首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of sulfite, bicarbonate, thiocyanate, methanol, ethanol, glycerol, dimethy sulfoxide and ADP on the ATPase activity of the coupling factor from liver mitochondria (F1) and pea chloroplasts (CF1) and of the anion-sensitive ATPase from rat erythrocytes were investigated. Under steady-state conditions of ATP hydrolysis catalyzed by F1, CF1, and erythrocyte ATPase, three Km values for each of the enzymes, three activation constants for sulfite and three inhibition constants for thiocyanate were determined. The efficiency and direction of the effects of anions, alcohols and ADP strongly depend on temperature and substrate (Mg-ATP) concentration. The mechanisms of modification by anions and alcohols of the ATPase activities are discussed.  相似文献   

2.
Effect of anions on the ATPase activity of submitochondrial particles   总被引:1,自引:0,他引:1  
The effects of anions on the ATPase activity of submitochondrial particles from mouse liver cells were investigated. Thiocyanite decreased the ATP hydrolysis, acting as a competitive inhibitor with respect to sulfite. All the anions tested changed the ATPase activity noncompetitively towards Mg-ATP. The hydrolysis of CTP, GTP, ITP and UTP was insensitive to sulfite and thiocyanate. In the presence of Mn2+, Ca2+, Co2+, Zn2+ and Ba2+ an anion-dependent hydrolysis of ATP took place. It was assumed that the anions control the rate of the limiting step of the ATPase reaction, since sulfite and thiocyanate change the activation energy of ATP hydrolysis. The data obtained are discussed in terms of a previously proposed mechanism of the anions effect on the activity of mitochondrial ATPase.  相似文献   

3.
Quantitative analyses of ATP hydrolysis coupled to movement of eukaryotic flagella is important for understanding the relationship between ATP hydrolysis and movement. The difference in ATPase activity between intact motile axonemes (that is the cytoskeletal core of flagella) and homogenized or immotile axonemes has been assumed to be coupled to movement. However, recent findings on rates of steps in the dynein ATPase cycle and the effect of interaction with microtubules on those steps call for reassessment of movement-coupled ATPase. From these studies, it is clear that dynein ATPase activity is not as tightly coupled to interaction with microtubules as myosin ATPase activity is coupled to interaction with actin. The method by which axonemal movement is inhibited will critically affect the interpretation of difference in ATPase activity. If the homogenization or similar methods uncouple dynein, the difference in ATPase activity is not a useful measurement. Greater understanding of the relationship between dynein kinetics and axonemal movement may be obtained by use of conditions and substrates with known effects at specific steps in the dynein mechanochemical cycle and quantitating their effects on movement.  相似文献   

4.
The hydrolysis of MgATP by isolated rat liver mitochondrial ATPase (EC 3.6.1.3) at pH 8.0 was stimulated by various anions. The rate of hydrolysis was increased from 18 to 170 mumol per min per mg, a 9.4-fold stimulation, by HSeO3 at 1 mM MgATP. In the absence of a stimulatory anion, reciprocal plots of initial velocity studies with MgATP as the variable substrate were curved (Hill coefficient approximately 0.5). With the addition of anion, the reciprocal plots became linear. When the substrate was MgITP or MgGTP with the isolated enzyme or MgATP with submitochondrial particles, no curvature of the reciprocal plots was observed. With purified ATPase, anions stimulated the hydrolysis of MgITP, MgGTP, MgUTP or MgCTP only slightly. With submitochondrial particles the stimulation by anions of MgATP hydrolysis was limited to approximately 2-fold. These data are interpreted to indicate the existence of two substrate sites for MgATP and an anion-binding site on the isolated enzyme.  相似文献   

5.
1. Divalent antibodies against chloroplast coupling factor 1 inhibited the factor ATPase, ATP synthesis, hydrolysis and Pi-ATP exchange in chloroplasts. These antibodies also inhibited coupled electron flow rates but not the basal or uncoupled rates. 2. Several types of non-precipitating, modified antibodies prepared from the original antibody preparation strongly inhibited the ATPase and Pi-ATP exchange reaction but had little effect on ATP formation. 3. It is suggested that the inhibition of ATP synthesis by the divalent antibodies is probably due to an indirect blocking of the active site, while the inhibition of ATP-utilizing reactions by the modified antibodies is related to their effect on the transfer of ATP from a non-catalytic to a catalytic site on coupling factor 1, via an energy-dependent conformational change.  相似文献   

6.
The effect of pH on the sensitivity of F1-ATPase as well as mitochondrial ATPase activity to nucleoside diand triphosphates and to inhibitory anions such as cyanate and thiocyanate, has been studied. The results obtained show that nucleotides could act as activators or inhibitors of the ATPase hydrolytic activity depending on pH, substrate concentration, and binding of the enzyme to the membrane. The effect of those nucleotides which activate the hydrolysis of ATP-Mg2+ was more pronounced beyon the optimum pH corresponding to each of the three catalytic sites of the enzyme, whereas those which are inhibitors had a lower effect above this value. The sensitivity to the inhibitory anions decreased with increasing pH values; the decrease in the inhibitory effect was sharper when approaching the optimum pH value. These data are in agreement with the existence in mitochondrial ATPase of two different regulatory sites, one being specific for binding nucleotides, and another for anions. Both of them showed a different response upon changes of pH.  相似文献   

7.
The sarcoplasmic reticulum Ca2+-ATPase is able to cleave ATP through two different catalytic routes. In one of them, a part of the chemical energy derived from ATP hydrolysis is used to transport Ca2+ across the membrane and part is dissipated as heat. In the second route, the hydrolysis of ATP is completed before Ca2+ transport and all the energy derived from ATP hydrolysis is converted into heat. The second route is activated by the rise of the Ca2+ concentration in the vesicle lumen. In vesicles derived from white skeletal muscle the rate of the uncoupled ATPase is several-fold faster than the rate of the ATPase coupled to Ca2+ transport, and this accounts for both the low Ca2+/ATP ratio usually measured during transport and for the difference of heat produced during the hydrolysis of ATP by intact and leaky vesicles. Different drugs were found to selectively inhibit the uncoupled ATPase activity without modifying the activity coupled to Ca2+ transport. When the vesicles are actively loaded, part of the Ca2+ accumulated leaks to the medium through the ATPase. Heat is either produced or released during the leakage, depending on whether or not the Ca2+ efflux is coupled to the synthesis of ATP from ADP and Pi.  相似文献   

8.
Nerve ending fractions from guinea-pig cerebral cortex contained more than one-half of the Na-K ATPase activity present in the original homogenate. Ethanol at concentrations ranging from 0·043 to 2·57 m inhibited the Na-K ATPase to a significantly greater extent than the Mg-activated ATPase or AChE. The inhibition of membrane-bound Na-K ATPase by ethanol was of the non-competetive type and the activity of Na-K ATPase was increasingly inhibited by alcohols of increasingly longer chain length. The ability of various alcohols to inhibit membrane-bound Na-K ATPase activity was correlated with their lipid solubility.  相似文献   

9.
The Escherichia coli Hsp40 DnaJ uses its J-domain (Jd) to couple ATP hydrolysis and client protein capture in Hsp70 DnaK. Fusion of the Jd to peptide p5 (as in Jdp5) dramatically increases the apparent affinity of the p5 moiety for DnaK in the presence of ATP, and Jdp5 stimulates ATP hydrolysis in DnaK by several orders of magnitude. NMR experiments with [15N]Jdp5 demonstrated that the peptide tethers the Jd to the ATPase domain. Thus, ATP hydrolysis and client protein binding in DnaK are coupled principally through the association of the client with DnaJ. Overexpression of a recombinant Jd was specifically toxic to cells that simultaneously expressed DnaK. No toxicity was observed when overexpressing Jdp5 or mutant Jd or when co-overexpressing the Jd and the nucleotide exchange factor GrpE. The results suggest that the Jd shifts DnaK to a client-bound form by stimulating the DnaK ATPase but only when the Jd is brought to DnaK by a client-Hsp40 complex.  相似文献   

10.
Treatment of sarcoplasmic reticulum vesicles with aqueous n-alcohols caused inhibition of calcium uptake and enhancement of ATPase activity. With increasing alcohol concentration, the ATPase activity reached a maximum (in the case of n-butanol, at about 350 mM) and then decreased. The effect of n-butanol was extensively studied. The purified ATPase enzyme and leaky vesicles treated with Triton X-100 or phospholipase A showed high ATPase activity in the absence of n-butanol. With increasing n-butanol concentration, their atpase activities began to decrease above about 250 mM n-butanol, without any enhancement. In the presence of ATP, the turnover rate of calcium after calcium accumulation had reached a steady level was the same as that at the initial uptake. n-Butanol did not affect these rates. Kinetic analyses of these experiments were carried out. The mechanisms of calcium transport and of increase of ATPase activity in the presence of alcohol were interpreted as follows. After calcium accumulation had reached a steady level, fast influx and efflux continued; the influx was coupled with phosphorylated enzyme (E-P) formation and most of the efflux was coupled with rephosphorylation of ATP from ADP and E-P. The observed ATPase activity is the difference between these two reactions. If alcohol molecules make the vesicles leaky, calcium ions will flow out without ATP synthesis and the apparent ATPase activity will increase. The effect of alcohols on sarcoplasmic reticulum vesicles was separated into two actions. The enhancement of ATPase activity was attributed to a leakage of calcium ions from the vesicles, while the decrease of ATPase activity at higher concentrations of alcohols was attributed to denaturation of the ATPase enzyme itself. The two effects were interpreted in terms of equilibrium binding of alcohol molecules to two different sites of the vesicles; leakage and denaturation sites. Similar analysis was carried out for various n-alcohols from methanol to n-heptanol. The apparent free energies of binding of the methylene groups of n-alcohols were evaluated to be -863 cal/mol for the leakage site, and -732 cal/mol for the denaturation site.  相似文献   

11.
We have examined the effects of a number of organic anions, which stabilize tubulin, on tubulin polymerization, associated GTP hydrolysis, and polymer morphology. While microtubule-associated proteins, as well as glycerol, induced formation of typical microtubules in a reaction coupled to GTP hydrolysis at an initial 1:1 stoichiometry, the organic anions had varying effects. Only 2-(N-morpholino)ethanesulfonate induced formation of structures with the morphology of microtubules. With glutamate, fructose 1,6-bisphosphate, piperazine-N-N'-bis(2-ethanesulfonate), glutarate, and glucose 1-phosphate, the predominant structures formed were sheets of parallel protofilaments rather than microtubules. Creatine phosphate induced the formation of clusters of rings. GTP hydrolysis was closely coupled to polymerization only with glutamate. With creatine phosphate, there was minimal GTP hydrolysis. With all other organic anions, GTP hydrolysis substantially exceeded polymerization at all time points, with the onset of hydrolysis significantly preceding the onset of turbidity development. Nevertheless, the rate of GTP hydrolysis was a sigmoidal function of tubulin concentration under all conditions examined, suggesting that tubulin-tubulin interactions are required for hydrolysis. All anion-induced reactions were temperature dependent and cold reversible, but only the creatine phosphate induced reaction was not inhibited by GDP, CA2+, or colchicine and did not require GTP.  相似文献   

12.
The herpes simplex virus type 1 UL42 DNA polymerase processivity factor interacts physically with UL9 and enhances its ability to unwind short, partially duplex DNA. In this report, ATP hydrolysis during translocation of UL9 on single-stranded (ss) or partially duplex DNA was examined in the presence and absence of UL42 to determine the effect of UL42 on the catalytic function of UL9. Our studies reveal that a homodimer of UL9 is sufficient for DNA translocation coupled to ATP hydrolysis, and the steady-state ATPase catalytic rate was greater on partially duplex DNA than on ss DNA in the presence or absence of UL42. Although UL42 protein increased the steady-state rate for ATP hydrolysis by UL9 during translocation on either partially duplex or ss DNA, UL42 had no significant effect on the intrinsic ATPase activity of UL9. UL42 also had no effect on the catalytic rate of ATP hydrolysis when UL9 was not limiting but enhanced the steady-state ATPase rate at only subsaturating UL9 concentrations. At subsaturating UL9 to DNA ratios, stoichiometric concentrations of UL42 were shown to increase the amount of UL9 bound to ss DNA at equilibrium. These data support a model whereby UL42 increases the ability of UL9 to load onto DNA, thus increasing its ability to assemble into a functional complex capable of unwinding duplex DNA.  相似文献   

13.
The sarcoplasmic reticulum Ca(2+)-ATPase transports Ca(2+) using the chemical energy derived from ATP hydrolysis. Part of the chemical energy is used to translocate Ca(2+) through the membrane (work) and part is dissipated as heat. The amount of heat produced during catalysis increases after formation of the Ca(2+) gradient across the vesicle membrane. In the absence of gradient (leaky vesicles) the amount of heat produced/mol of ATP cleaved is half of that measured in the presence of the gradient. After formation of the gradient, part of the ATPase activity is not coupled to Ca(2+) transport. We now show that NaF can impair the uncoupled ATPase activity with discrete effect on the ATPase activity coupled to Ca(2+) transport. For the control vesicles not treated with NaF, after formation of the gradient only 20% of the ATP cleaved is coupled to Ca(2+) transport, and the caloric yield of the total ATPase activity (coupled plus uncoupled) is 22.8 kcal released/mol of ATP cleaved. In contrast, the vesicles treated with NaF consume only the ATP needed to maintain the gradient, and the caloric yield of ATP hydrolysis is 3.1 kcal/mol of ATP. The slow ATPase activity measured in vesicles treated with NaF has the same Ca(2+) dependence as the control vesicles. This demonstrates unambiguously that the uncoupled activity is an actual pathway of the Ca(2+)-ATPase rather than a contaminating phosphatase. We conclude that when ATP hydrolysis occurs without coupled biological work most of the chemical energy is dissipated as heat. Thus, uncoupled ATPase activity appears to be the mechanistic feature underlying the ability of the Ca(2+)-ATPase to modulated heat production.  相似文献   

14.
15.
Topoisomerase II-catalyzed DNA transport requires coordination between two distinct reactions: ATP hydrolysis and DNA cleavage/religation. To further understand how these reactions are coupled, inhibition by the clinically used anticancer drug etoposide was studied. The IC(50) for perturbing the DNA cleavage/religation equilibrium is nucleotide-dependent; its value is 6 microM in the presence of ATP, 25 microM in the presence of a nonhydrolyzable ATP analog, and 45 microM in the presence of ADP or no nucleotide. This inhibition was further characterized using steady-state and pre-steady-state ATPase and decatenation assays. Etoposide is a hyperbolic noncompetitive inhibitor of the ATPase activity with a K(i)(app) of 5.6 microM no inhibition of ATP hydrolysis is seen in the absence of DNA cleavage. In order to determine which steps of the ATPase mechanism etoposide inhibits, pre-steady-state analysis was performed. These results showed that etoposide does not reduce the rate of binding two ATP, hydrolyzing the first ATP, or releasing the second ADP. Inhibition is therefore associated with the first product release step or hydrolysis of the second ATP, suggesting that DNA religation normally occurs at one of these two steps. Multiple turnover decatenation is inhibited when etoposide is present; however, single turnover decatenation occurs normally. The implications of these results are discussed in terms of their contribution to our current model for the topoisomerase II mechanism.  相似文献   

16.
Treatment of isolated factor F1 by 1% dimethylsuberimidate in the presence of 50 mM (NH4)2SO4 leads to the formation of four different types of cross-linked dimers of the subunits, on average one dimer per molecule of the enzyme. This treatment results in 60-70% inactivation of factor F1. Factor F1 treated with dimethylsuberimidate does not show a change in the sedimentation coefficient and is not inactivated in the cold; it is not inactivated in the presence of Mg2+ either, nor is it activated by anions. Incubation of the cross-linked factor F1 with ADP does not lead to inactivation, although the ability to tightly bind ADP is retained. The total quantity of tightly bound ADP reaches 5 mol per mol of the cross-linked factor F1. Cross-linking of factor F1 also prevents the slow inactivation of the enzyme coupled with the hydrolysis of Mg-ATP and Mg-GTP. The dependence of the inactivation rate constant on the concentration of Mg-ATP and Mg-GTP at substrate concentrations of 0.05-2 mM is characterized by the same values of Km,app as those of the ATPase and GTPase activities of factor F1. The probability of the inactivation of factor F1 per turnover remains constant for all the concentrations of the substrates studied and is 2 . 10(-6) per turnover for the ATPase reaction and 2 . 10(-5) per turnover for the GTPase reaction. Moderate hydrostatic pressure (up to 150 atmospheres) greatly accelerates ATP-induced inactivation of factor F1. The activation volume (delta V*) of the inactivation process is equal to 5.1 . 10(-4) cm3/g, which is evidence of considerable changes in the extent of protein hydration during inactivation. Inactivation of the enzyme under pressure is accompanied by dissociation into subunits. Dimethyladipimidate, which does not cause intersubunit cross-linking in the molecule of factor F1, does not alter the properties of the native enzyme. It is suggested that the formation of one intersubunit cross-link in the molecule of factor F1 by dimethylsuberimidate affects the ability of the enzyme to undergo co-operative rearrangements of the quaternary structure under the influence of Mg2+, ADP, ATP, anions, and low temperature. The rate constants of ATP binding to the active site of factor F2 (k+1) = 2 . 10(8) M-1 . min-1), of ATP release from the active site (k-1 = 2 . 10(-2) min-1), and of ADP and Pi release from the active site (k2 = 5 . 10(3) min-1) have been determined. The results obtained confirm the correctness of Boyer's idea, according to which ATP is formed in the active site of mitochondrial ATPase without any external source of energy. Energy is used at the stage of the release of synthesized ATP from the active site of ATPase in the solution.  相似文献   

17.
Mitochondrial ATPases from rat liver and beef heart were used to study the effects of guanylylimidodiphosphate (GMP-P(NH)P) and adenylylimidodiphosphate (AMP-P(NH)P) on the kinetics of MgATP, MgITP, and MgGTP hydrolysis. AMP-P(NH)P was a noncompetitive inhibitor of hydrolysis of all substrates with the rat liver enzyme, whether activating anions were present or not. Also with the liver enzyme, AMP-P(NH)P caused only MgATP hydrolysis to appear to have positive cooperativity. With the beef heart enzyme, AMP-P(NH)P was a competitive inhibitor of ATPase activity and caused positive cooperativity; it gave noncompetitive patterns with GTP or ITP as substrates. In both enzyme systems, GMP-P(NH)P gave complex inhibition patterns with MgATP as the substrate, but was a competitive inhibitor of MgITP and MgGTP hydrolysis. These results are interpreted as indicating the existence of two types of nucleotide binding sites, with varying degrees of specificity and interaction on the ATPase molecules from both sources. It is postulated that MgATP and AMP-P(NH)P bind to regulatory site while MgATP, MgGTP, Mgitp, and GMP-P(NH)P bind to the catalytic site.  相似文献   

18.
Using a coupled transport assay which detects only those ATPase molecules functionally inserted into the platelet dense granule membrane, we have characterized the inhibitor sensitivity, substrate specificity, and divalent cation requirements of the granule H+ pump. Under identical assay conditions, the granule ATPase was insensitive to concentrations of NaN3, oligomycin, and efrapeptin which almost completely inhibit ATP hydrolysis by mitochondrial membranes. The granule ATPase was inhibited by dicyclohexylcarbodiimide but only at concentrations much higher than those needed to maximally inhibit mitochondrial ATPase. Vanadate (VO3-) ion and ouabain also failed to inhibit granule ATPase activity at concentrations which maximally inhibited purified Na+,K+-ATPase. Two alkylating agents, 7-chloro-4-nitrobenz-2-oxa-1,3-diazole and N-ethylmaleimide both completely inhibited H+ pumping by the granule ATPase under conditions where ATP hydrolysis by mitochondrial membranes or Na+,K+-ATPase was hardly affected. These results suggest that the H+-pumping ATPase of platelet granule membrane may belong to a class of ion-translocating ATPases distinct from both the phosphoenzyme-type ATPases present in plasma membrane and the F1F0-ATPases of energy-transducing membranes.  相似文献   

19.
DNA cleavage by the Type III restriction enzymes requires long-range protein communication between recognition sites facilitated by thermally-driven 1D diffusion. This ‘DNA sliding’ is initiated by hydrolysis of multiple ATPs catalysed by a helicase-like domain. Two distinct ATPase phases were observed using short oligoduplex substrates; the rapid consumption of ∼10 ATPs coupled to a protein conformation switch followed by a slower phase, the duration of which was dictated by the rate of dissociation from the recognition site. Here, we show that the second ATPase phase is both variable and only observable when DNA ends are proximal to the recognition site. On DNA with sites more distant from the ends, a single ATPase phase coupled to the conformation switch was observed and subsequent site dissociation required little or no further ATP hydrolysis. The overall DNA dissociation kinetics (encompassing site release, DNA sliding and escape via a DNA end) were not influenced by the second phase. Although the data simplifies the ATP hydrolysis scheme for Type III restriction enzymes, questions remain as to why multiple ATPs are hydrolysed to prepare for DNA sliding.  相似文献   

20.
1. Dinitrophenol and maleate anions increase VATP on the 'washed', isolated, mitochondrial ATPase. Hydrolyses of iso-GTP and 2'-deoxy ATP are also stimulated, while hydrolyses of other nucleoside triphosphates (ITP, GTP etc.) are not. 2. Preincubation with ATP, iso-GTP or 2'-deoxy ATP results in a metastable enzyme form with a raised V and a reduced Km. Dinitrophenol stimulates both ATP and ITP hydrolyses by this form. 3. The Arrhenius plot of ATP (but not ITP) hydrolysis by the isolated ATPase shows a break at about 18 degrees C, apparently because the rate limiting step of hydrolysis changes as the temperature rises. 4. Adenylyl beta, gamma-imidodiphosphate (AdoPP[NH]P) inhibits ITP hydrolysis in a pseudofirst order reaction. Its binding is competitive with ITP. If the enzyme is preincubated with ATP, the rate of AdoPP[NH]P binding increases. It is concluded that AdoPP[NH]P inhibits by binding to the hydrolytic site of the enzyme. 5. We conclude that ATP hydrolysis is limited by diphosphate release and ITP hydrolysis by bond splitting. Energy release during ATP hydrolysis is maximal at the ATP binding step, and during ITP hydrolysis at bond splitting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号