首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Radioactive alkylating 5'-[32P]-[4-(N-2-chlorethyl)N-methylaminobenzyl]-5'-phospham ide decadeoxyribothymidilate derivatives containing either free hydroxyl group (reagent I), hydrophobic cholesterol residue (reagent II) or polyaromatic phenazinium residue (reagent III) at 3'-termini were synthesized. The products were purified by HPLC and used for oligonucleotide-directed alkylating of DNA in isolated rat liver nuclei, Krebs-2 ascite carcinoma cells and L-929 murine fibroblasts. The uptake of reagent II by the cells was two orders of magnitude higher than that of reagent I and III. Intracellular alkylation of DNA by reagent II both in isolated nuclei and in living cells was about one order of magnitude higher than in the case of reagent I. The presence of phenazinium at 3'-termini of the reagent III leads to a sufficient increase of the alkylation extent compared to reagent I despite a quite low extent of its uptake by the cells.  相似文献   

2.
Alkylation of a single-stranded DNA 302-mer by a 5'-O-phosphoryl-[4-(N-2-chloroethyl-N-methylamino)benzyl]amide derivative of the tetradeoxyribonucleotide d(pApGpCpA) in the presence of 3',5'-di-N-(2-hydroxyethyl) phenazinium derivatives of tetranucleotides as effectors led to specific chemical cleavage of the target at the guanosine residues of the sites ... pTpGppT. The reagent can be selectively addressed to one of three alkylation sites with the aid of a pair of tetranucleotide effectors flanking the chemically reactive tetranucleotide in the complex with the target DNA. The yield of the cleavage depends on the concentration of both the reagent and effectors, and can be enhanced, if a chain of two or more effectors from each side of the reagent is used. In this case, 3',5'-di-Phn-tetranucleotide effectors are to immediately flank the reagent.  相似文献   

3.
Effectors for increasing the efficiency of DNA modification with the alkylating methylphosphonate analogues of oligodeoxyribonucleotides (MFAO) were suggested. Oligodeoxyribonucleotide d(pC5A8ACAATG) used as a target DNA treated with alkylating derivatives of octathymidylate having alternating methylphosphonate and phosphodiester internucleotide bonds (both Rp- and Sp-individual diastereoisomers of MFAO were used) and bearing alkylating 4-(N-methyl-N-2-chloroethylamino)benzyl phosphoramide residue at the 3'-end. The reactions were carried out in the presence of an effector, hexadeoxyribonucleotide derivative PhnNH(CH2)2NHpCATTGTpNH(CH2)2NHPhn bearing two N-(2-hydroxyethyl)phenazinium (Phn) residues at the 3'- and 5'-ends and being complementary to the part of the target DNA neighbouring with octaadenylate. It was shown that Tm of the duplex formed by the target DNA, octathymidylate and effector is by 7-13 degrees C higher than in the absence of the effector, thus considerably increasing the efficiency of the intracomplex alkylation of the target (e.g., at 40 degrees C, the increase for the reagent based on the Rp-isomer is sixfold). Specificity of the target DNA modification by the MFAO alkylating derivatives in the presence of effector is same as with reagents based on oligodeoxyribonucleotides with natural internucleotide bonds.  相似文献   

4.
The selective manipulation of the expression and replication of mitochondrial DNA (mtDNA) within mammalian cells has proven difficult. In progressing towards this goal we synthesized a novel mitochondria-targeted DNA-alkylating reagent. The active alkylating moiety [(11aS)-8-hydroxy-7-methoxy-1,2,3,11a-tetrahydro-5H-pyrrolo[2,1-c][1,4]benzodiazepin-5-one (DC-81)], irreversibly alkylates guanine bases in DNA (with a preference for AGA triplets), preventing its expression and replication. To target this compound to mitochondria it was covalently coupled to the lipophilic triphenylphosphonium (TPP) cation to form a derivative referred to as mitoDC-81. Incorporation of this lipophilic cation led to the rapid uptake of mitoDC-81 by mitochondria, driven by the large membrane potential across the inner membrane. This compound efficiently alkylated isolated supercoiled, relaxed-circular or linear plasmid DNA and isolated mtDNA. However mitoDC-81 did not alkylate mtDNA within isolated mitochondria or cells, even though it accessed the mitochondrial matrix at concentrations up to 100-fold higher than those required to alkylate isolated DNA. This surprising finding suggests that mtDNA within intact mitochondria may not be accessible to this class of alkylating reagent. This inability to alkylate mtDNA in situ has significant implications for the design of therapies for mtDNA diseases and for studies on the packaging, expression and turnover of mtDNA in general.  相似文献   

5.
The uptake, metabolism and alkylating properties of the diastereomeric cholesterol epoxides were studied using Chinese hamster lung fibroblasts (V79 cells). Specific emphasis is given to the comparative cyto- and geno-toxic effects of cholesterol 5 beta,6 beta-epoxide (beta CE) and cholesterol 5 alpha,6 alpha-epoxide (alpha CE) and data are provided for the first time indicating that beta CE can induce more 6-thioguanine-resistant cells than alpha CE. Cholesterol 5 beta,6 beta-epoxide induced colonies of cells resistant to 6-thioguanine at 2-3-fold the frequencies observed with the alpha-isomer, but neither compound produced ouabain-resistant colonies. The cytotoxicity (LD50) of alpha CE was estimated to be 45-50 microM whereas beta CE displayed an LD50 of 25-29 microM. Inhibition of DNA synthesis (IC50) was observed over the same dose ranges as the LD50 for each epoxide isomer. The epoxides were assimilated by cells to an equal extent, however, beta CE was metabolized to cholestane 3 beta,5 alpha-6 beta-triol twice as rapidly as the alpha-isomer. Both epoxides reacted with 4-(4'-nitrobenzyl)-pyridine to a similar extent, and with identical nucleophilic selectivity at pH 7.4, but their alkylating activity was estimated on this basis to be two orders of magnitude less than methyl methanesulfonate. Binding experiments with the DNA or cultured V79 cells or with calf-thymus DNA indicated that interactions were noncovalent and DNA binding did not correlate with the potency of the epoxides to induce the 6-thioguanine-resistant phenotype. Our results could be interpreted as indicating that both cholesterol epoxide isomers are weak mutagens or that they might induce some epigenetic event repressing the hypoxanthine guanine-phosphoribosyltransferase gene. The similarity of the epoxides' alkylating activity and their DNA-binding properties are inconsistent with their different potencies in inducing the 6-thioguanine-resistant phenotype, suggesting that the mechanism leading to this phenotype is not necessarily the result of DNA alkylation.  相似文献   

6.
A novel cationic derivative of cholesterol, 3 beta [N-(N',N'-dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol), has been synthesized and used to prepare sonicated liposomes with dioleoylphosphatidylethanolamine. This novel cationic liposome reagent facilitates efficient DNA mediated transfection in A431 human epidermoid carcinoma cells, A549 human lung carcinoma cells, L929 mouse fibroblast cells, and YPT minipig primary endothelial cells. The activity was greater than that of a commercial reagent, Lipofectin, and was approximately 4-fold less toxic than Lipofectin when assayed with A431 cells. The reagent is easy to synthesize and stable for at least 6 weeks.  相似文献   

7.
Abstract

The cooperative interactions of oligonucleotides on the complementary template were studied using the quantitative analysis of the template alkylation with the oligonucleotides bearing covalently attached 4-[N-(2-chloroethyl)-N-methylamino]benzyl group at 5′-end. The influence of the mismatched nucleotides and the stabilizing N-(2-hydroxyethyl)phenazinium group at the 5′- and 3′-ends of the oligonucleotides on the parameters of cooperativity was evaluated.  相似文献   

8.
Bovine lung angiotensin I-converting enzyme is rapidly and irreversibly inactivated by p-[N,N-bis(chloroethyl)amino]phenylbutyric acid (chlorambucil) and by the chlorambucil derivative of L-proline (chlorambucyl-proline). Chlorambucil is a nitrogen mustard alkylating agent that is used as an antineoplastic drug. At any one concentration, the inactivation is pseudo-first order with time. Inhibition by both substances is active site directed as suggested by the formation of a reversible enzyme-inhibitor complex prior to the alkylation reaction and by the fact that L-Phe-L-Pro, a reversible inhibitor which is competitive with substrate, is also competitive with both irreversible inhibitors in protecting the enzyme against inactivation. The second order rate constant for inactivation increases in the pH range 5-8 and reaches a value of 3.5 X 10(3) M-1 . min-1 for chlorambucil and 4.8 X 10(2) M-1 . min-1 for chlorambucyl-proline. Chlorambucyl [U-14C]L-proline reacts 1:1 with the converting enzyme and the uptake of radioactivity paralleled the loss of enzyme activity with and without protection by Phe-Pro. Once bound, the radioactive chlorambucyl proline was released (as the dihydroxy derivative) by hydroxide ion with a second order rate constant of 2.2 M-1 . min-1 at 25 degrees C. The radioactive label is also removed by hydroxylamine at pH 10. The lability of the irreversibly bound inhibitor in alkali and in hydroxylamine indicates that an ester bond is formed by the alkylation of an aspartic acid or glutamic acid side chain.  相似文献   

9.
C H Lee  E B Skibo 《Biochemistry》1987,26(23):7355-7362
A new class of purine antimetabolites, directed toward xanthine oxidase, was designed by employing some of the features found in the bioreductive alkylator mitomycin C. The design involved functionalizing the purine-like imidazo[4,5-g]quinazoline ring system as a quinone (4,9-dione) bearing a 2 alpha leaving group. Due to the presence of the electron-deficient quinone ring, the leaving group cannot participate in alkylation reactions. Reduction to the hydroquinone (4,9-dihydroxy) derivative, however, permits elimination of the leaving group to afford an alkylating quinone methide. In spite of the electronic differences, both quinone and hydroquinone derivatives of the imidazo[4,5-g]quinazoline system are able to enter the purine-utilizing active site of the enzyme. Thus, the hypoxanthine-like quinone derivative [2-(bromomethyl)-3-methylimidazo[4,5-g]quinazoline-4,8, 9(3H, 7H)-trione] and its hydroquinone derivative can act as reducing substrates for the enzyme, resulting in conversion to the xanthane-like 6-oxo derivatives. Hydrolysis studies described herein indicate that the hypoxanthine-like hydroquinone derivative eliminates HBr to afford an extended quinone methide species. The observed alkylation of the enzyme by this derivative may thus pertain to quinone methide generation and nucleophile trapping during enzymatic oxidation at the 6-position. Enzymatic studies indicate that the hypoxanthine-like quinone is an oxidizing suicide substrate for the enzyme. Thus, the reduced enzyme transfers electrons to this quinone, and the resulting hydroquinone inactivates the enzyme. As with mitomycin C, reduction and quinone methide formation are necessary for alkylation by the title quinone. This system is therefore an example of a purine active-site-directed reductive alkylator.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The ribonuclease A derivative Npi-[13C1]carboxymethyl-histine-119 ribonuclease prepared by using [13C1]bromoacetate as alkylating reagent has been investigated with high resolution 13C NMR spectroscopy. In the 13C NMR spectra two carbon resonances of relatively high intensity appear which can be assigned to carboxyl groups attached to His-119 and Met-30, their intensity ratio being 10 : 1. The pH dependence of the carbon resonance of the carboxy-methyl group bound to the Npi of His-119 differs in the absence and presence of Cyd-2'-P, thus indicating that the catalytically inactive derivative does bind nucleotides. A mechanism of the alkylation reaction at pH 5.6 is proposed in which the epsilon-amino group of Lys-41 acts as the binding site for the carboxyl group of bromoacetate pushing the bromomethylene group towards the Npi of His-119 or the Ntau of His-12.  相似文献   

11.
DNA recognition agents based on the indole-based aziridinyl eneimine and the cyclopent[b]indole methide species were designed and evaluated. The recognition process involved either selective alkylation or intercalating interactions in the major groove. DNA cleavage resulted from phosphate backbone alkylation (hydrolytic cleavage) and N(7) -alkylation (piperidine cleavage). The formation and fate of the eneimine was studied using enriched 13C NMR spectra and X-ray crystallography. The aziridinyl eneimine specifically alkylates the N(7) position of DNA resulting in direction of the aziridinyl alkylating center to either the 3'- or 5'-phosphate of the alkylated base. The eneimine species forms dimers and trimers that appear to recognize DNA at up to three base pairs. The cyclopent[b]indole quinone methide recognizes the 3'-GT-5' sequence and alkylates the guanine N(7) and the thymine 6-carbonyl oxygen causing the hydrolytic removal of these bases. In summary, new classes of DNA recognition agents are described and the utility of 13C-enrichment and 13C NMR to study DNA alkylation reactions is illustrated.  相似文献   

12.
Calculations of probabilities of the complementary addressed modification of target NA by 3'- or 5'-reactive derivatives of oligonucleotides carrying a 4-[N-(2-chloroethyl)-N-methyl]aminobenzyl group attached to the 3'- or 5'-terminal phosphates through a phosphoroamide linkage have been made. It is shown that the structural basis of the high efficiency and positional specificity depending on the NA target base sequence is the extent of structural correspondence of the energetically optimal conformation of the active group in the complex to the mutual arrangement of the active group and nucleophilic site needed for the chemical reaction. The 3'-derivative has the highest dependence of efficiency and positional specificity of the alkylation on the target NA base sequence. The maximal positional specificity of the alkylation is found for the modification of the cytidine at the first position from the terminal complementary base pair at the 5'-end of the target NA. For the 5'-derivative, the alkylating ability was determined to depend on the insertion of additional methylene bridges into the standard phosphoroamide linker: two methylene groups provide for the maximal increase of the modification ability of the nucleophilic site of the target NA in the double-stranded part of the complex. The efficiency of alkylation of the target NA in a three component complex with oligonucleotide-effector also complementary to the target NA have been studied. It was found that formation of the three-component complex lead to an additional stabilization of the conformation needed for the reaction of the active group, in comparison with two-component complex, by means of the intercalation of the phenyl group of the reagent in the gap between the oligonucleotide derivative and the oligonucleotide effector.  相似文献   

13.
Conjugates 7, 8, and 10 of N-methylpyrrole (Py)-N-methylimidazole (Im) polyamides and 1,2,9,9a-tetrahydrocyclopropa[1,2-c]benz[1,2-e]indol-4-one (CBI) with a 5-amino-1H-indole-2-carbonyl linker were synthesized by Fmoc solid-phase synthesis and a subsequent liquid-phase coupling procedure. The DNA alkylating abilities of conjugates 7, 8, 6b, and 10 were examined using Texas Red-labeled PCR fragments and high-resolution denaturing gel electrophoresis. CBI conjugates 7 and 8 exhibited highly efficient sequence-specific DNA alkylation comparable with previous CBI conjugates with a vinyl linker. In particular, conjugate 10, with a 10-ringed hairpin Py-Im polyamide, alkylated at the adenine of 5'-ACAAATCCA-3'. Introduction of an indole linker greatly facilitated the synthesis of sequence-specific alkylating Py-Im polyamides.  相似文献   

14.
A new strategy based on the use of cooperative tandems of short oligonucleotide derivatives (TSOD) has been proposed to discriminate a "right" DNA target from a target containing a single nucleotide discrepancy. Modification of a DNA target by oligodeoxyribonucleotide reagents was used to characterize their interaction in the perfect and mismatched complexes. It is possible to detect any nucleotide changes in the binding sites of the target with the short oligonucleotide reagent. In the presence of flanking di-3',5'-N-(2-hydroxyethyl)phenazinium derivatives of short oligonucleotides (effectors) the tetranucleotide alkylating reagent modifies DNA target efficiently and site-specifically only in the perfect complex and practically does not modify it in the mismatched complex. It has been shown that TSOD is much more sensitive tool for the detection of a point mutation in DNA as compared to a longer oligonucleotides.  相似文献   

15.
Escherichia coli has two DNA glycosylases for repair of DNA damage caused by simple alkylating agents. The inducible AlkA DNA glycosylase (3-methyladenine [m3A] DNA glycosylase II) removes several different alkylated bases including m3A and 3-methylguanine (m3G) from DNA, whereas the constitutively expressed Tag enzyme (m3A DNA glycosylase I) has appeared to be specific for excision of m3A. In this communication we have reexamined the substrate specificity of Tag by using synthetic DNA rich in GC base pairs to facilitate detection of any possible methyl-G removal. In such DNA alkylated with [3H]dimethyl sulphate, we found that m3G was excised from double-stranded DNA by both glycosylases, although more efficiently by AlkA than by Tag. This was further confirmed using both N-[3H]methyl-N-nitrosourea- and [3H]dimethyl sulphate-treated native DNA, from which Tag excised m3G with an efficiency that was about 70 times lower than for AlkA. These results can explain the previous observation that high levels of Tag expression will suppress the alkylation sensitivity of alkA mutant cells, further implying that m3G is formed in quantity sufficient to represent an important cytotoxic lesion if left unrepaired in cells exposed to alkylating agents.  相似文献   

16.
Efficiency of the intracomplex alkylation of octadecadeoxyribonucleotide d(pC5A8C5) (target) by Rp- and Sp-individual diastereomers of the methylphosphonate octathymidylate 4-(N-methyl-N-2-chloroethylamino)benzyl phosphoramide (-pNHCH2RCl) derivatives bearing an additional N-(2-hydroxyethyl)phenazinium residue (phn), viz. ClRCH2NHpTp.(TpTp)3TpNH(CH2)2NHPhn (I) and PhnNH(CH2)2NHpTp(TpTp)3TpNHCH2RCl (II) (p = -OP(O) (CH3)O-), has been investigated. Stabilisation of the complementary complex formed by the target oligonucleotide and methylphosphonate oligonucleotide derivatives by the Phn group considerably rose the efficiency of the intracomplex alkylation of the target as compared with alkylation by reagents without Phn. RP-isomeric derivatives of (I) and (II) proved to be the most effective alkylating reagents. Specificity of alkylation of nucleic acid target by reagents (I) and (II) is studied.  相似文献   

17.
Covalent adduct--the product of intracomplex alkylation at N-3-position of dC-8-nucleoside residue of target octanucleotide pd[TGTTTGGC] was completely synthesized by means of 4-[N-methyl-N-(2-chloroethyl)amino]benzyl-5'-phosphamido derivative of heptanucleotide pd[CCAAACA]. Its melting temperature was shown to be 70 degrees C. Tm did not depend on covalent adduct concentration and was by 40 degrees C higher than that for unmodified duplex pd[TGTTTGGC].pd[CCAAACA] at concentration of 0.5 x 10(-4) M. The spatial structure of the covalent adduct in aqueous solution was investigated by two-dimensional 3H-NMR spectroscopy. The assignment of oligonucleotide protons as well as protons of a modifying group was carried out using COSY, COSY-DQF and NOESY experiments. Conformational analysis of proton-proton coupling constants for H1', H2'a, H2'b and H3' protons showed the sugar residues to be in 2'-endo conformation. Analysis of NOE connectivities observed between the protons of the alkylating group and oligonucleotide protons yielded conclusion, regarding the 4-[N-methyl-N-(2-chloroethyl)amino]benzylamido 5'-residue being localized in the region of the lacked nucleoside residue of the heptanucleotide chain about 5 A apart from the dC-1 residue and from cytosine base of the alkylated dC-8 residue.  相似文献   

18.
Alkylation at the N7 position of guanine in DNA renders the C8-hydrogen acidic. This serves as the basis for an assay of guanine N7 alkylation using [8-3H]-guanine-labeled DNA. I modified the assay by preparing a high specific activity substrate in vitro and by replacing the distillation step with charcoal adsorption of substrate. Using the appearance of noncharcoal-adsorbable label as a measure of guanine-N7 alkylation I examined the reaction of DNA with dimethyl sulfate and mechlorethamine. The rate of reaction of dimethyl sulfate with the N7 position of guanine in DNA was constant over time, i.e., loss of label from DNA proceeded linearly with time. On the other hand, the rate of reaction of mechlorethamine with DNA increased with time, consistent with the initial formation of the reactive aziridinium ion. The assay can also be used to compare the reaction rates of various alkylating agents with DNA. Thus, the acridine mustards ICR-170 and quinacrine mustard were far more potent alkylating agents than mechlorethamine. Furthermore the assay may be used to determine the alkylating potency and stability of various alkylating agent preparations: while frozen solutions of acridine mustards in organic solvents retained alkylating activity for several months, different commercial preparations of quinacrine mustard had little or no alkylating activity.  相似文献   

19.
It is shown that alkylating reagent 2',3'-O-[4-(N-2-chloroethyl-N-methylamino)]-benzylidene nonathymidilyluridine penetrates into the Krebs-2 ascite carcinoma cells and efficiently alkylates their polymers. Nearly 30% of the reagent penetrated into the cell is consumed by nucleic acids. In conditions providing stability of the complementary complexes the modification extent of poly(A) fragments is two orders of magnitude greater than that of other nucleic acids fractions. No destruction of the oligonucleotide moiety of the reagent occurs in the course of intracellular alkylation.  相似文献   

20.
Reaction of ATP with N,N,N'-tris(2-chloroethyl), N' (p-formyl-phenyl)propylenediamine-1,3 (abbreviation C13R) afforded a gamma-ester of ATP (abbreviation C1RpppA) - the product of alkylation by an aliphatic nitrogen mustard residue of C13R. The alkylating activity of the aromatic nitrogen mustard residue of C1RpppA is suppressed by the electron-acceptor effect of the p-formyl group. C1RpppA is a substrate of RNA-polymerase, and affords RNA with C1RpppA-residues at the 5'-termini.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号