首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Giardia lamblia, an aerotolerant anaerobe, respires in the presence of oxygen by a flavin, iron-sulfur protein-mediated electron transport system. Glucose appears to be the only sugar catabolized by the Embden-Meyerhof-Pamas and hexose monophosphate pathways, and energy is produced by substrate level phosphorylation. Substrates are incompletely oxidized to CO2, ethanol and acetate by nonsedimentable enzymes. The lack of incorporation of inosine, hypoxanthine, xanthine, formate or glycine into nucleotides indicates an absence of de novo purine synthesis. Only adenine, adenosine, guanine and guanosine are salvaged, and no interconversion of these purines was detected. Salvage of these purines and their nucleosides is accomplished by adenine phosphoribosyltransferase, adenosine hydrolase, guanosine phosphonbosyltransferase and guanine hydrolase. The absence of de novo pyrimidine synthesis was confirmed by the lack of incorporation of bicarbonate, orotate and aspartate into nucleotides, and by the lack of detectable levels of the enzymes of de novo pyrimidine synthesis. Salvage appears to be accomplished by the action of uracil phosphoribosyltransferase, uridine hydrolase, uridine phosphotransferase, cytidine deaminase, cytidine hydrolase, cytosine phosphoribosyltransferase and thymidine phosphotransferase. Nucleotides of uracil may be converted to nucleotides of cytosine by cytidine triphosphate synthetase, but thymidylate synthetase and dihydrofolate reductase activities were not detected. Uptake of pyrmidine nucleosides, and perhaps pyrimidines, appears to be accomplished by carrier-mediated transport, and the common site for uptake of uridine and cytidine is distinct from the site for thymidine. Thymine does not appear to be incorporated into nucleotide pools. Giardia trophozoites appear to rely on preformed lipids rather than synthesizing them de novo. Major lipids include phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, sphingomyelin, sterol (probably cholesterol) and mono-, di- and triacylglycer-ides. The lipid composition of the cysts of G. lamblia isolated from gerbils and G. muris isolated from mice are similar to those obtained from the trophozoites of G. lamblia grown in vitro. The activities of several hydrolases of G. lamblia have been shown to be confined to a single lysosome-like particle population with an equilibrium density of approximately 1.15 in sucrose. Contrary to the trophozoites of Entamoeba and the trichomonads, Giardia trophozoites appear to lack most carbohydrate splitting hydrolases. Calmodulin has been reported in G. lamblia trophozoites, and it appears to have properties similar to the calmodulin isolated from other eucaryotic cells.  相似文献   

2.
Pyrimidine Salvage Pathways In Toxoplasma Gondii   总被引:1,自引:0,他引:1  
ABSTRACT. Pyrimidine salvage enzyme activities in cell-free extracts of Toxoplasma gondii were assayed in order to determine which of these enzyme activities are present in these parasites. Enzyme activities that were detected included phosphoribosyltransferase activity towards uracil (but not cytosine or thymine), nucleoside phosphorylase activity towards uridine, deoxyuridine and thymidine (but not cytidine or deoxycytidine), deaminase activity towards cytidine and deoxycytidine (but not cytosine, cytidine 5'-monophosphate or deoxycytidine 5'-monophosphate), and nucleoside 5'-monophosphate phosphohydrolase activity towards all nucleotides tested. No nucleoside kinase or phosphotransferase activity was detected, indicating that T. gondii lack the ability to directly phosphorylate nucleosides. Toxoplasma gondii appear to have a single non-specific uridine phosphorylase enzyme which can catalyze the reversible phosphorolysis of uridine, deoxyuridine and thymidine, and a single cytidine deaminase activity which can deaminate both cytidine and deoxycytidine. These results indicate that pyrimidine salvage in T. gondii probably occurs via the following reactions: cytidine and deoxycytidine are deaminated by cytidine deaminase to uridine and deoxyuridine, respectively; uridine and deoxyuridine are cleaved to uracil by uridine phosphorylase; and uracil is metabolized to uridine 5'-monophosphate by uracil phosphoribosyltransferase. Thus, uridine 5'-monophosphate is the end-product of both de novo pyrimidine biosynthesis and pyrimidine salvage in T. gondii.  相似文献   

3.
Gravid Angiostrongylus cantonensis can utilize radiolabelled bicarbonate, orotate, uracil, uridine and cytidine but not cytosine, thymine and thymidine for the synthesis of RNA and DNA. In cell-free extracts of the worm, a phosphoribosyltransferase was shown to convert orotate to OMP and uracil to UMP. A similar reaction was not observed with cytosine and thymine. Uridine was readily phosphorylated by a kinase but a similar reaction for thymidine and deoxyuridine was not found. Cytidine could be phosphorylated by a kinase or be deaminated by a deaminase to uridine. No deaminase for cytosine was detected. There was also no phosphotransferase activity for pyrimidine nucleosides in the cytosolic or membrane fractions. Pyrimidine nucleosides were, in general, converted to the bases by a phosphorylase reaction but only uracil and thymine could form nucleosides in the reverse reaction. The activity of thymidylate synthetase was also measured. These results indicate that the nematode synthesizes pyrimidine nucleotides by de novo synthesis and by utilization of uridine and uracil and that cytosine and thymine nucleotides are formed mainly through UMP. The thymidylate synthetase reaction appears to be vital for the growth of the parasite.  相似文献   

4.
Katahira R  Ashihara H 《Planta》2002,215(5):821-828
In order to obtain general metabolic profiles of pyrimidine ribo- and deoxyribonucleotides in potato (Solanum tuberosum L.) plants, the in situ metabolic fate of various (14)C-labelled precursors in disks from growing potato tubers was investigated. The activities of key enzymes in potato tuber extracts were also studied. The following results were obtained. Of the intermediates in de novo pyrimidine biosynthesis, [(14)C]carbamoylaspartate was converted to orotic acid and [2-(14)C]orotic acid was metabolized to nucleotides and RNA. UMP synthase, a bifunctional enzyme with activities of orotate phosphoribosyltransferase (EC 2.4.2.10) and orotidine 5'-monophosphate decarboxylase (EC 4.1.1.23), exhibited high activity. The rates of uptake of pyrimidine ribo- and deoxyribonucleosides by the disks were high, in the range 2.0-2.8 nmol (g FW)(-1) h(-1). The pyrimidine ribonucleosides, uridine and cytidine, were salvaged exclusively to nucleotides, by uridine/cytidine kinase (EC 2.7.1.48) and non-specific nucleoside phosphotransferase (EC 2.7.1.77). Cytidine was also salvaged after conversion to uridine by cytidine deaminase (EC 3.5.4.5) and the presence of this enzyme was demonstrated in cell-free tuber extracts. Deoxycytidine, a deoxyribonucleoside, was efficiently salvaged. Since deoxycytidine kinase (EC 2.7.1.74) activity was extremely low, non-specific nucleoside phosphotransferase (EC 2.7.1.77) probably participates in deoxycytidine salvage. Thymidine, which is another pyrimidine deoxyribonucleoside, was degraded and was not a good precursor for nucleotide synthesis. Virtually all the thymidine 5'-monophosphate synthesis from thymidine appeared to be catalyzed by phosphotransferase activity, since little thymidine kinase (EC 2.7.1.21) activity was detected. Of the pyrimidine bases, uracil, but not cytosine, was salvaged for nucleotide synthesis. Since uridine phosphorylase (EC 2.4.2.3) activity was not detected, uracil phosphoribosyltransferase (EC 2.4.2.9) seems to play the major role in uracil salvage. Uracil was degraded by the reductive pathway via beta-ureidopropionate, but cytosine was not degraded. The activities of the cytosine-metabolizing enzymes observed in other organisms, pyrimidine nucleoside phosphorylase (EC 2.4.2.2) and cytosine deaminase (EC 3.5.4.1), were not detected in potato tuber extracts. Operation of the de novo synthesis of deoxyribonucleotides via ribonucleotide reductase and of the salvage pathway of deoxycytidine was demonstrated via the incorporation of radioactivity from both [2-(14)C]cytidine and [2-(14)C]deoxycytidine into DNA. A novel pathway converting deoxycytidine to uracil nucleotides was found and deoxycytidine deaminase (EC 3.5.4.14), an enzyme that may participate in this pathway, was detected in the tuber extracts.  相似文献   

5.
By measuring the specific activity of nucleotides isolated from ribonucleic acid after the incorporation of (14)C-labeled precursors under various conditions of growth, we have defined the major pathways of ribonucleotide synthesis in Mycoplasma mycoides subsp. mycoides. M. mycoides did not possess pathways for the de novo synthesis of nucleotides but was capable of interconversion of nucleotides. Thus, uracil provided the requirement for both pyrimidine ribonucleotides. Thymine is also required, suggesting that the methylation step is unavailable. No use was made of cytosine. Uridine was rapidly degraded to uracil. Cytidine competed effectively with uracil to provide most of the cytidine nucleotide and also provided an appreciable proportion of uridine nucleotide. In keeping with these results, there was a slow deamination of cytidine to uridine with further degradation to uracil in cultures of M. mycoides. Guanine was capable of meeting the full requirement of the organism for purine nucleotide, presumably by conversion of guanosine 5'-monophosphate to adenosine 5'-monophosphate via the intermediate inosine 5'-monophosphate. When available with guanine, adenine effectively gave a complete provision of adenine nucleotide, whereas hypoxanthine gave a partial provision. Neither adenine nor hypoxanthine was able to act as a precursor for the synthesis of guanine nucleotide. Exogenous guanosine, inosine, and adenosine underwent rapid cleavage to the corresponding bases and so show a pattern of utilization similar to that of the latter.  相似文献   

6.
Pyrimidine salvage pathways are vital for all bacteria in that they share in the synthesis of RNA with the biosynthetic pathway in pyrimidine prototrophs, while supplying all pyrimidine requirements in pyrimidine auxotrophs. Salvage enzymes that constitute the pyrimidine salvage pathways were studied in 13 members of Pseudomonas and former pseudomonads. Because it has been established that all Pseudomonas lack the enzyme uridine/cytidine kinase (Udk) and all contain uracil phosphoribosyl transferase (Upp), these two enzymes were not included in this experimental work. The enzymes assayed were: cytosine deaminase [Cod: cytosine + H2O → uracil + NH3], cytidine deaminase [Cdd: cytidine + H2O → uridine + NH3], uridine phosphorylase [Udp: uridine + Pi ↔ uracil + ribose – 1 - P], nucleoside hydrolase [Nuh: purine/pyrimidine nucleoside + H2O → purine/pyrimidine base + ribose], uridine hydrolase [Udh: uridine/cytidine + H2O → uracil/cytosine + ribose]. The assay work generated five different Pyrimidine Salvage Groups (PSG) designated PSG1 – PSG5 based on the presence or absence of the five enzymes. These enzymes were assayed using reverse phase high-performance liquid chromatography techniques routinely carried out in our laboratory. Escherichia coli was included as a standard, which contains all seven of the above enzymes.  相似文献   

7.
The major pathways of ribonucleotide biosynthesis in Mycoplasma mycoides subsp. mycoides have been proposed from studies on its use of radioactive purines and pyrimidines. To interpret more fully the observed pattern of pyrimidine usage, cell extracts of this organism have been assayed for several enzymes associated with the salvage synthesis of pyrimidine nucleotides. M. mycoides possessed uracil phosphoribosyltransferase, uridine phosphorylase, uridine (cytidine) kinase, uridine 5'-monophosphate kinase, and cytidine 5'-triphosphate synthetase. No activity for phosphorolysis of cytidine was detected, and no in vitro conditions were found to give measurable deamination of cytidine. Of the two potential pathways for incorporation of uridine, our data suggest that this precursor would largely undergo initial phosphorolysis to uracil and ribose-1-phosphate. Conversely, cytidine is phosphorylated directly to cytidine 5'-monophosphate in its major utilization, although conversion of cytidine to uracil, uridine, and uridine nucleotide has been observed in vivo, at least when uracil is provided in the growth medium. Measurements of intracellular nucleotide contents and their changes on additions of pyrimidine precursors have allowed suggestions as to the operation of regulatory mechanisms on pyrimidine nucleotide biosynthesis in M. mycoides in vivo. With uracil alone or uracil plus uridine as precursors of pyrimidine ribonucleotides, the regulation of uracil phosphoribosyltransferase and cytidine 5'-triphosphate synthetase is probably most important in determining the rate of pyrimidine nucleotide synthesis. When cytidine supplements uracil in the growth medium, control of cytidine kinase activity would also be important in this regard.  相似文献   

8.
In order to examine the biosynthesis, interconversion, and degradation of purine and pyrimidine nucleotides in white spruce cells, radiolabeled adenine, adenosine, inosine, uracil, uridine, and orotic acid were supplied exogenously to the cells and the overall metabolism of these compounds was monitored. [8‐14C]adenine and [8‐14C]adenosine were metabolized to adenylates and part of the adenylates were converted to guanylates and incorporated into both adenine and guanine bases of nucleic acids. A small amount of [8‐14C]inosine was converted into nucleotides and incorporated into both adenine and guanine bases of nucleic acids. High adenosine kinase and adenine phosphoribosyltransferase activities in the extract suggested that adenosine and adenine were converted to AMP by these enzymes. No adenosine nucleosidase activity was detected. Inosine was apparently converted to AMP by inosine kinase and/or a non‐specific nucleoside phosphotransferase. The radioactivity of [8‐14C]adenosine, [8‐14C]adenine, and [8‐14C]inosine was also detected in ureide, especially allantoic acid, and CO2. Among these 3 precursors, the radioactivity from [8‐14C]inosine was predominantly incorporated into CO2. These results suggest the operation of a conventional degradation pathway. Both [2‐14C]uracil and [2‐14C]uridine were converted to uridine nucleotides and incorporated into uracil and cytosine bases of nucleic acids. The salvage enzymes, uridine kinase and uracil phosphoribosyltransferase, were detected in white spruce extracts. [6‐14C]orotic acid, an intermediate of the de novo pyrimidine biosynthesis, was efficiently converted into uridine nucleotides and also incorporated into uracil and cytosine bases of nucleic acids. High activity of orotate phosphoribosyltransferase was observed in the extracts. A large proportion of radioactivity from [2‐14C]uracil was recovered as CO2 and β‐ureidopropionate. Thus, a reductive pathway of uracil degradation is functional in these cells. Therefore, white spruce cells in culture demonstrate both the de novo and salvage pathways of purine and pyrimidine metabolism, as well as some degradation of the substrates into CO2.  相似文献   

9.
Pyrimidine metabolism by intracellular Chlamydia psittaci.   总被引:2,自引:1,他引:1       下载免费PDF全文
Pyrimidine metabolism was studied in the obligate intracellular bacterium Chlamydia psittaci AA Mp in the wild type and a variety of mutant host cell lines with well-defined mutations affecting pyrimidine metabolism. C. psittaci AA Mp cannot synthesize pyrimidines de novo, as assessed by its inability to incorporate aspartic acid into nucleic acid pyrimidines. In addition, the parasite cannot take UTP, CTP, or dCTP from the host cell, nor can it salvage exogenously supplied uridine, cytidine, or deoxycytidine. The primary source of pyrimidine nucleotides is via the salvage of uracil by a uracil phosphoribosyltransferase. Uracil phosphoribosyltransferase activity was detected in crude extracts prepared from highly purified C. psittaci AA Mp reticulate bodies. The presence of CTP synthetase and ribonucleotide reductase is implicated from the incorporation of uracil into nucleic acid cytosine and deoxycytidine. Deoxyuridine was used by the parasite only after cleavage to uracil. C. psittaci AA Mp grew poorly in mutant host cell lines auxotrophic for thymidine. Furthermore, the parasite could not synthesize thymidine nucleotides de novo. C. psittaci AA Mp could take TTP directly from the host cell. In addition, the parasite could incorporate exogenous thymidine and thymine into DNA. Thymidine kinase activity and thymidine-cleaving activity were detected in C. psittaci AA Mp reticulate body extract. Thus, thymidine salvage was totally independent of other pyrimidine salvage.  相似文献   

10.
Biosynthesis and scavenging of pyrimidines by pathogenic mycobacteria   总被引:1,自引:0,他引:1  
Mycobacterium microti incorporated a wide range of exogenously supplied pyrimidines into its nucleic acids. M. avium incorporated a relatively narrow range of pyrimidines but both M. avium and M. microti when recovered after growth in vivo incorporated a slightly wider range of pyrimidines than the same strains grown in vitro. M. microti and M. leprae could not take up uridine nucleotides directly but could utilize the pyrimidines by hydrolysing them to uridine and then taking up the uridine. Pyrimidine biosynthesis, judged by the ability to incorporate carbon from CO2 or aspartate into pyrimidines was readily detected in non-growing suspensions of M. microti and M. avium harvested from Dubos medium, which does not contain pyrimidines. The biosynthetic activity was diminished in mycobacteria grown in vivo when there is likely to be a source of pyrimidines which they might use. Relative activities for pyrimidine biosynthesis de novo in M. microti were 100 for cells isolated from Dubos medium, 6 for cells isolated from Dubos medium containing the pyrimidine cytidine and 11 from cells recovered after growth in mice. In contrast, relative activities for a scavenging reaction, uracil incorporation, were 100, 71 and 59, respectively. Three key enzymes in the pathway of pyrimidine biosynthesis de novo were detected in M. microti and M. avium. Two, dihydroorotate synthase and orotate phosphoribosyltransferase appeared to be constitutive in M. microti and M. avium. Aspartate transcarbamoylase activity was higher in these mycobacteria grown in vivo than in Dubos medium but it was repressed in M. microti or M. avium grown in Dubos medium in the presence of 50 microM-pyrimidine. Aspartate transcarbamoylase was strongly inhibited by the feedback inhibitors ATP, CTP and UTP. Enzymes for scavenging pyrimidines were detected at low specific activities in all mycobacteria studied. Activities of phosphoribosyltransferases, enzymes that convert bases directly to nucleotides, were not related to the ability of intact mycobacteria to take up pyrimidine bases while activities of pyrimidine nucleoside kinases were generally related to the ability of intact mycobacteria to take up nucleosides. Phosphoribosyltransferase activity for uracil, cytosine, orotic acid and--in organisms grown in Dubos medium with 50 microM-uridine-thymine, as well as kinases for uridine, deoxyuridine, cytidine and thymidine were detected in M. microti. However, M. avium only contained uracil and orotate phosphoribosyltransferase, uridine, cytidine and thymidine kinase, and additionally deoxyuridine kinase when grown axenically with 50 microM-uracil, reflecting its more limited abilities in pyrimidine scavenging.  相似文献   

11.
NUCLEOTIDE METABOLISM IN RAT BRAIN   总被引:15,自引:7,他引:8  
Abstract— The uptake, the conversion to nucleotides, and their incorporation into RNA for labelled glycine, aspartate, the free bases and nucleosides of purines and pyrimidines were investigated with cortical slices of rat cerebrum. At the end of a 1-hr incubation time the slice-to-medium ratio of the radioactivities for labelled aspartate, glycine, adenine and adenosine were 34, 26, 20 and 5, respectively, while the slice-to-medium ratios for hypoxanthine, inosine, guanine, guanosine, xanthine, orotate, cytidine, cytosine, uridine, and uracil ranged from 1.3:1 to 2:1. Over 99 per cent of the total radioactivity taken up by the cortical slices was present in the TCA supernatant and 86, 82, 65, 50, 34, 23, 20 and 1.6 per cent of this radioactivity was in the form of nucleotides at the end of a 1-hr incubation with labelled adenine, adenosine, hypoxanthine, inosine, uridine, orotate, cytidine, and glycine, respectively. The incorporation of various radioactive precursors into RNA of cortical slices suggests that nucleotides originating from either de novo synthesis or preformed purine derivatives enter the same nucleotide pool utilized for RNA synthesis. The supernatant fraction from homogenized cerebrum was investigated for the presence of various anabolic and catabolic enzymes associated with nucleotide metabolism. These results were correlated with the data from the RNA incorporation studies, and a possible role for AMP: pyrophosphate phosphoribosyltransferase (adenine phosphoribosyltransferase, I.U.B. 2.4.2.7) to achieve intercellular transfer of AMP is discussed.  相似文献   

12.
In Neisseria meningitidis, uridine, deoxyuridine, cytosine, cytidine, or deoxycytidine could not be used by uracil-requiring mutants as pyrimidine sources. Consistent with these findings, only 5-fluorouracil of the different fluoropyrimidine bases and nucleosides showed any inhibitory effect on the growth of four prototrophic strains of N. meningitidis. Likewise, only radioactive uracil was readily incorporated into nucleic acids, whereas uptake of radioactive uridine, cytosine, or cytidine could not be demonstrated. Uracil was converted to uridine 5'-monophosphate by uracil phosphoribosyltransferase, whereas enzyme activities for conversion of cytosine or any of the nucleosides were not detectable in meningococcal extracts.  相似文献   

13.
Changes in the pattern of pyrimidine nucleotide metabolism were investigated in Pinus radiata cotyledons cultured under shoot-forming (SF; +N(6)-benzyladenine) and non-shoot-forming (NSF, -N(6)-benzyladenine) conditions, as well as in cotyledons unresponsive (OLD) to N(6)-benzyladenine. This was carried out by following the metabolic fate of externally supplied (14)C-labeled orotic acid, intermediate of the de novo pathway, and (14)C-labeled uridine and uracil, substrates of the salvage pathway. Nucleic acid synthesis was also investigated by following the metabolic fate of (14)C-labeled thymidine during shoot bud formation and development. The de novo synthesis of pyrimidine nucleotides was operative under both SF and NSF conditions, and the activity of orotate phosphoribosyltransferase (OPRT), a key enzyme of the de novo pathway, was higher in SF tissue. Utilization of both uridine and uracil for nucleotide and nucleic acid synthesis clearly indicated that the salvage pathway of pyrimidine metabolism is also operative during shoot organogenesis. In general, uridine was a better substrate for the synthesis of salvage products than uracil, possibly due to the higher activity of uridine kinase (UK), compared to uracil phosphoribosyltransferase (UPRT). Incorporation of uridine into the nucleic acid fraction of OLD cotyledons was lower than that observed for their responsive (day 0) counterparts. Similarly, uracil utilization for nucleic acid synthesis was lower in NSF cotyledons, compared to that observed for SF tissue after 10 days in culture. This difference was ascribed to higher UPRT activity measured in the latter. Thus, there was an apparent difference in the utilization of nucleotides derived from uracil and uridine for nucleotide synthesis. The increased ability to produce pyrimidine nucleotides via the salvage pathway during shoot bud formation may be required in support of nucleic acid synthesis occurring during the process. Studies on thymidine metabolism confirmed this notion.  相似文献   

14.
Protozoan parasites lack the pathway of the de novo synthesis of purines and depend on host-derived nucleosides and nucleotides to salvage purines for DNA and RNA synthesis. Nucleoside hydrolase is a central enzyme in the purine salvage pathway and represents a prime target for the development of anti-parasitic drugs. The full-length cDNA for nucleoside hydrolase from Leishmania major was cloned and sequence analysis revealed that the L. major nucleoside hydrolase shares 78% sequence identity with the nonspecific nucleoside hydrolase from Crithidia fasciculata. The L. major enzyme was overexpressed in Escherichia coli and purified to over 95% homogeneity. The L. major nucleoside hydrolase was identified as a nonspecific nucleoside hydrolase since it demonstrates the characteristics: 1) efficient utilization of p-nitrophenyl beta-D-ribofuranoside as a substrate; 2) recognition of both inosine and uridine nucleosides as favored substrates; and 3) significant activity with all of the naturally occurring purine and pyrimidine nucleosides. The crystal structure of the L. major nucleoside hydrolase revealed a bound Ca(2+) ion in the active site with five oxygen ligands from Asp-10, Asp-15 (bidentate), Thr-126 (carbonyl), and Asp-241. The structure is similar to the C. fasciculata IU-nucleoside hydrolase apoenzyme. Despite the similarities, the catalytic specificities differ substantially. Relative values of k(cat) for the L. major enzyme with inosine, adenosine, guanosine, uridine, and cytidine as substrates are 100, 0.5, 0.5, 27 and 0.3; while those for the enzyme from C. fasciculata are 100, 15, 14, 510, and 36 for the same substrates. Iminoribitol analogues of the transition state are nanomolar inhibitors. The results provide new information for purine and pyrimidine salvage pathways in Leishmania.  相似文献   

15.
The five de novo enzyme activities unique to the pyrimidine biosynthetic pathway were found to be present in Pseudomonas pseudoalcaligenes ATCC 17440. A mutant strain with 31-fold reduced orotate phosphoribosyltransferase (encoded by pyrE) activity was isolated that exhibited a pyrimidine requirement for uracil or cytosine. Uptake of the nucleosides uridine or cytidine by wild-type or mutant cells was not detectable; explaining the inability of the mutant strain to utilize either nucleoside to satisfy its pyrimidine requirement. When the wildtype strain was grown in the presence of uracil, the activities of the five de novo enzymes were depressed. Pyrimidine limitation of the mutant strain led to the increase in aspartate transcarbamoylase and dihydroorotate dehydrogenase activities by more than 3-fold, and dihydroorotase and orotidine 5-monophosphate decarboxylase activities about 1.5-fold, as compared to growth with excess uracil. It appeared that the syntheses of the de novo enzymes were regulated by pyrimidines. In vitro regulation of aspartate transcarbamoylase activity in P. pseudoalcaligenes ATCC 17440 was investigated using saturating substrate concentrations; transcarbamoylase activity was inhibited by Pi, PPi, uridine ribonucleotides, ADP, ATP, GDP, GTP, CDP, and CTP.  相似文献   

16.
17.
The incorporation of pyrimidine nucleotide precursors into Helicobacter pylori and the activities of enzymes involved in their synthetic pathways were investigated by radioactive tracer analysis and 31P nuclear magnetic resonance spectroscopy. The bacterium was found to take up aspartate and bicarbonate and to incorporate carbon atoms from these precursors into its genomic DNA. Orotate, an intermediate of de novo pyrimidine biosynthesis, and uracil and uridine, precursors for pyrimidine pathways, were also incorporated by the micro-organism. Radiolabelled substrates were used to assess the activities of aspartate transcarbamoylase, orotate phosphoribosyltransferase, orotidylate decarboxylase, CTP synthetase, uracil phosphoribosyltransferase, thymidine kinase and deoxycytidine kinase in bacterial lysates. The study provided evidence for the presence in H. pylori of an operational de novo pathway, and a less active salvage pathway for the biosynthesis of pyrimidine nucleotides.  相似文献   

18.
The treatment of rats by galactosamine (2 mmol/kg i.p.), which dramatically alters the metabolism of pyrimidine nucleotides in the liver, has been used to investigate the dynamics of pyrimidine nucleotides in the rat heart. Six hours after administration of the drug, the UTP and UDPG myocardial contents were decreased by respectively 40 and 52% while the sum of uracil nucleotides was increased by 66% and that of cytosine nucleotides by 15%. When administered 5 h after galactosamine treatment, cytidine (750 nmol/rat i.v.) induced a further increase in cytosine nucleotides (46% above control value 1 h later) without however effect on uracil nucleotides. On the other hand, the administration of uridine (250 nmol/rat, i.v. 5 h after galactosamine), while restoring UTP, UDPG and the pool of uracil nucleotides, provoked a decrease in cytosine nucleotide level (-17%). In the absence of galactosamine treatment, the administration of uridine and cytidine did not induce changes in nucleotide levels despite a rise in blood cytidine concentration. All these observations support the hypothesis that: 1. the pathway for cytosine nucleotide synthesis predominant in the heart is that utilizing preformed exogenous cytidine and 2. this pathway is mainly controlled by the intracellular concentration of UTP rather than that of CTP.  相似文献   

19.
The de novo pyrimidine biosynthetic enzymes in the denitrifying bacterium Pseudomonas stutzeri ATCC 17588 were assayed and their activities were lower in glucose-grown cells than in succinate-grown cells. When P. stutzeri was grown in the presence of uracil, the de novo enzyme activities in succinate-grown cells were lowered while they remained largely unchanged in glucose-grown cells. A uracil auxotroph of P. stutzeri, deficient for aspartate transcarbamoylase activity, was isolated and its auxotrophic requirement was met by only uracil and cytosine. The inability of pyrimidine ribonucleosides to meet the auxotrophic requirement was related to the limited ability of P. stutzeri to transport uridine and cytidine. Pyrimidine limitation of the auxotroph elevated the de novo enzyme activities indicating that this pathway may be repressible by a uracil-related compound in succinate-grown P. stutzeri cells. Regulation of pyrimidine synthesis in P. stutzeri was similar to that observed for other pseudomonads classified within rRNA homology group I.  相似文献   

20.
It was shown earlier that a variety of vertebrate cells could grow indefinitely in sugar-free medium supplemented with either uridine or cytidine at greater than or equal to 1 mM. In contrast, most purine nucleosides do not support sugar-free growth for one of the following reasons. The generation of ribose-1-P from nucleoside phosphorylase activity is necessary to provide all essential functions of sugar metabolism. Some nucleosides, e.g. xanthosine, did not support growth because they are poor substrates for this enzyme. De novo pyrimidine synthesis was inhibited greater than 80% by adenosine or high concentrations of inosine, e.g. 10 mM, which prevented growth on these nucleosides; in contrast, pyrimidine synthesis was inhibited only marginally on 1 mM inosine or guanosine, but normal growth was only seen on 1 mM inosine, not on guanosine. The inhibition of de novo adenine nucleotide synthesis prevented growth on guanosine, since guanine nucleotides could not be converted to adenine nucleotides. Guanine nucleotides were necessary for this inhibition of purine synthesis, since a mutant blocked in their synthesis grew normally on guanosine. De novo purine synthesis was severely inhibited by adenosine, inosine, or guanosine, but in contrast to guanosine, adenosine and inosine could provide all purine requirements by direct nucleotide conversions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号