree species diversity did not differ significantly between public and private ownership. However, public and private forests differed in tree species composition: 11 percent were more prevalent in public forest and 7 percent were more prevalent in private forest. Swietenia macrophylla, Cedrela odorata, and Astronium graveolens were more prevalent in public forests likely because public forests provide stronger protection for these highly prized timber species. Guazuma ulmifolia was the most abundant tree in private forests likely because this species is widely consumed and dispersed by cattle. Furthermore, some compositional differences appear to result from soil fertility differences due to non‐random placement of public and private land holdings with respect to soil fertility. Land ownership creates a distinctive species composition signature that is likely the result of differences in soil fertility and management between the ownership types. Both biophysical and social variables should be considered to advance understanding of tropical secondary forest structure and biodiversity.  相似文献   

11.
Aim This study investigates how estimated tree aboveground biomass (AGB) of tropical montane rain forests varies with elevation, and how this variation is related to elevational change in floristic composition, phylogenetic community structure and the biogeography of the dominant tree taxa. Location Lore Lindu National Park, Sulawesi, Indonesia. Methods Floristic inventories and stand structural analyses were conducted on 13 plots (each 0.24 ha) in four old‐growth forest stands at 1050, 1400, 1800 and 2400 m a.s.l. (submontane to upper montane elevations). Tree AGB estimates were based on d.b.h., height and wood specific gravity. Phylogenetic diversity and biogeographical patterns were analysed based on tree family composition weighted by AGB. Elevational trends in AGB were compared with other Southeast Asian and Neotropical transect studies (n = 7). Results AGB was invariant from sub‐ to mid‐montane elevation (309–301 Mg ha?1) and increased slightly to 323 Mg ha?1 at upper montane elevation. While tree and canopy height decreased, wood specific gravity increased. Magnoliids accounted for most of the AGB at submontane elevations, while eurosids I (including Fagaceae) contributed substantially to AGB at all elevations. Phylogenetic diversity was highest at upper montane elevations, with co‐dominance of tree ferns, Podocarpaceae, Trimeniaceae and asterids/euasterids II, and was lowest at lower/mid‐montane elevations, where Fagaceae contributed > 50% of AGB. Biogeographical patterns showed a progression from dominant tropical families at submontane to tropical Fagaceae (Castanopsis, Lithocarpus) at lower/mid‐montane, and to conifers and Australasian endemics at upper montane elevations. Cross‐continental comparisons revealed an elevational AGB decrease in transects with low/no presence of Fagaceae, but relatively high AGB in montane forests with moderate to high abundance of this family. Main conclusions AGB is determined by both changes in forest structure and shifts in species composition. In our study, these two factors traded off so that there was no net change in AGB, even though there were large changes in forest structure and composition along the elevational gradient. Southeast Asian montane rain forests dominated by Fagaceae constitute important carbon stocks. The importance of biogeography and species traits for biomass estimation should be considered by initiatives to reduce emissions from deforestation and forest degradation (REDD) and in taxon choice in reforestation for carbon offsetting.  相似文献   

12.
We compared the resin-core and buried-bag incubation methods for estimating nitrogen (N) transformation rates using the 15N pool dilution technique in alluvial soils of an early successional forest (ESF) and an old-growth forest (OGF) at the La Selva Biological Station in Costa Rica. Soil cores (38×100-mm) from both forests were incubated in situ for 7 days. The two methods gave generally similar estimates of net N mineralization rates for the two forests. Estimates of ammonium production by the resin-core method were higher than those by the buried-bag method in ESF, but did not differ significantly in OGF (p<0.05). Estimates of nitrate production by the two methods did not differ significantly. Nitrate averaged 74% and 81% of the total inorganic N production in ESF and OGF, respectively. Net N mineralization in ESF (6.6 mmol m-2d-1) did not differ significantly from that in OGF (5.0 mmol m-2d-1). Fluxes of ammonium and nitrate were high for both forests, but the OGF tended to have higher gross mineralization and nitrification rates than ESF. Approximately 60% of the gross nitrate production and less than 30% of the ammonium were immobilized by microorganisms.  相似文献   

13.
Information on genetic variation and its distribution in tropical plant populations relies mainly on studies of ground‐rooted species, while genetic information of epiphytic plants is still limited. Particularly, the effect of forest successional condition on genetic diversity and structure of epiphytes is scanty in the literature. We evaluated the genetic variation and spatial genetic structure of the epiphytic bromeliad Guzmania monostachia (Bromeliaceae, Tillandsioideae) in montane secondary forest patches in Costa Rica. The sampling design included plants on the same trees (i.e., populations), populations within forest patches and patches within secondary forest at two different successional stages (early vs. mid‐succession). Six microsatellites revealed low levels of population genetic variation (A = 2.06, AE = 1.61, HE = 0.348), a marked deficiency of heterozygotes (HO = 0.031) and high inbreeding (f = 0.908). Genetic differentiation was negligible among populations within the same forest patch, but moderate (GST = 0.123 ± 0.043) among forest patches. Genetic relatedness between individuals was significantly higher for plants located within the same forest patch and separated by <60 m and decreased as distance between plants increased, becoming significantly negative at distances >400 m. An analysis of molecular variance (AMOVA) showed significant genetic variation between forest patches, but non‐significant variation between successional stages. The selfing breeding system and limited seed dispersal capabilities in G. monostachia could explain the observed levels and partitioning of genetic diversity at this geographic scale. However, these results also suggest that forest fragmentation is likely to influence the degree of local genetic structuring of epiphytic plants by limiting gene flow.  相似文献   

14.
The relationship between forest succession and microfungal diversity has been poorly studied. Fungi provide important ecosystem services that may deteriorate in deforested or highly disturbed forests. To determine the possible effects of deforestation and forest succession on microfungi, species diversity of hypocrealean fungi (Ascomycota) was compared in forest stands in Eastern Costa Rica representing three stages of succession: 1–2, 25–27 yr old, and an old growth forest. Species diversity in a second‐growth forest fragment surrounded by timber plantations and second‐growth forest was also compared to that of a stand surrounded by old growth forest. The results show that the overall diversity of hypocrealean fungi was inversely proportional to the age of the forest stand, and each family showed different successional trends. Clavicipitaceae was more diverse in the old‐growth forest and was positively related to the age of the forest stand. Nectriaceae was highly diverse in the 1‐ to 2‐yr‐old stand and less diverse in the old‐growth stand. Saprobic and plant pathogenic fungal species were more diverse in the 1‐ to 2‐yr‐old stand and their diversity was inversely proportional to the age of the forest stand. The diversity of insect pathogens was positively related to the age of the forest stand. The 20‐ to 22‐yr‐old forest fragment had the lowest number of species overall. Based on the data gathered in this study, hypocrealean fungal species diversity is related to the successional stage and fragmentation of tropical forest.  相似文献   

15.
The Atlantic forests of southern Bahia in Brazil present great species richness and a high degree of endemism. A large part of these native forests were transformed into cacao plantations in an agroforestry system known locally as cabrucas, where native trees were culled and cacao was planted under the shade of remaining trees. The present study analyzed the influence of time of implantation (age) and time of abandonment of management practices on tree species diversity of cabruca plantations to evaluate the capacity for conservation and recovery of species richness of native Atlantic Forest trees in cabrucas. Phytosociological surveys were conducted in five cabrucas with different conditions of age and state of abandonment. All trees, including hemiepiphytes and excluding the cacao plants, with a minimum stem diameter of 10 cm at breast height, were surveyed within a 3-ha sampling area in each plantation. A total of 2514 individual trees belonging to 293 species and 52 families were recorded in the five cabrucas. The Shannon diversity index varied from 3.31 to 4.22 among the cabrucas and was positively correlated with the time of abandonment (r = 0.97). The new cabrucas showed the highest values of estimated total richness (Chao) and the highest proportion of late successional species than the old ones. All areas preserved a very high proportion of native forest species while the three old cabrucas showed a higher proportion of exotic species than the two new ones. Thus the exotic species seem to replace more of the native species in the long run because of management practices and local preferences. The cabrucas presented also a high capacity for the regeneration of tree species richness after abandonment. Simple alterations in management practices could improve the recruitment of late successional species in these areas. Economic incentives may be necessary for the farmers to adopt management practices to retain native species which bring no economic returns.  相似文献   

16.
Knowledge of the recovery of insect communities after forest disturbance in tropical Africa is very limited. Here, fruit‐feeding butterflies in a tropical rain forest at Kibale National Park, Uganda, were used as a model system to uncover how, and how fast, insect communities recover after forest disturbance. We trapped butterflies monthly along a successional gradient for one year. Traps were placed in intact primary forest compartments, heavily logged forest compartments with and without arboricide treatment approximately 43 years ago, and in conifer‐clearcut compartments, ranging from 9 to 19 years of age. The species richness, total abundance, diversity, dominance, and similarity of the community composition of butterflies in the eight compartments were compared with uni‐ and multivariate statistics. A total of 16,728 individuals representing 88 species were trapped during the study. Butterfly species richness, abundance, and diversity did not show an increasing trend along the successional gradient but species richness and abundance peaked at intermediate stages. There was monthly variation in species richness, abundance, diversity and composition. Butterfly community structure differed significantly among the eight successional stages and only a marginal directional change along the successional gradient emerged. The greatest number of indicator species and intact forest interior specialists were found in one of the primary forests. Our results show that forest disturbance has a long‐term impact on the recovery of butterfly species composition, emphasizing the value of intact primary forests for butterfly conservation.  相似文献   

17.
Forest compositional patterns in Yosemite National Park, California, were related to environmental factors through numerical classification of forest types, arrangement of forest types along elevational and topographic gradients, and development of regression models relating basal area of common tree species to environmental variables. The eight forest types are differentiated primarily by elevation zone and secondarily by topographic setting. Lower montane forests (1200–1900 m) were divided into the Abies concolor/Calocedrus type occurring primarily on mesic sites and the Pinus ponderosa/Calocedrus type predominantly on xeric sites. Upper montane forests (1900–2500 m) included the Abies concolor/Abies magnifica type on mesic sites, the Abies magnifica/Pinus type on somewhat more xeric sites, and Juniperus occidentalis/Pinus jeffreyi woodlands on granitic domes. Subalpine forests (2500–3300 m) embraced three types: Tsuga mertensiana/Pinus forests on mesic sites, monotypic Pinus contorta forests on drier sites, and Pinus albicaulis/Pinus contorta groves at treeline. Regression models consistently included elevation and soil magnesium content as explanatory variables of species basal area totals. The two Abies spp. were negatively correlated with soil magnesium levels, whereas other montane species (e.g. Calocedrus decurrens, Pinus lambertiana, and Pinus ponderosa) exhibited positive correlation with soil magnesium. Topography and soil physical properties were only infrequently incorporated into species regression models.Abbreviations DBH= diameter at breast height (1.4 m) - DCA= detrended correspondence analysis - TWINSPAN= two-way indicator species analysis  相似文献   

18.
Forest succession following fire in a forest mosaic of northwestern Quebec has been studied in order to: (1) describe the successional pathways using communities of different ages and (2) evaluate convergence of successional pathways and possible effect of fire suppression on the establishment of steady-state communities. As a first step, ordination and classification techniques were used in order to remove changes in forest composition which are related to abiotic conditions. Then, ordinations based on tree diameter distributions were used to study shifts in species composition in relation to time since the last fire.Even under similar abiotic conditions, successional pathways are numerous. However, regardless of forest composition after fire, most stands show convergence toward dominance of Thuja occidentalis and Picea mariana on xeric sites and dominance of Abies balsamea and Thuja occidentalis on more mesic sites. Stable communities of >300 yr occur on xeric sites while on mesic sites directional succession still occurs after 224 yr. Nearly all species involved in succession are present in the first 50 yr following fire. Only Abies balsamea and Thuja occidentalis increase significantly in frequency during succession. Following initial establishment, successional processes can generally be explained by species longevity and shade tolerance. Early successional species may be abundant in the canopy for more than 200 yr while the rapid decrease of Picea glauca, a late successional species could be related to spruce budworm outbreaks. Considering the short fire rotation observed (about 150 yr), a steady-state forest is unlikely to occur under natural conditions, though it may be possible if fire is controlled.  相似文献   

19.

Aim

Deforestation of the Atlantic Forest of eastern Paraguay has been recent but extensive, resulting in a fragmented landscape highly influenced by forest edges. We examined edge effects on multiple dimensions of small mammalian diversity.

Location

Forest fragments of eastern Paraguayan Atlantic Forest.

Methods

We trapped small mammal species at different distances from the forest edge (DTE) in reserves and estimated multiple dimensions of diversity per site. Similarity analysis identified species clusters that best described the patterns of diversity across reserves. Multivariate ordination and linear mixed models were used to determine the influence of DTE on various dimensions of small mammal diversity.

Results

There was an increase in richness and abundance along a DTE gradient, and remnants with higher edge:area ratios showed higher richness and abundance, independent of remnant size. Species at edges were generalists, open-habitat species or exotic species (spillover effect). We found higher phylogenetic diversity and functional richness and divergence towards forest edges. Spillover of non-forest and invasive species best explained richness, generalist forest species best explained total abundance, abundance of Hylaeamys megacephalus best explained diversity and evenness metrics and the presence of Marmosa paraguayana best explained various phylogenetic diversity models. None of the models that included megafauna or social factors were shown to be important in explaining patterns as a function of DTE.

Main Conclusions

We found strong support for a spillover effect and mixed support for complementary resource use and enhanced habitat resources associated with ecotones. Generalists characterized edge assemblages but not all generalists were equivalent. Edges showed more phylogenetically and functionally distinct assemblages than the interior of remnants. There was a conservation of functional diversity; however, open-habitat species, habitat generalists and exotic species boosted diversity near forest edges. Mechanisms governing diversity along forest edges are complex; disentangling those mechanisms necessitates the use of multiple dimensions of diversity.  相似文献   

20.
4种不同演替阶段森林群落物种组成和多样性的比较研究   总被引:2,自引:0,他引:2  
通过空间变化代替时间差异和样方法等手段,对浙江省马尾松林针叶(针叶林)、马尾松针阔叶混交林、中龄常绿阔叶林和近熟常绿阔叶林4种不同演替阶段森林群落的物种组成和多样性、群落间相似性进行了研究。结果表明,23个样地共记录维管植物53科105属170种。随着演替的进行,群落物种数、各层次的Shannon-Wiener多样性指数基本上呈现先下降后上升的趋势,并以针阔叶混交林最低,估计跟先锋物种的消失和后期物种的出现这一更替有关。随着演替的进行,各群落间的Jaccard相似性系数逐渐降低,其中针阔叶混交林和中龄常绿阔叶林之间的相似性系数最高,马尾松与近熟常绿阔叶林之间的相似性系数最低。群落主成分分析也得出相似的结果。群落之间的差异主要体现在物种组成尤其是乔木层的组成上;针阔叶混交林是物种丰富度和物种多样性较低的一个群落,但它与其它群落间的相似性较高,并已储存了常绿阔叶林中的大部分物种,对演替起着承前启后的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号