首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The population history of a 9-year-old roadside population of the invasive plant Bunias orientalis was reconstructed by demographic analysis including size, position, age (determined by herbchronology) and RAPD-PCR patterns of individual plants. We evaluated emerging patterns of population growth and genetic structure during a full period of population development under typical site conditions (anthropogenic disturbance) and their possible consequences for the invasion potential of the species. The population has grown rapidly and continuously (though with slowing geometric population increase) during the 9 years since its foundation, filling the space available in the study area. Genetic variation (RAPD markers) was already high in the founder cohorts and remained at the same level throughout population development (variance fluctuations <15%). Both results may be related to the mowing management at the site which seems to promote population growth of B. orientalis relative to other co-occuring species and to prevent the genetic drift and the development of spatial genetic structure that would be expected under isolation-by-distance models. Large founder plants had comparatively low genetic variance and were more closely related to younger cohorts than were small founder plants, indicating that selection acted during population development. Overall, the current anthropogenic disturbance regimes may contribute to high genetic variability by artificially increasing gene flow and thereby promoting the adaptability of invasive species to the often unpredictable conditions at disturbed sites. Our approach using retrospective demographic investigation allows the detection of spatio-temporal microscale patterns in genetic and phenotypic variation. Thus it allows a thorough understanding of local invasions of perennial herbaceous plants. Received: 23 November 1998 / Accepted: 14 April 1999  相似文献   

2.
The absence of panmixia at all hierarchical levels of the European beaver communities down to individual families implies a complex organization of the population-genetic structures of the species, in particular, a large intergroup component of gene diversity in the populations. Testing this assumption by analysis of 39 allozyme loci in the communities of reintroduced beaver from the Vyatka river basin (Kirov oblast) has shown that only the beaver colonies exhibit high intergroup gene diversity (G st = 0.32) whereas this parameter is much lower when estimated among beaver groups from individual Vyatka River tributaries and among localities of one of the tributaries (0.07 and 0.11, respectively). The data suggesting genetic heterogeneity among individual settles within colonies have been obtained. The factors affecting the structure of the beaver communities of the lower hierarchical ranks are considered: the common origin, founder effect, selection, gene drift, assortative mating, and social and behavior features of the species. The conclusion is drawn that the founder effect could be the primary factor of population differentiation only at the time of their formation. The heterogeneity among colonies and among settles is maintained largely by isolation of colonies from one another. The strong interspecific competition for food resources, which is behaviorally implemented in the species at the level of minimal structural units (individual settles) creates a profound and unique population-genetic subdivision of the species. These results substantiate the suggestion that an elementary population (micropopulation) of European beaver is a colony, i.e., a set of related settles of different types. Based on ecological and genetic parameters, the effective reproductive size N e of the minimum beaver population was estimated to be equal to three animals. This extremely low value of effective reproductive population size largely explains the high tolerance of European beaver to inbreeding and striking viability of the species, which from the early 19th century has been for more than hundred years on the brink of survival in the condition which would made any other mammalian species vanish from the Earth.  相似文献   

3.
Thirteen populations sampled from among the oldest plantings of rose clover (Trifolium hirtum All.), introduced into the California range during the late 1940's, and 12 roadside populations established through natural colonization were compared for their genetic and demographic features. Roadside colonies showed a greater amount of reproductive effort in terms of a larger number of heads per plant and larger calyx, lower rate of seed carryover, higher and more stable plant density, lower seedling survivorship, and earlier flowering. The calyx was more hirsute in roadside collections and remained attached with the seed, a feature accounting for higher germination probabilities on the soil surface or in litter along the roadsides, in contrast to the range where grazing animals would often work the seed into the soil. Outcrossing rates are slightly higher in roadside colonies in which genetic polymorphisms at three marker loci represented as high levels of genetic variability as in the range populations. The colonizing success of rose clover seems to be largely determined by a few and rapid morphological changes and by the retention of some outbreeding and genetic variation. Such joint analyses of genetic and demographic features of colonizing species are needed to support various deductions about the characteristics of “ideal” weeds and colonizers.  相似文献   

4.
We describe the genetic dynamics of the recent establishment of the ‘Iberian slug’, Arion lusitanicus J. Mabille 1868, in Denmark and compare its population structure to two other members of the ‘large Arion complex’, Arion ater ater, native to Denmark, and Arion ater rufus, introduced into Denmark in the early 1900s. Assaying allozyme polymorphism at seven enzyme loci, we found that: (1) None of the three taxa reproduce primarily by self-fertilization. Differences among loci and colonies in the pattern of deviation from Hardy–Weinberg equilibrium are most consistent with isolate mixing and perhaps with low amounts of selfing. (2) For both A. lusitanicus and A. a. rufus, gene diversity is lower in Danish colonies than in southern German colonies, implying population bottlenecks in the establishment of Danish colonies. (3) Significant linkage disequilibrium values usually involve the same three loci, viz. PGI, MDH-1 and MDH-2, suggesting physical linkage among these loci. (4) For both A. a. rufus and A. lusitanicus, the overall gene frequencies from Denmark and southern Germany are homogeneous, while variation among colonies within these regions ranges from around 15 to 28% for the three taxa. This indicates strong, local population genetic subdivision but with little restriction to gene flow from possible source areas. The heterogeneity in measures of diversity and differentiation indicates that population structure for all three taxa is dominated by ongoing founder effects, local extinction/colonisation dynamics, and genetic drift processes.  相似文献   

5.
It is generally considered that limiting the loss of genetic diversity in reintroduced populations is essential to optimize the chances of success of population restoration. Indeed, to counter founder effect in a reintroduced population we should maximize the genetic variability within the founding group but also take into account networks of natural populations in the choice of the reintroduction area. However, assessment of relevant reintroduction strategies requires long-term post-release genetic monitoring. In this study, we analyzed genetic data from a network of native and reintroduced Griffon vulture (Gyps fulvus) populations successfully restored in Southern Europe. Using microsatellite markers, we characterized the level of genetic diversity and degree of genetic structure within and among three native colonies, four captive founding groups and one long-term monitored reintroduced population. We also used Bayesian assignment analysis to examine recent genetic connections between the reintroduced population and the other populations. We aimed to assess the level of fragmentation among native populations, the effectiveness of random choice of founders to retain genetic variability of the species, the loss of genetic diversity in the reintroduced population and the effect of gene flow on this founder effect. Our results indicate that genetic diversity was similar in all populations but we detected signs of recent isolation for one native population. The reintroduced population showed a high immigration rate that limited loss of genetic diversity. Genetic investigations performed in native populations and post-released genetic monitoring have direct implications for founder choice and release design.  相似文献   

6.
The Little Penguin, Eudyptula minor, is a seabird that nests in colonies throughout New Zealand and southern Australia. Individuals from different colonies in southeast Australia differ significantly in morphology and ecology, suggesting that some genetic structuring may exist among colonies. In contrast, the marking of individuals with flipper bands has revealed some, albeit infrequent, movement between colonies. To determine the extent of genetic structuring, we tested the null hypothesis of substantial gene flow within southeast Australia by examining patterns of genetic variation across seven colonies separated by up to 1,500 km. Phylogeographic structuring was absent for mitochondrial control region sequences (2–3 individuals per colony). Microsatellite allele frequencies at five loci and mitochondrial haplotype frequencies (50 individuals per colony) were also homogenous among the majority of colonies sampled, although two colonies at the western periphery of the sampling range were distinct from those to the east. The genetic homogeneity among the majority of colonies can be explained by low but consistent contemporary gene flow among them, or a recent founder event in Bass Strait following the last marine transgression. The genetic break towards the western end of the sampling distribution appears best explained by differences in sea surface temperature and, consequentially breeding phenology, the latter hindering genetically effective migration.  相似文献   

7.
Lake sturgeon (Acipenser fulvescens) have experienced significant habitat loss, resulting in reduced population sizes. Three artificial reefs were built in the Huron‐Erie corridor in the Great Lakes to replace lost spawning habitat. Genetic data were collected to determine the source and numbers of adult lake sturgeon spawning on the reefs and to determine if the founder effect resulted in reduced genetic diversity. DNA was extracted from larval tail clips and 12 microsatellite loci were amplified. Larval genotypes were then compared to 22 previously studied spawning lake sturgeon populations in the Great Lakes to determine the source of the parental population. The effective number of breeders (Nb) was calculated for each reef cohort. The larval genotypes were then compared to the source population to determine if there were any losses in genetic diversity that are indicative of the founder effect. The St. Clair and Detroit River adult populations were found to be the source parental population for the larvae collected on all three artificial reefs. There were large numbers of contributing adults relative to the number of sampled larvae. There was no significant difference between levels of genetic diversity in the source population and larval samples from the artificial reefs; however, there is some evidence for a genetic bottleneck in the reef populations likely due to the founder effect. Habitat restoration in the Huron‐Erie corridor is likely resulting in increased habitat for the large lake sturgeon population in the system and in maintenance of the population's genetic diversity.  相似文献   

8.
Mitochondrial DNA variation in Moroccan and Spanish honey bee populations   总被引:4,自引:0,他引:4  
The mitochondrial DNAs of 192 Moroccan and 173 Spanish honey bee colonies were characterized by a rapid test involving the restriction by DraI of a PCR-fragment of the COI-COII region. In Morocco, we found eight haplotypes, all characteristic of the African (A) lineage, suggesting that most if not all the maternal lineages of the colonies repeatedly imported from Europe over the last 150 years have not contributed mitochondrial genomes to the local population. Using two new genetic distances analogous to the shared allele distance defined for nuclear genes, we showed that Morocco was most probably colonized by two sublineages, one from the north-east and the other one from the south of the country and that the contact zone between them extends along both sides of the Atlas range. In Spain, we found eight haplotypes characteristic of lineage A (six in common with Morocco) and four of lineage M (the West European lineage). The distribution of haplotypes of both lineages forms a gradient with c. 10% of lineage M in the south of Spain (Seville) and up to 100% in the north (San Sebastian). Three hypotheses are presented to explain the large differences of haplotype frequencies between Moroccan and lineage A Spanish colonies: a non-Moroccan origin of lineage A in Spain, an ancient Moroccan origin or a recent Moroccan origin with a rapid shift of haplotype frequencies due to a founder effect.  相似文献   

9.
Understanding genetic structure and gene flow can elucidate the mechanisms of diversification and adaptation in seabirds and help define conservation and management units. From 2012 to 2016, we collected blood and feather samples from 156 Red-billed Tropicbirds (Phaethon aethereus) from seven colonies distributed along the Gulf of California and Mexican tropical Pacific to estimate genetic diversity, genetic structure, and gene flow using microsatellite markers and mitochondrial DNA (mtDNA; control region) sequences. Nuclear and mtDNA data revealed relatively low or null levels of genetic diversity, respectively, possibly the result of a founder effect in the eastern Pacific followed by a subsequent population expansion. Nuclear data revealed significant genetic structure among the colonies, but the differences were not associated with regional grouping (i.e., Gulf of California vs. Tropical Pacific). Greater gene flow was observed from the tropical Pacific toward the Gulf of California, possibly related to shared dispersal patterns during the non-breeding season (individuals traveling north to reach warm currents with abundant prey). With the exception of one colony in the Mexican tropical Pacific, we found no evidence of recent bottleneck events. Nonetheless, the overall reduced genetic diversity suggests a high intrinsic vulnerability and risk of extinction for this species.  相似文献   

10.
Reticulitermes urbis is a recently described termite species that has probably been introduced into Western Europe where it has been found exclusively in urban areas. However, little is known about the geographic distribution and origin of R. urbis. This study was undertaken to determine whether this species was introduced from the Balkans. A parsimony network did not show any association between mtDNA haplotypes and geographic regions suggesting that western European populations were the result of human-mediated dispersion. Variation patterns of the COI and COII regions as well as microsatellites showed that the genetic diversity of Western European colonies was lower than for colonies collected in the Balkans, suggesting that the introduced populations suffered from a founder effect. As observed in the introduced populations of R. flavipes, all colonies of R. urbis had an extended-family structure with several reproductives. These results support the scenario that this termite was introduced into Western Europe.  相似文献   

11.
Additive genetic variance maintained by mutation in a selectively neutral quantitative character is analyzed for an ideal population distributed on n islands, each with local effective size N, that exchange migrants at a small rate, m. In a stable population structure, the expected genetic variance maintained within islands is identical to that in a panmictic population of the same total size, regardless of the migration rate (m > 0). This result contrasts with Wright's classical conclusion, based on inbreeding coefficients, that at least one immigrant per island every other generation (Nm > ½) is necessary for the genetic variance within local populations to approach that under panmixia. The expected genetic variance maintained among islands is inversely proportional to m and increases with the number of islands, but is independent of N. Local extinction and colonization diminish the genetic variance maintained within islands by reducing the effective size of island populations through the founder effect, although the expected genetic variance within islands is nearly as large as that in a panmictic population of the same total effective size. If the founders of new colonies originate from more than one island, rates of local extinction and colonization larger than about twice the migration rate will substantially reduce the genetic variance maintained among islands. These results indicate the importance of mutation and migration in maintaining quantitative genetic variance within small local populations.  相似文献   

12.
Invasive plant survey methods that are practical and economical are needed to describe established colonies and detect nascent invaders. We compared results from random and roadside surveys of Alliaria petiolata (Bieb.) Cavara & Grande across a 5730-ha subwatershed. The random survey included 150 1-ha plots; the roadside survey examined 0.1-mile increments (10-m deep) along paved roads (totaling 1104 0.16-ha plots). In the random survey, agriculture was the dominant land use (49% of sampled area), and most A. petiolata patches were in wooded, shaded riparian, and waste areas (34%, 34%, and 29% of patches, respectively). In the roadside survey, right-of-way land use was dominant (38% of sampled area), and most A. petiolata patches were in right-of-way, wooded, and shaded riparian areas (53%, 22%, and 19% of patches, respectively). According to generalized linear model analysis, survey methods did not differ in the overall probability of finding A. petiolata (P=0.17 and 0.11 for random and roadside surveys, respectively). Shaded riparian, wooded, and mixed-species right-of-way land uses were the dominant habitat for A. petiolata in both surveys, but only the random survey indicated waste areas as significant habitat. Alliaria petiolata occurred mostly as small patches in roadsides, but as large patches in random plots, suggesting faster spread in the roadside. Results indicated that disturbed lands along roadsides were important for invasion and spread of A. petiolata; therefore, the roadside survey was a useful, practical method for detecting nascent invasions and management planning. The random sampling lacked a land use bias, and provided data that could be generalized across the subwatershed; however, this method required at least four times more person hours to complete than the roadside survey for a similar amount of area. Although roadside sampling did not provide a completely reliable assessment of target plant populations within the landscape, it may provide an adequate approximation, depending on the specific goals of the survey. Concurrent surveys would provide the most complete information.  相似文献   

13.
《Genetika》2004,40(7):949-960
The absence of panmixia at all hierarchical levels of the European beaver communities down to individual families implies a complex organization of the population-genetic structures of the species, in particular, a large intergroup component of gene diversity in the populations. Testing this assumption by analysis of 39 allozyme loci in the communities of reintroduced beaver from the Vyatka river basin (Kirov oblast) has shown that only the beaver colonies exhibit high intergroup gene diversity (Gst = 0.32) whereas this parameter is much lower when estimated among beaver groups from individual Vyatka River tributaries and among localities of one of the tributaries (0.07 and 0.11, respectively). The data suggesting genetic heterogeneity among individual settles within colonies have been obtained. The factors affecting the structure of the beaver communities of the lower hierarchical ranks are considered: the common origin, founder effect, selection, gene drift, assortative mating, and social and behavior features of the species. The conclusion is drawn that the founder effect could be the primary factor of population differentiation only at the time of their formation. The heterogeneity among colonies and among settles is maintained largely by isolation of colonies from one another. The strong interspecific competition for food resources, which is behaviorally implemented in the species at the level of minimal structural units (individual settles) creates a profound and unique population-genetic subdivision of the species. These results substantiate the suggestion that an elementary population (micropopulation) of European beaver is a colony, i.e., a set of related settles of different types. Based on ecological and genetic parameters, the effective reproductive size Ne of the minimum beaver population was estimated to be equal to three animals. This extremely low value of effective reproductive population size largely explains the high tolerance of European beaver to inbreeding and striking viability of the species, which from the early 19th century has been for more than hundred years on the brink of survival in the condition which would made any other mammalian species vanish from the Earth.  相似文献   

14.
The cheilostome bryozoan Antarctothoa bougainvillei (d’Orbigny) is the most frequent epibiont on the ribbon-like red alga Hymenena laciniata (Hooker f. & Harvey) Kylin in San Sebastián Bay (Tierra del Fuego, Argentina). Twenty-one thalli and 1,484 colonies were examined to analyse the relationship between both species. In most cases, number and area of colonies did not differ significantly at both sides of the thallus. Ancestrulae (i.e., founder zooids originating colonies by asexual budding) were mostly oriented facing the algal growing edge. Colonies were more frequent on central than on marginal zones of the thalli. The population of A. bougainvillei was mainly composed of very small colonies (<10 mm2). Larger colonies predominated and intraspecific competition was more intense near the basal portions of the thalli. Fecundity (number of ovicells) increased at a significantly higher rate in colonies with margins obstructed by conspecific neighbours than in free-growing colonies. Colonies were significantly larger on somatic than on reproductive algal tissues. As total and reproductive surfaces covered by colonies of A. bougainvillei were on average very low (4.43% and 0.53%, respectively), this epibiont is not supposed to produce a negative effect on H. laciniata. Handling editor: T. P. Crowe  相似文献   

15.
To infer the evolutionary mechanism of phenotypic variation among isolated island populations, we investigated coat colour and genetic variation in the large Japanese field mouse (Apodemus speciosus) on the Izu Islands (Ohshima, Niijima, Kouzushima, and Miyakejima). Coat colour in the most remote population (Miyakejima) was unique and significantly darker than that in the other populations. Ohshima that is closest to the source population showed variation in coat colour within its population. Phylogeographical analyses using mitochondrial and microsatellite markers suggested that the island populations (except Kouzushima) were founded sequentially from the closest Ohshima to remote Niijima and Miyakejima during or before the penultimate interglacial period. Secondary gene flow from the source population was rare and occurred only for the closest (Ohshima) population. In addition, we found that an amino acid mutation in the Agouti signalling protein gene (Asip) was associated with coat colour variation among the island populations. The mutation was rare in the source population but completely fixed in the Miyakejima population. The phenotypic and genetic variation suggested that severe reduction of genetic variation and changes in allele frequency as a result of sequential colonization (i.e. the founder effect) had significant effects on colour polymorphism. The findings of the present study suggest that the founder effect, in addition to natural selection, facilitated the morphological changes below the species level over a relatively long time scale. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 522–535.  相似文献   

16.
The tertiary relict plant Sinocalycanthus chinensis, endemic to Zhejiang province with small populations and fragmented distribution, is an endangered plant in China. A relatively high species-level genetic diversity and low population-level genetic diversity exist in this species, and large genetic differentiation exists between two main populations with significant geographical isolation. Based on a previous artificial simulation mating test, amplified fragment length polymorphism (AFLP) marker was used in the present study to assess genetic diversity of filial generation colonies generated by different mating modes and to clarify genetic effects of various mating modes. The filial generation colonies generated by natural pollination and by geitonogamy were found to be similar to each other in terms of their relatively low genetic parameters and minimum genetic differentiation. This indicated that under natural conditions, selfing might occur at a higher proportion leading to the low genetic diversity within the population. The degree of genetic diversity of the filial generation colonies generated by outbreeding was highest, followed by inbreeding (xenogamy) and selfing (geitonogamy). Moreover, genetic differentiation between filial generation colonies generated by selfing (geitonogamy) and inbreeding (i.e., xenogamy) was much smaller than that between filial generation colonies generated by selfing and outbreeding. The results indicated that the genetic effect of outbreeding was much more dominant than other mating modes. Therefore, artificially promoting outbreeding between the two isolated geographically populations contributed to the enhancement of genetic diversity in populations in S. chinensis.  相似文献   

17.
The importance of genotype-specific selection between host and symbiont, founder effect, and clonal reproduction in Rhizobia leguminosarum biovar trifolii populations is relatively unknown. A field experiment was conducted to sample 1268 isolates of R. l. bv. trifolii from four genotypically distinct Trifolium pratense plants for allozyme variation at nine loci. Genetic and genotypic variation, population genetic substructure, and linkage disequilibrium were estimated. Of the 1268 isolates 188 genotypically distinct strains (electrophoretic types or ETs) were identified with an average of 11.04 different ETs per plant. Total genetic diversity in the plot was 0.346 and most of the variation was found within plants (= 80%). Our data suggests that genotype-specific selection between the rhizobia and the four host-plant genotypes tested does not influence local population structure, but evidence of founder effect was present. Significant linkage disequilibrium was observed and is most likely due to the clonal reproduction of R. l. bv. trifolii.  相似文献   

18.
Allele-frequency data have been assembled for 35 blood-protein loci in 17 of 19 recognized species of Macaca based on 29 published electrophoretic studies; studies of inbred captive colonies have been excluded. Data for 22 polymorphic loci are tabulated in detail for 43 geographic populations of these species. Calculated FST values provide a measure of intergroup genetic differentiation at various hierarchical levels—troop, locality, province, country or island, species, species group; polymorphism indices measure genetic variation. The greatest intraspecific genetic differentiation occurs at the level of island populations within species. The pattern of genetic variation among island populations appears to be relictual, suggesting that the reduced genetic variability of island populations of macaques is a result of postisolation genetic drift rather than founder effect. Interspecific relationships were investigated by means of a jackknifed Fitch-Margoliash algorithm, using Papio as outgroup. Phylogenetic inferences based on morphology and zoogeography. The reduced genetic variability that frequently characterizes insular macaque populations complicates phylogenetic interpretation of blood-protein evidence.  相似文献   

19.
Islands are generally colonized by few individuals which could lead to a founder effect causing loss of genetic diversity and rapid divergence by strong genetic drift. Insular conditions can also induce new selective pressures on populations. Here, we investigated the extent of genetic differentiation within a white‐tailed deer (Odocoileus virginianus) population introduced on an island and its differentiation with its source mainland population. In response to their novel environmental conditions, introduced deer changed phenotypically from mainland individuals, therefore we investigated the genetic bases of the morphological differentiation. The study was conducted on Anticosti Island (Québec, Canada) where 220 individuals were introduced 120 years ago, resulting in a population size over 160,000 individuals. We used genotyping‐by‐sequencing (GBS) to generate 8,518 filtered high‐quality SNPs and compared patterns of genetic diversity and differentiation between the continental and Anticosti Island populations. Clustering analyses indicated a single panmictic island population and no sign of isolation by distance. Our results revealed a weak, albeit highly significant, genetic differentiation between the Anticosti Island population and its source population (mean FST = 0.005), which allowed a population assignment success of 93%. Also, the high genetic diversity maintained in the introduced population supports the absence of a strong founder effect due to the large number of founders followed by rapid population growth. We further used a polygenic approach to assess the genetic bases of the divergent phenotypical traits between insular and continental populations. We found loci related to muscular function and lipid metabolism, which suggested that these could be involved in local adaptation on Anticosti Island. We discuss these results in a harvest management context.  相似文献   

20.
Genetic management is required to maintain genetic diversity by minimizing inbreeding and genetic subdivision in colonies of animals bred for biomedical research. Polymorphic short tandem repeat (STR) loci are useful for genetic management because they facilitate parentage assignments, genetic characterization of individuals, and estimates of baseline population genetic parameters. Using highly informative STR loci, we estimated gene diversity and F-statistics to determine the level of genetic heterogeneity and genetic structure of three specific-pathogen-free (SPF) rhesus macaque (Macaca mulatta) colonies. Effective population sizes, variance in male reproductive success, and rate of decrease in genetic variability also were estimated for two of the three colonies. We documented the overall success of genetic management in maintaining genetic diversity in captive colonies. We report that even genetically managed SPF colonies, despite maintaining high and stable levels of gene diversity (over 0.75), are prone to genetic subdivision due to different management strategies, founder effects, genetic isolation, and drift. These processes are accelerated by the high variances in male reproductive success and low adult sex ratios that are typical of captive rhesus macaque breeding groups, both of which reduce the effective population sizes of these groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号