首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autophosphorylation of the insulin receptor has been previously documented to activate the phosphotransferase activity of the receptor from 20- to 200-fold. Biochemical studies have correlated activation of the receptor kinase with the autophosphorylation of tyrosines residues 1158, 1162, and 1163. To further assess the role of these 3 tyrosines in the activation process, we have studied the effect of their substitution with either the neutral amino acids phenylalanine or alanine or with the negatively charged amino acids aspartate and glutamate. In several other proteins, it has been shown that substitution of phosphorylated residues with negatively charged amino acids can mimic the phosphorylation state of the protein. In agreement with previous studies, tyrosines at positions 1162 and 1163 were found to be crucial in the kinase activation process. In contrast, mutant receptors with tyrosine 1158 changed to either phenylalanine or aspartate were still activated to the same extent as the wild-type receptor. An increased basal exogenous kinase activity was observed upon replacement of tyrosines 1162 and 1163 with, in increasing order of potency, aspartate = glutamate less than alanine = phenylalanine. These results indicate that phosphorylation of tyrosines 1162/1163 but not 1158 play a critical role in the activation of the receptor kinase and that the mechanism of activation of the receptor kinase by autophosphorylation is more complex than just an introduction of a cluster of negative charges in this region of the receptor. In addition, the finding of an increased basal kinase activity in receptors lacking tyrosines 1162 and 1163 could explain the reported ability of this receptor to mediate certain biological responses.  相似文献   

2.
A soluble derivative of the human insulin receptor cytoplasmic domain, as expressed in insect cells via a Baculovirus vector, is an active protein-tyrosine kinase. In the present study, we find that three forms of the enzyme (48, 43, and 38 kDa) can be partially purified by MonoQ fast protein liquid chromatography. Two-dimensional thin layer phosphopeptide mapping reveals that the 48-kDa enzyme undergoes a rapid autophosphorylation on the same tyrosines (residues 1158, 1162, 1163, 1328, and 1334) that have previously been shown to be major autophosphorylation sites on the native insulin receptor beta-subunit in intact cells. Furthermore, the 48- and 43-kDa proteins are phosphorylated on serine residues by a serine kinase(s) that copurifies through MonoQ fast protein liquid chromatography. Tyrosine autophosphorylation sites 1328 and 1334 and virtually all serine phosphorylation sites are absent in the 38-kDa kinase. Partial tryptic proteolysis of the 48-kDa kinase generates a core 38-kDa enzyme that undergoes autophosphorylation almost exclusively on tyrosines 1158, 1162, and 1163. Phosphorylation of these tyrosine residues occurs in a cascade manner analogous to that found in the intact insulin receptor beta-subunit.  相似文献   

3.
S R Hubbard 《The EMBO journal》1997,16(18):5572-5581
The crystal structure of the phosphorylated, activated form of the insulin receptor tyrosine kinase in complex with a peptide substrate and an ATP analog has been determined at 1.9 A resolution. The activation loop (A-loop) of the kinase undergoes a major conformational change upon autophosphorylation of Tyr1158, Tyr1162 and Tyr1163 within the loop, resulting in unrestricted access of ATP and protein substrates to the kinase active site. Phosphorylated Tyr1163 (pTyr1163) is the key phosphotyrosine in stabilizing the conformation of the tris-phosphorylated A-loop, whereas pTyr1158 is completely solvent-exposed, suggesting an availability for interaction with downstream signaling proteins. The YMXM-containing peptide substrate binds as a short anti-parallel beta-strand to the C-terminal end of the A-loop, with the methionine side chains occupying two hydrophobic pockets on the C-terminal lobe of the kinase. The structure thus reveals the molecular basis for insulin receptor activation via autophosphorylation, and provides insights into tyrosine kinase substrate specificity and the mechanism of phosphotransfer.  相似文献   

4.
Autophosphorylation of a soluble approximately 48-kDa derivative of the insulin receptor protein-tyrosine kinase occurs at multiple tyrosine residues (analogous to tyrosines 1158, 1162, and 1163 in the kinase homology region of the native receptor and tyrosines 1328 and 1334 in the carboxyl-terminal tail) and is accompanied by an increase in the specific activity of the enzyme toward exogenous substrates. A comparison of 1H NMR spectra of approximately 48- and approximately 38-kDa forms of enzyme (the latter generated by tryptic deletion of approximately 10 kDa from the carboxyl terminus of the approximately 48-kDa protein) allows a correlation of observed mobile tyrosine resonances to two of the known sites of autophosphorylation (residues 1328 and 1334). Furthermore, spectra acquired during autophosphorylation of the approximately 48-kDa enzyme reveal a rapid downfield shift in the resonances of these mobile tail tyrosines consistent with their phosphorylation (as confirmed by two-dimensional tryptic phosphopeptide mapping performed under identical conditions). This experimental strategy now provides a means by which to monitor protein-tyrosine kinase autophosphorylation in solution in real time.  相似文献   

5.
L Ellis  E Clauser  D O Morgan  M Edery  R A Roth  W J Rutter 《Cell》1986,45(5):721-732
Insulin stimulates the autophosphorylation of tyrosine residues of the beta subunit of the insulin receptor (IR); this modified insulin-independent kinase has increased activity toward exogenous substrates in vitro. We show here that replacement of one or both of the twin tyrosines (residues 1162 and 1163) with phenylalanine results in a dramatic reduction in or loss of insulin-activated autophosphorylation and kinase activity in vitro. In vivo, these mutations not only result in a substantial decrease in insulin-stimulated IR autophosphorylation but also in a parallel decrease in the insulin-activated uptake of 2-deoxyglucose. Furthermore, a truncated IR protein (lacking the last 112 amino acids) has an unstable beta subunit; this mutant has no kinase activity in vitro or in vivo and does not mediate insulin-stimulated uptake of 2-deoxyglucose. IR autophosphorylation is thus implicated in the regulation of IR activities, with tyrosines 1162 and 1163 as major sites of this regulation.  相似文献   

6.
In order to study the role of tyrosine autophosphorylation in insulin receptor signalling, we investigated a mutant human insulin receptor whereby the three major tyrosine autophosphorylation sites at positions 1158, 1162, and 1163 in the receptor beta-subunit were mutated to phenylalanines. When these mutant receptors were expressed in HTC rat hepatoma cells, there was no enhanced beta-subunit autophosphorylation and tyrosine kinase activity. In these cells there was enhanced insulin stimulation of [3H]AIB uptake and [3H]thymidine incorporation when compared to wild type HTC cells. The present study suggests therefore that the presence of the major insulin autophosphorylation sites is not a requirement for insulin stimulation of amino acid transport and mitogenesis.  相似文献   

7.
Insulin receptor (IR) signaling provides a trophic signal for transformed retinal neurons in culture, and we recently reported that deletion of IR from rod photoreceptors resulted in stress-induced photoreceptor degeneration. Retinal insulin receptor has a high basal level autophosphorylation compared to liver and the reasons for higher autophosphorylation are not known. In the current study we report a novel finding that cytoplasmic actin associates with and activates the retinal IR in vivo. Similar to insulin, actin also induced autophosphorylation at tyrosines 1158, 1162 and 1163 in the catalytic loop of IR. Our studies also suggest that globular actin activates the retinal IR more effectively than does filamentous actin. Retinal IR kinase activity has been shown to decrease in hyperglycemia and we found a decreased binding of actin to the IR under hyperglycemia. This is the first study which demonstrates that cytoplasmic actin regulates autophosphorylation of the retinal IR.  相似文献   

8.
We have studied a series of insulin receptor molecules in which the 3 tyrosine residues which undergo autophosphorylation in the kinase domain of the beta-subunit (Tyr1158, Tyr1162, and Tyr1163) were replaced individually, in pairs, or all together with phenylalanine or serine by in vitro mutagenesis. A single-Phe replacement at each of these three positions reduced insulin-stimulated autophosphorylation of solubilized receptor by 45-60% of that observed with wild-type receptor. The double-Phe replacements showed a 60-70% reduction, and substitution of all 3 tyrosine residues with Phe or Ser reduced insulin-stimulated tyrosine autophosphorylation by greater than 80%. Phosphopeptide mapping each mutant revealed that all remaining tyrosine autophosphorylation sites were phosphorylated normally following insulin stimulation, and no new sites appeared. The single-Phe mutants showed insulin-stimulated kinase activity toward a synthetic peptide substrate of 50-75% when compared with wild-type receptor kinase activity. Insulin-stimulated kinase activity was further reduced in the double-Phe mutants and barely detectable in the triple-Phe mutants. In contrast to the wild-type receptor, all of the mutant receptor kinases showed a significant reduction in activation following in vitro insulin-stimulated autophosphorylation. When studied in intact Chinese hamster ovary cells, insulin-stimulated receptor autophosphorylation and tyrosine phosphorylation of the cellular substrate pp185 in the single-Phe and double-Phe mutants was progressively lower with increased tyrosine replacement and did not exceed the basal levels in the triple-Phe mutants. However, all the mutant receptors, including the triple-Phe mutant, retained the ability to undergo insulin-stimulated Ser and Thr phosphorylation. Thus, full activation of the insulin receptor tyrosine kinase is dependent on insulin-stimulated Tris phosphorylation of the kinase domain, and the level of autophosphorylation in the kinase domain provides a mechanism for modulating insulin receptor kinase activity following insulin stimulation. By contrast, insulin stimulation of receptor phosphorylation on Ser and Thr residues by cellular serine/threonine kinases can occur despite markedly reduced tyrosine autophosphorylation.  相似文献   

9.
We investigated the effects of MA-5, a human-specific monoclonal antibody to the insulin receptor alpha-subunit, on transmembrane signaling in cell lines transfected with and expressing both normal human insulin receptors and receptors mutated in their beta-subunit tyrosine kinase domains. In cell lines expressing normal human insulin receptors, MA-5 stimulated three biological functions: aminoisobutyric acid (AIB) uptake, thymidine incorporation, and S6 kinase activation. Under conditions where these biological functions were stimulated, there was no detectable stimulation of receptor tyrosine kinase. We then combined the use of this monoclonal antibody with cells expressing insulin receptors with mutations in the beta-subunit tyrosine kinase domain; two of ATP binding site mutants V1008 (Gly----Val) and M1030 (Lys----Met) and one triple-tyrosine autophosphorylation site mutant F3 (Tyr----Phe at 1158, 1162, and 1163). In cells expressing V1008 receptors, none of the three biological functions of insulin was stimulated. In cells expressing M1030 receptors, AIB uptake was stimulated to a small, but significant, extent whereas the other two functions were not. In cells expressing F3 receptors, AIB uptake and S6 kinase activation, but not thymidine incorporation, were fully stimulated. The data suggest, therefore, that (1) activation of insulin receptor tyrosine kinase may not be a prerequisite for signaling of all the actions of insulin and (2) there may be multiple signal transduction pathways to account for the biological actions of insulin.  相似文献   

10.
The role of specific tyrosine autophosphorylation sites in the human insulin receptor kinase domain (Tyr1158, Tyr1162, and Tyr1163) was analyzed using in vitro mutagenesis to replace tyrosine residues individually or in combination. Each of the three single-Phe, the three possible double-Phe a triple-Phe and a triple-Ser mutant receptors, stably expressed in Chinese hamster ovary cells, were compared with the wild-type receptor in their ability to mediate stimulation of receptor kinase activity, glycogen synthesis, and DNA synthesis by insulin or the human-specific anti-receptor monoclonal antibody 83-14. At a concentration of 0.1 nM insulin which produced approximately half-maximal responses with wild-type receptor, DNA synthesis and glycogen synthesis mediated by the three single-Phe mutants ranged from 52 to 88% and from 32 to 79% of the wild-type receptor, respectively. The corresponding figures for the double-Phe mutants averaged 15 and 6%, whereas the triple-mutants were unresponsive in both assays. The level of biological function approximately paralleled the insulin-stimulated tyrosine kinase activity in the intact cell as estimated by tyrosine phosphorylation of the insulin receptor and its endogenous substrate pp 185/IRS-1. Interestingly, all mutants showed a marked decrease in insulin-stimulated receptor internalization. Anti-receptor antibody stimulated receptor kinase activity and mimicked insulin action in these cells. In general, the impairment of the metabolic response was greater and impairment of the growth response was less when antibody was the stimulus. These experiments show that the level and specific sites of autophosphorylation are critical determinants of receptor function. The data are consistent with a requirement for the receptor tyrosine kinase either as an obligatory step or a modulator, in both metabolic and growth responses, and demonstrate the important role of the level of insulin receptor kinase domain autophosphorylation in regulating insulin sensitivity.  相似文献   

11.
Signaling by insulin requires autophosphorylation of the insulin receptor kinase (IRK) at Tyr1158, Tyr1162, and Tyr1163. Earlier experiments with (32)P-gamma-ATP indicated that the nonphosphorylated IRK (IRK-0P) is relatively inactive, and crystallographic data indicated that the ATP binding site of IRK-0P is blocked by its activation loop. We now show that phosphocreatine (PCr) in combination with hydrogen peroxide serves as an alternative phosphate donor and that ATP and PCr use distinct binding sites. Whereas phosphorylation of the IRK by ATP is inhibited by the nonhydrolyzable competitor adenylyl-imidodiphosphate, phosphorylation by PCr is enhanced. The IRK mutant Tyr1158Phe showed no phosphorylation with PCr but almost normal phosphorylation with ATP, whereas Tyr1162Phe was phosphorylated well with PCr but less then normal with ATP. 3-Dimensional models of IRK-0P revealed that the conversion of any of the four cysteine residues 1056, 1138, 1234, and 1245 into sulfenic acid produces structural changes that bring Tyr1158 into close contact with Asp1083 and render the well-known catalytic site at Asp1132 and Tyr1162 accessible from a direction that differs from the known ATP binding site. The mutant Cys1138Ala, in contrast, showed relatively inaccessible catalytic sites and weak catalytic activity in functional experiments. Taken together, these findings indicate that 'redox priming' of the IRK facilitates its autophosphorylation by PCr in the activation loop.  相似文献   

12.
In the present studies mutant insulin receptors with regulatory tyrosine residues 1162 and 1163 changed to phenylalanines were tested for tyrosine kinase activity. In agreement with prior studies, this mutant receptor was found to exhibit almost no insulin-stimulated exogenous kinase activity when assayed in vitro. In contrast, this mutant receptor was found in situ to have a significant, albeit reduced, ability to mediate the tyrosine phosphorylation of various endogenous proteins, as assessed by Western blotting with antiphosphotyrosine antibodies. In addition, extracts of insulin-treated cells overexpressing this mutant receptor exhibited increased amounts of tyrosine phosphorylated phosphatidylinositol 3-kinase compared to control cells. Finally, this mutant receptor, like the wild-type receptor, was found to mediate an increase in the activity of a membrane-associated phosphatidylinositol 4,5-biphosphate kinase. These results indicate that 1) in vitro assessments of the tyrosine kinase activity of mutant insulin receptors may not accurately reflect their in vivo activities; and 2) the ability of the mutant receptor lacking tyrosine autophosphorylation sites 1162 and 1163 to mediate insulin-stimulated tyrosine phosphorylation of various endogenous substrates may account for the reported ability of this receptor to mediate various biological responses.  相似文献   

13.
Activation loop tyrosine autophosphorylation is an essential requirement for full kinase activation of receptor tyrosine kinases (RTKs). However, mechanisms involved are not fully understood. In general, kinase domains of RTKs are folded into two main lobes, NH2- and COOH-terminal lobes. The COOH-terminal lobe of vascular endothelial growth factor receptor-2 (VEGFR-2) is folded into seven alpha-helices (alphaD-alphaI). In the studies presented here we demonstrate that leucine residues of helix I (alphaI) regulate tyrosine autophosphorylation and phosphotransferase activity of VEGFR-2. The presence of leucines 1158, 1161, and 1162 are essential for tyrosine autophosphorylation and kinase activation of VEGFR-2 and are involved in helix-helix packing via hydrophobic interactions. The presence of leucine 1158 is critical for kinase activation of VEGFR-2 and appears to interact with alphaE, alphaF, alphaH, and beta7. The analogous residue, leucine 957 on platelet-derived growth factor receptor-beta and leucine 910 on colony stimulating factor-1R are also found to be critical for tyrosine autophosphorylation of these receptors. Leucines 1161 and 1162 are also involved in helix-helix packing but they play a less critical role in VEGFR-2 activation. Thus, we conclude that leucine motif-mediated helix-helix interactions are critical for kinase regulation of type III RTKs. This mechanism is likely to be shared with other kinases and might provide a basis for the design of a novel class of tyrosine kinase inhibitors.  相似文献   

14.
The effect of insulin and ATP on insulin receptor beta subunit conformation was studied in vitro with radioiodinated monoclonal antibodies directed at several regions of the receptor beta subunit. Insulin plus ATP inhibited their binding to the receptor. The greatest inhibitory effect of insulin and ATP was seen with antibody 17A3 which recognizes a domain of the beta subunit that is near the major tyrosine autophosphorylation sites at residues 1158, 1162, and 1163. ATP alone inhibited 17A3 binding with a one-half maximal ATP inhibitory concentration of 186 +/- 7 microM. Insulin at concentrations as low as 100 pM potentiated the effect of ATP; at 100 nM where insulin had its maximal effect, insulin lowered the one-half maximal inhibitory concentration of ATP to 16 +/- 6 microM. At 1 mM CTP, GTP, ITP, TTP, and AMP were without effect in either the presence or absence of insulin; in contrast, ADP was inhibitory in the presence of insulin. Of major interest was adenyl-5'-yl imidodiphosphate (AMP-PNP). This nonhydrolyzable analog of ATP inhibited 17A3 binding, and the effect of AMP-PNP (like ATP) was potentiated by insulin. Two insulin receptor beta subunit mutants then were studied. Mutant receptor F3, where the major tyrosine autophosphorylation sites at residues 1158, 1162, and 1163 were changed to phenylalanines, bound to 17A3; antibody binding was inhibited by insulin and ATP in a manner similar to normal receptors. In contrast, mutant receptor M1030, where the lysine in the ATP binding site at residue 1030 was changed to methionine, bound 17A3, but unlike either normal receptors or F3 receptors, the binding of 17A3 was not inhibited by insulin and ATP. Therefore, these studies raise the possibility that, in vivo, ATP binding in the presence of insulin may induce a conformational change in the insulin receptor beta subunit which in turn signals some of the biological effects of insulin.  相似文献   

15.
The intracellular domain of the insulin receptor possesses activity as a tyrosine-specific protein kinase. The receptor tyrosine kinase is stimulated by insulin binding to the extracellular domain of the receptor. Previously, we have identified a patient with a genetic form of insulin resistance who is heterozygous for a mutation substituting Ile for Met1153 in the tyrosine kinase domain of the receptor near the cluster of the three major autophosphorylation sites (Tyr1158, Tyr1162, and Tyr1163). In this investigation, the Ile1153 mutant receptor was expressed by transfection of mutant cDNA into NIH-3T3 cells. The mutation impairs receptor tyrosine kinase activity and also inhibits the ability of insulin to stimulate 2-deoxyglucose uptake and thymidine incorporation. These data support the hypothesis that the receptor tyrosine activity plays a necessary role in the ability of the receptor to mediate insulin action in vivo. Furthermore, expression of the Ile1153 mutant receptor exerted a dominant negative effect to inhibit the ability of endogenous murine receptors for insulin and insulin-like growth factor I to mediate their actions upon the cell. This observation is consistent with previous suggestions that mutant receptors dimerize with wild type receptors, thereby creating hybrid molecules which lack biological activity. The dominant negative effect of the mutant receptor may explain the dominant mode of inheritance of insulin resistance caused by the Ile1153 mutation. Finally, the mutation inhibits the ability of insulin to stimulate receptor endocytosis. This may explain the normal number of insulin receptors on the surface of the patient's cells in vivo. Despite the presence of markedly elevated levels of insulin in the patient's plasma, the receptors were resistant to down-regulation.  相似文献   

16.
Insulin internalization and degradation, insulin receptor internalization and recycling, as well as long term receptor down-regulation were comparatively studied in Chinese hamster ovary (CHO) cell lines, either parental or expressing the wild-type human insulin receptor (CHO.R) or a mutated receptor in which the tyrosine residues in positions 1162 and 1163 were replaced by phenylalanines (CHO.Y2). The two transfected cell lines presented very similar binding characteristics, and their pulse labeling with [35S]methionine revealed that the receptors were processed normally. As expected, the mutation of these twin tyrosines resulted in a defective insulin stimulation of both receptor kinase activity and glycogen synthesis. We now present evidence that compared to CHO.R cells, which efficiently internalized and degraded insulin, CHO.Y2 cells exhibited a marked defect in hormone internalization, leading to impaired insulin degradation. Moreover, the mutated receptors were found to be less effective than the wild-type receptors in transducing the hormone signal for receptor internalization, whereas the process of receptor recycling after internalization seemed not to be altered. In parental CHO cells, insulin induced long term receptor down-regulation, but was totally ineffective in both transfected cell lines. These results reveal that the tyrosines 1162 and 1163 in the kinase regulatory domain of the receptor beta-subunit play a pivotal role in insulin and receptor internalization.  相似文献   

17.
Impaired insulin receptor (IR) signaling leads to insulin resistance and type 2 diabetes mellitus. Several inhibitors of the IR tyrosine kinase activity have recently been described and associated with human insulin resistance. Among these negative regulators, protein tyrosine phosphatases (PTPs) are likely to play a pivotal role in IR signaling. Transgenic studies revealed that PTP1B and TCPTP are primary candidates but IR of these animals can be finally dephosphorylated, suggesting that other PTPs are also involved in the dephosphorylation of IR. In this study, we showed that receptor-type PTPepsilon (PTP epsilonM) dephosphorylated IR in rat primary hepatocytes and tyrosines 972, 1158, 1162 and 1163 were primary targets of PTP epsilonM. Wild type as well as substrate-trapping DA forms of PTPepsilonM suppressed phosphorylation of IR downstream enzymes such as Akt, extracellular regulated kinase (ERK) and glycogen synthase kinase 3 (GSK3). It was also demonstrated that PTPepsilonM suppressed insulin-induced glycogen synthesis and inhibited insulin-induced suppression of phosphoenol pyruvate carboxykinase (PEPCK) expression in primary hepatocytes. Furthermore, adenovirally introduced PTPepsilonM also exhibited inhibitory activity against suppression of PEPCK expression in mouse liver. These results suggest that PTPepsilonM is a negative regulator of IR signaling and involved in insulin-induced glucose metabolism mainly through direct dephosphorylation and inactivation of IR in hepatocytes and liver.  相似文献   

18.
The pivotal role that the tyrosine residues in positions 1162 and 1163 play in the control of the insulin action has been clearly established by substitution of these tyrosine residues for phenylalanine [Ellis, L. (1986) Cell 45, 721-732]. We have recently found that this type of mutation, which abolishes the effects of insulin on glucose metabolism, was without any effect on the mitogenic effect of the hormone [Debant, A. (1988) Proc. Natl. Acad. Sci. U.S.A. (in press)]. Here, we provide evidence that a polyclonal antibody, raised against the human insulin receptor, can restore the receptor-mediated stimulation of glycogen synthesis that was abolished by the mutation. Stimulation of the biological effect by the anti-receptor antibody did not necessitate, whatsoever, the activation of the tyrosine kinase activity and/or receptor autophosphorylation. Furthermore, the antibody-induced reversal of the mutation was not observed when we used Fab fragments alone, but addition of anti-(Fab')2 IgG in a second step resulted in a similar effect as that observed with intact IgG. We propose that Tyr 1162 and Tyr 1163 exert their control on the metabolic effects of insulin through the modulation of receptor aggregation.  相似文献   

19.
We have tested the hypothesis that activation of the insulin receptor tyrosine kinase is due to autophosphorylation of tyrosines 1146, 1150 and 1151 within a putative autoinhibitory domain. A synthetic peptide corresponding to residues 1134–1162, with tyrosines substituted by alanine or phenylalanine, of the insulin receptor subunit was tested for its inhibitory potency and specificity towards the tyrosine kinase activity. This synthetic peptide gave inhibition of the insulin receptor tyrosine kinase autophosphorylation and phosphorylation of the exogenous substrate poly(Glu, Tyr) with an approximate IC50 of 100 M. Inhibition appeared to be independent of the concentrations of insulin or the substrate poly(Glu, Tyr) but was decreased by increasing concentrations of ATP. This same peptide also inhibited the EGF receptor tyrosine kinase but not a serine/threonine protein kinase. These results are consistent with the hypothesis that this autophosphorylation domain contains an autoinhibitory sequence. (Mol Cell Biochem120: 103–110, 1993)Abbreviations IR Insulin Receptor - SDS/PAGE Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis - CaM Calmodulin - HEPES 4-(2-Hydroxyethyl)-Piperazineethane-Sulfonic Acid - DMEM Dulbecco's Modified Eagle' Medium - PMSF Phenylmethyl-Sulfonyl Fluoride - HPLC High Performance Liquid Chromatography - PKC Protein Kinase C - PKI Inhibitory Peptide for cAMP-Kinase - CaMK II Ca2+/Calmodulin-Dependent Protein Kinase II - CaN A A Subunit of Calcineurin  相似文献   

20.
Chinese hamster ovary (CHO) transfectants expressing human insulin receptors that were mutated at tyrosines 1162 and 1163 (CHO-Y2 cells) exhibit decreased insulin stimulation of both receptor tyrosine kinase and 2-deoxyglucose uptake compared with transfectants expressing wild-type human insulin receptors (CHO-R cells). We now provide evidence that insulin stimulation of myristoyl-diacylglycerol (DAG) production is also markedly impaired in CHO-Y2 cells; this is manifested as a decreased responsiveness and sensitivity to insulin as compared with CHO-R and parental CHO cells. Further, we report that (i) the concentration-response curves of insulin-stimulated myristoyl-DAG production and 2-deoxyglucose uptake were superimposable within each of the three cell lines. (ii) The insulin-induced increase in myristoyl-DAG production preceded that in 2-deoxyglucose uptake, and the time course was altered for both responses in CHO-Y2 cells. (iii) Insulin also increased the phosphorylation of a 40-kDa protein known to be a substrate for protein kinase C, but to a much lesser extent in CHO-Y2 cells than in CHO-R cells. (iv) Exogenously added 1,2-dimyristoyl-glycerol and 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) again stimulated both the phosphorylation of the 40-kDa protein and 2-deoxyglucose uptake, but in contrast to insulin, they elicited the same level of response in both CHO-R and CHO-Y2 cells. (v) Finally, in protein kinase C-depleted CHO-R cells, insulin and PMA stimulation of 40-kDa protein phosphorylation as well as PMA stimulation of 2-deoxyglucose uptake were completely abolished whereas insulin-stimulated 2-deoxyglucose uptake was only partially decreased. Taken together, these results suggest that insulin stimulation of 2-deoxyglucose uptake involves myristoyl-DAG production and, at least in part, protein kinase C activation, all three of these processes being controlled by receptor tyrosines 1162 and 1163.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号