首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pyrimidine biosynthesis in rat brain   总被引:1,自引:1,他引:1  
—Studies on the incorporation of [14C]NaHCO3 into both orotic acid and RNA in tissue slices reveal the occurrence of the complete orotate pathway for the de novo biosynthesis of pyrimidines in the rat brain. A comparison of the rates of incorporation of bicarbonate into orotic acid and RNA in tissue slices of brain and liver indicate the brain to be one-fourth to one-half as active as the liver in the de novo biosynthesis of pyrimidines. The results of this study favor the proposal that the adult rat brain can meet its needs for pyrimidines through de novo synthesis and is not dependent upon salvage activity and an extraneural supply of pyrimidines.  相似文献   

2.
Studies on the incorporation of radio-labeled precursors into orotic acid and the pyrimidine nucleotides of RNA have established the occurrence of the orotate pathway for the de novo biosynthesis of pyrimidines in the chick oviduct. Measurements of the rate of incorporation of precursors into orotic acid in minces of oviduct revealed the activity of the orotate pathway to be accelerated in response to estrogen-stimulated nucleic acid synthesis and tissue growth. These data indicate that extrahepatic tissues of avian species meet their requirements for pyrimidine nucleotides through de novo synthesis rather than depend upon the liver or other exogenous sources for a supply of preformed pyrimidines. An examination of the influence of pyrimidine and purine nucleosides on the incorporation of radio-labeled precursors into orotic acid yielded evidence that pyrimidine biosynthesis in the chick is quite sensitive to inhibition by both purines and pyrimidines; the data indicate the reaction catalyzed by carbamoylphosphate synthetase to be the site of inhibition in both cases.  相似文献   

3.
Pyrimidine biosynthesis in the nutritionally versatile bacterium Pseudomonas veronii ATCC 700474 appeared to be controlled by pyrimidines. When wild type cells were grown on glucose in the presence of uracil, four enzyme activities were depressed while all five enzyme activities increased in succinate-grown cells supplemented with uracil. Independent of carbon source, orotic acid-grown cells elevated aspartate transcarbamoylase, dihydroorotase, orotate phosphoribosyltransferase or OMP decarboxylase activity. Pyrimidine limitation of glucose-grown pyrimidine auxotrophic cells lacking OMP decarboxylase activity resulted in at least a doubling of the enzyme activities relative to their activities in uracil-grown cells. Less derepression of the enzyme activities was observed after pyrimidine limitation of succinate-grown mutant cells possibly due to catabolite repression. Aspartate transcarbamoylase activity in Ps. veronii was regulated at the level of enzyme activity since the enzyme was strongly inhibited by pyrophosphate, UDP, UTP, ADP, ATP and GTP. Overall, the regulation of pyrimidine biosynthesis in Ps. veronii could be used to differentiate it from other taxonomically related species of Pseudomonas.  相似文献   

4.
5.
Starch biosynthesis and its regulation.   总被引:17,自引:0,他引:17  
  相似文献   

6.
Glucocorticoid regulation of glycerolphosphate dehydrogenase (GPDH) activity and gene expression in the developing rat brain appears complex throughout the postnatal developmental period and attains the adult pattern after the first month of life. GPDH enzyme activity is higher in the limbic system than in the cerebral cortex of intact young animals. Adrenalectomy of young rats, before the first month of life, does not affect GPDH enzyme activity in the brain areas mentioned above, while in the adult animals it results in a statistically significant decrease in activity. Furthermore, adult type glucocorticoid responsivity of GPDH enzyme activity is attained in the developing limbic system earlier — by day 40 of life — than in the cerebral cortex. During the first month of life, GPDH basal mRNA levels are increased in the absence of glucocorticoids, in both the limbic system and the cortex, in contrast to the effect of adrenalectomy in the adults, where GPDH mRNA levels are decreased in the absence of the adrenals. The observed pattern of glucocorticoid regulation of GPDH during development in the rat is discussed in relation to the possible existence of various levels of regulation of GPDH gene and enzyme activity.  相似文献   

7.
8.
Pyrimidine biosynthesis in the chick   总被引:1,自引:0,他引:1  
  相似文献   

9.
10.
Streptomycin biosynthesis and its regulation in Streptomycetes.   总被引:6,自引:0,他引:6  
J Distler  K Mansouri  G Mayer  M Stockmann  W Piepersberg 《Gene》1992,115(1-2):105-111
New insights into the gene orders, structures, evolution, and functions of streptomycin (Sm) biosynthetic genes (str) were gained via hybridization studies, determination of nucleotide sequences, and measurement of expression in the str gene clusters of Streptomyces griseus and S. glaucescens. Both str clusters showed considerable divergence in macro and micro structure. Genes putatively involved in pathways leading to the (dihydro-)streptose and N-methyl-L-glucosamine moieties of Sm were identified. Additional regulatory elements, such as gene strS and conserved TTA codons in the N-terminal sections of reading frames, are reported. Evidences for the involvement of physiological state, signal transduction, and activators in the control of Sm production are presented.  相似文献   

11.
12.
The levels of cAMP-dependent protein kinases were measured in developing rat brain by a variety of methods. The regulatory subunit (R) was measured both by [3H]cAMP binding and by 8-N3-[32P]cAMP incorporation. The catalytic subunit (C) was measured by an assay of histone kinase activity. Data were calculated per mg protein. Neither R nor C levels changed significantly in either membranes or cytosol during development. The ratio of R to C was essentially unity in the cerebra of both newborn (2-day-old) and adult (40-day-old) rats. Polyacrylamide-gel electrophoresis resolved two regulatory subunits (R-I) and (R-II) which were derived from the Type I and Type II cAMP-dependent protein kinases, respectively. 8-N3-[32P]cAMP incorporation into Proteins R-I and R-II indicated that the amounts of Proteins R-I and R-II did not change significantly in either membranes or cytosol during development.  相似文献   

13.
14.
Mycobacterium leprae can synthesise pyrimidines de novo. Although pyrimidine synthesis could not be detected in intact bacteria, extracts contained all four enzymes unique to the de novo pathway which are detectable in mycobacteria by the methods used. Inhibition of aspartate transcarbamylase by UTP and ATP suggested that lack of pyrimidine synthetic activity in whole M. leprae could be a result of strong feedback inhibition.  相似文献   

15.
B Banerjee  S Chaudhury 《Life sciences》2001,69(20):2409-2417
The developmental profile of the different isoforms of NaKATPase have been investigated during the first three weeks of postnatal development using primary cultures of isolated glial cells derived from neonatal rat cerebra. Northern and Western blot analysis show that the expression of four isoforms (alpha1, alpha2, beta1 and beta2) in these cells increases progressively between 5 to 20 days of culture. Comparison of the mRNA levels of these isoforms in thyroid hormone deficient (TH def) and thyroid hormone supplemented (TH sup) cells cultured for 5-10 days, revealed for the first time that all four isoforms are sensitive to T3 in the glial cells. Furthermore immunocytochemical staining of these cells with isoform specific NaKATPase antibodies also showed that the localization of the different isoforms in the TH def cells were altered in comparison to that in the TH sup cells. These results establish glial cells as the target cells for the regulation of NaKATPase by TH in the developing brain.  相似文献   

16.
The urinary excretion of p-hydroxybenzoate was not altered by ubiquinone feeding, but, although decreased considerably, was not eliminated in protein deficiency. The incorporation of p-hydroxy[U-14C]benzaldehyde into ubiquinone in vivo increased in cold-exposed and p-chlorophenoxyisobutyrate (clofibrate)-fed rats, and these changes were parallel with the changes in the incorporation of [2-14C]mevalonate under these conditions. Starvation, cholesterol feeding and cholic acid feeding resulted in the decreased incorporation of p-hydroxy[U-14C]benzaldehyde into ubiquinone, confirming the decreased ubiquinone synthesis. Feeding exogenous ubiquinone increased the hepatic ubiquinone concentration, but did not cause any decrease in the incorporation of p-hydroxy[U-14C]benzaldehyde into ubiquinone, indicating the absence of a feedback control.  相似文献   

17.
18.
Pyrimidine biosynthesis in Escherichia coli   总被引:22,自引:0,他引:22  
  相似文献   

19.
20.
AIMS: To investigate the regulation of de novo pyrimidine biosynthesis in the polyhydroxyalkanoate-producing bacterium Pseudomonas oleovorans at the level of enzyme synthesis and at the level of aspartate transcarbamoylase activity. METHODS AND RESULTS: The effect of pyrimidine supplementation on the pyrimidine biosynthetic pathway enzyme activities was analysed relative to carbon source. Two uracil auxotrophs of P. oleovorans were isolated that were deficient for aspartate transcarbamoylase or dihydroorotase activity. Pyrimidine limitation of these auxotrophs increased the de novo pathway activities to varying degrees depending on the pathway mutation and the carbon source utilized. At the level of aspartate transcarbamoylase activity, pyrophosphate and uridine ribonucleotides were found to be strongly inhibitory of the Ps. oleovorans enzyme. CONCLUSIONS: Pyrimidine biosynthesis is regulated in Ps. oleovorans. Taxonomically, the regulation of the pyrimidine biosynthetic pathway appeared dissimilar from previously studied Pseudomonas species. SIGNIFICANCE AND IMPACT OF THE STUDY: New insights regarding the regulation of nucleic acid metabolism are provided that could prove significant during the genetic manipulation of Ps. oleovorans to increase the synthesis of polyhydroxyalkanoates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号