首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between habitat stability, demography, and population genetic structure was explored by comparing temporal microsatellite variability spanning a decade in two closely-related hermaphroditic freshwater snails from Cameroon, Bulinus forskalii and Bulinus camerunensis . Although both species show similar levels of preferential selfing, microsatellite analysis revealed significantly greater allelic richness and gene diversity in populations of the highly endemic B. camerunensis compared to those of the geographically-widespread B. forskalii . Additionally, B. camerunensis populations showed significantly lower spatial genetic differentiation, higher dispersal rates, and greater temporal stability compared to B. forskalii populations over a similar spatial scale. This suggests that a more stable demography and greater gene flow account for the elevated genetic diversity observed in this geographically-restricted snail. This contrasts sharply with a metapopulation model (which includes extinction/contraction, recolonization/expansion, and passive dispersal) invoked to account for population structuring in B. forskalii . As intermediate hosts for medically important schistosome parasites, these findings have ramifications for determining the scale at which local adaptation may occur in the coevolution of these snails and their parasites.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 747–760.  相似文献   

2.
Over three consecutive years, we surveyed the temporal variability in genetic structure of sardine populations in the Bay of Biscay and effective population size. Based on individual age, the genetic structure of year classes of the fishes was also surveyed, showing that populations of sardines have weak but significant genetic differences between sampling years and between year classes. We used two different methods to assess effective population size. The methods resulted in different values but a similar range, indicating a low effective population for Sardina pilchardus . Effective population size decreased over the 3 years, probably resulting from an abundance of fish in the Bay. Based on these results, we conclude that temporal variability in the genetic structure of the sardine population and effective size are likely related to environmental conditions in the Bay. Finally, we propose to use effective population size to estimate biomass of sardines in the Bay.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 591–602.  相似文献   

3.
The phylogeography of the bark beetle Ips typographus was assessed using five microsatellite markers. Twenty-eight populations were sampled throughout Europe on the host tree Picea abies . I. typographus showed very low levels of genetic diversity, and the study revealed a lack of genetic structure across Europe. No significant barrier to gene flow was found, even though P. abies has a fragmented distribution. A weak but significant effect of isolation by distance was found. These results suggest a high dispersal capacity of I. typographus , which leads to low genetic differentiation between populations. Its high dispersal capacity is likely to have prevented I. typographus from developing important local adaptations to its host, which would have influenced its genetic structure. The nuclear data was compared to previously published mitochondrial data that showed strong differentiation between Central–Northern European populations and Russian–Baltic populations, and a founder effect in Scandinavia, probably reflecting the postglacial history of I. typographus . Discrepancies between nuclear and mitochondrial markers could be due to the maternal inheritance of mitochondrial DNA, and to sex-biased dispersal in I. typographus . The overall low genetic diversity observed on both markers on a large geographical scale is discussed. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 239–246.  相似文献   

4.
Levels of allozyme variation, population genetic structure, and fine-scale genetic structure (FSGS) of the rare, both sexually and clonally reproducing terrestrial orchid Epipactis thunbergii were examined for eight ( N  = 734) populations in a 20 × 20-km area in South Korea. Twenty-three putative allozyme loci resolved from 15 enzyme systems were used. Extremely low levels of allozyme variation were found within populations: the mean frequency of polymorphic loci was 3.8% [isocitrate dehydrogenase ( Idh-2 ) with two alleles was polymorphic across populations], the mean number of alleles per locus was 1.04, and the mean expected heterozygosity was 0.013. The overall fixation index was not significantly different from zero ( F IS = 0.069), although the species is self-compatible. However, a significantly high degree of population differentiation was found between populations at Idh-2 ( F ST = 0.388) in the studied area. Furthermore, spatial autocorrelation analyses revealed a significant FSGS (up to 3 m) within populations. These observations suggest that the main explanatory factors for the extremely low levels of genetic diversity and the shaping of the population genetic structure of E. thunbergii are genetic drift as a result of a small effective population size, a restricted gene flow, and the isolation of populations. Considering the current genetic structure of E. thunbergii , three guidelines are suggested for the development of conservation strategies for the species in South Korea: (1) protection of habitats of standing populations; (2) prohibition by law of any collection of E. thunbergii ; and (3) protection of nearby pollinator populations, given the fact that fruit set in natural habitats is very low.  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 155 , 161–169.  相似文献   

5.
We tested for genetic differentiation between populations of Rhagoletis alternata Fall. (Diptera: Tephritidae) on three different host species. We collected larvae from three rose species of the section Caninae ( Rosa canina L., Rosa corymbifera Borkh . , and Rosa rubiginosa L.) from 15 sites across Germany, where the three roses occurred together. Additionally, we sampled three sites in Switzerland. Roses differ in morphology (e.g. leaf glands) as well as phenology. We were able to score nine allozyme loci (five polymorphic). Populations from the three hosts did not differ in genetic variability. We found significant genetic differentiation between populations from different host species. However, the differentiation was very low (0.9%). Hence, we found no indication for host races. Furthermore, surprisingly little geographical structure of genetic differentiation was found between populations of this fruit fly across central Europe. We offer three mutually non-exclusive explanations for these findings. First, gene flow between populations of Rh. alternata is high. Second, the pattern of genetic differentiation is based on a recent expansion of the distributional range . Third, the ongoing gene flow between roses of the section Caninae acts as a hybrid bridge.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 619–625.  相似文献   

6.
Allozyme diversity was evaluated in four closely-related taxa of the Delphinium series Fissa distributed throughout the Western Mediterranean area. All are considered threatened plants. Delphinium bolosii and Delphinium mansanetianum are narrowly endemic to the Eastern Iberian Peninsula, whereas Delphinium fissum ssp. sordidum is found in a few populations across the Peninsula. Delphinium fissum ssp. fissum is more widely distributed but often in small and isolated populations. In this group, Delphinium bolosii is dysploid (2 n  = 18) whereas the other taxa are diploid (2 n  = 16). A total of 12 populations were surveyed, including all known locations for D. bolosii , D. mansanetianum , and D. fissum ssp. sordidum . Eleven enzyme systems were assayed and 15 loci were resolved. Markedly depauperate values for genetic diversity were obtained for D. mansanetianum ( H e = 0.013) and D. fissum ssp. sordidum ( H e = 0.044). The estimates for D. fissum ssp. fissum ( H e = 0.071) were below the values expected for widespread species. Small population size and marginal distribution have probably contributed to the low variability observed in this group. By contrast, D. bolosii exhibited comparatively larger populations and greater genetic diversity ( H e = 0.138). We suggest that, apart from population size and local adaptation, genetic diversity during speciation may have been promoted by dysploidy through genomic recombination.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 773–784.  相似文献   

7.
Acoustic features are important for individual and species recognition. However, while dialectal variations in song characteristics have been described in many songbirds, geographical divergence in vocal features across populations has seldom been studied in birds that are not thought to have song-learning abilities. Here, we document marked differences in the vocal structure of calls of two populations of black-legged kittiwakes ( Rissa tridactyla ), a seabird whose call is considered as not being learned from other individuals. We found that calls vary both within and between populations. Within-population variation may convey individual identity, whereas the marked differences in frequency and temporal parameters observed between the two populations may reveal ongoing divergence among kittiwake populations. Moreover, we were unable to detect any sex signature in adult calls in a Pacific population (Middleton, Alaska), while these were detected in an Atlantic population (Hornøya, Norway), potentially affecting sexual behaviours. Despite the fact that these calls seemed to change over the reproductive season and across years, the individual signature remained fairly stable. Such vocal differences suggest that Pacific and Atlantic populations may be undergoing behavioural divergences that may reveal early stages of speciation, as is suggested by molecular data.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 289–297.  相似文献   

8.
We studied population genetic variation and structure in the fire ant Solenopsis invicta using nuclear genotypic and mitochondrial DNA (mtDNA) sequence data obtained from samples collected throughout its native range. Geographic populations are strongly differentiated at both genomes, with such structure more pronounced in Brazil than in Argentina. Higher-level regional structure is evident from the occurrence of isolation-by-distance patterns among populations, the recognition of clusters of genetically similar, geographically adjacent populations by ordination analysis, and the detection of an mtDNA discontinuity between Argentina and Brazil coinciding with a previously identified landform of biogeographical relevance. Multiple lines of evidence from both genomes suggest that the ancestors of the ants we studied resembled extant northern Argentine S. invicta , and that existing Brazilian populations were established more recently by serial long-distance colonizations and/or range expansions. The most compelling evidence for this is the corresponding increase in F K (a measure of divergence from a hypothetical ancestor) and decrease in genetic diversity with distance from the Corrientes population in northern Argentina. Relatively deep sequence divergence among several mtDNA clades, coupled with geographical partitioning of many of them, suggests prolonged occupation of South America by S. invicta in more-or-less isolated regional populations. Such populations appear, in some cases, to have come into secondary contact without regaining the capacity to freely interbreed. We conclude that nominal S. invicta in its native range comprises multiple entities that are sufficiently genetically isolated and diverged to have embarked on independent evolutionary paths.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 541–560.  相似文献   

9.
An in vitro evolution model was used to study changes in the genetic diversity of 24 strains of Pichia guilliermondii isolated from the midgut of bark beetles of the genus Dendroctonus . The genetic diversity of P. guilliermondii strains over 400 generations was analysed using multilocus enzyme electrophoresis (MLEE) and random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) markers. Resemblance relationships among strains were observed by cluster analysis. From the MLEE and RAPD markers, it was shown that the effective number of alleles, polymorphism and expected heterozygosity varied over the generations. The average heterozygosity among generations was statistically significant. Both the genetic diversity and the average heterozygosity were statistically significant among generations. The reduction in the population size from 109 to 105 yeast mL−1 associated with each transfer in P. guilliermondii strains and the clonal population structure observed along 400 generations suggest that genetic diversity changes and the observed replacement of genotypes are a consequence of a genetic drift process and not of the reproductive mode.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 475–486.  相似文献   

10.
The Hengduan Mountains are the core region of the Himalaya hotspot, and are renowned for their high levels of endemism. Gentiana atuntsiensis and G. striolata are two closely related and morphologically similar species endemic to this region. In this study, inter-simple sequence repeat (ISSR) markers were used to investigate the genetic structure within these two species, as well as the differentiation between them. An analysis of molecular variance-derived estimate demonstrated only 13.5% of genetic differentiation between the two species. Considering their adjacent distribution patterns, low genetic divergence, and clear clustering into two groups, it is hypothesized that the two species arose from a rapid and recent speciation event induced mainly by geographical isolation. A relatively high level of genetic diversity was revealed in each species (Shannon's index of diversity: H sp = 0.324 and 0.391; H pop = 0.225 and 0.274; for G. atuntsiensis and G. striolata , respectively). Most of the genetic variation was partitioned within populations ( Ø ST = 0.232 and 0.226 in G. atuntsiensis and G. striolata , respectively). The large population sizes, outcrossing breeding system, and small, light seeds that disperse widely may explain the genetic structure in both species.  © 2007 The Linnean Society of London. Botanical Journal of the Linnean Society , 2007, 154 , 225–232.  相似文献   

11.
Amplified fragment length polymorphism (AFLP) was used to characterize genetic diversity of the endangered Burnt Orchid, Neotinea (formerly Orchis ) ustulata . Fingerprinting of Estonian and British populations revealed surprisingly little genetic differentiation between populations but larger amounts of diversity within populations, especially in Britain. The resulting mean F st value of 0.51 is unusually high for an orchid species. Much of the variation follows a west–east cline across Europe, whereas the much-discussed early- and late-flowering taxa of N. ustulata are considered insufficiently distinct to be viewed as separate subspecies. The later flowering N. ustulata var. aestivalis probably evolved independently on two or three occasions, each time diverging from the earlier flowering nominate race. The identity of the genes underpinning phenology in the species, and the potential selective advantages of phenological divergence, merit further study. Overall genetic diversity within populations is sufficiently high to render impoverishment an unlikely cause of their recent, precipitous decline.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 87 , 13–25.  相似文献   

12.
Pleistocene climatic oscillations strongly influenced the genetic composition of many species which are often divided into several genetic lineages. In this context, we studied the allozymes of a common and widely distributed butterfly, the common blue Polyommatus icarus, over a large part of Europe. The species had a rather high genetic diversity within populations with a strikingly high mean number of alleles per locus (2.98). In contrast, differentiation between populations was very low ( F ST: 0.0187). Only a marginal trend of decline in genetic diversity from the south to the north was observed. Isolation-by-distance existed on a European scale ( r =  0.826), but not at a regional level. Regional differentiation between populations in western Germany was extremely low ( F ST: 0.0041). It is probable that P. icarus was widely distributed in the Mediterranean region during the last ice age and expanded into central Europe in the postglacial period without major genetic erosion. Moderate present and past gene flow in an intact metapopulation structure may have occurred on local, regional and perhaps even continental scales.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 80 , 529–538.  相似文献   

13.
The endemic Hawaiian grouper, Epinephelus quernus , is a commercially important species experiencing intense fishing pressure in part of its distributional range. We examined population genetic structure with 398 base pairs of the mitochondrial control region across a large portion of the range of E. quernus , spanning approximately 2000 km of the Hawaiian archipelago. Examination of genetic diversity shows that Gardner Island, situated midway along the island chain, harbours the most diverse haplotypes. F -statistics and Bayesian estimates of migration also reveal the mid-archipelago as genetically differentiated, where the first significant break among adjacent pairs of populations lies between the islands of Nihoa and Necker. Most island comparisons beyond Necker and Gardner to the north-west and among the lower five islands to the south-east show little to no genetic differences. Evidence of historical population expansion across the islands was also found by Maximum Likelihood analyses. The results suggest that management should be structured to reflect the genetic differentiation and diversity in the mid-archipelago, the patterns of which may be associated with oceanic current patterns.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 81 , 449–468.  相似文献   

14.
Colony kin structure and spatial population structure were studied in multiple populations of the ant Formica lemani , using allozymes and DNA microsatellites. Average genetic relatedness between nestmate workers varied little between populations ( r  = 0.51–0.76), indicating that the average colony kin structure was relatively simple. Worker genotypes could not be explained with a single breeding pair in all nests, however, and the distribution of relatedness estimates across nests was bimodal, suggesting that single- and multi-queen colonies co-occur. We studied spatial population structure in a successional boreal forest system, which is a mixture of different aged habitats. Newly clear-cut open habitat patches are quickly colonized by F. lemani , where it is able to persist for a limited number of generations. Newly-founded populations showed signs of a founder effect and spatial substructuring, whereas older populations were more homogenous. This suggests that new populations are founded by a limited number of colonizers arriving from more than one source. Genetic differentiation among local populations was minor, indicating strong migration between them. There were, however, indications of both isolation by distance and populations becoming more isolated as habitat patches grew older.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 247–258.  相似文献   

15.
Based on population genetic theory and empirical studies of small populations, we expect that species with very small ranges (narrow endemics) will exhibit reduced genetic diversity, increasing their susceptibility to the negative effects of genetic homogeneity. Although this pattern of reduced diversity applies to most narrow endemics, conservation biologists have yet to identify a general pattern for the degree of spatial population genetic structure expected in species with very small ranges. In part, this is because the degree of population structure within narrow endemics will be highly variable depending on the equilibrium between the homogenizing effects of dispersal and the diversifying effects of drift and local selection in small populations, thus precluding general predictions about the relative importance of small range, small population sizes, and habitat patchiness for maintaining genetic diversity in narrowly-distributed species. We document a striking example of high population structure in the tiny geographic range of a stream-dwelling catfish, Trichogenes longipinnis , endemic to the Atlantic Forest of Brazil. The maintenance of this diversity results from a combination of asymmetrical and limited dispersal, and drift in small populations. Our results highlight the need to understand population structure, and not only overall genetic diversity, of narrowly-distributed species for their conservation planning.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 259–274.  相似文献   

16.
We used RAPDs (Random Amplified Polymorphic DNAs) to investigate genetic diversity and its partition within and between three populations of Iris aphylla in Poland. Analysis of Molecular Variance (AMOVA) of 84 distinct RAPD multiband genotypes revealed higher variation within populations (77.2%) than genetic differentiation between them (22.8%, P  < 0.002). Values of genetic diversity indices ( H ) were similar in all three sites (0.21–0.24). The differentiation of the populations corresponded to low average gene flow ( Nm  = 0.81). Our results indicated that genetic diversity was independent of population size. We concluded that although sexual reproduction and gene flow between populations of I. aphylla were very limited, they preserved high levels of genetic diversity. Relatively large number of seeds, which migrated in the past to populations, as well as patterns of reproduction and life history of I. aphylla may explain this situation.  © 2003 The Linnean Society of London, Botanical Journal of the Linnean Society , 2003, 142 , 65–72.  相似文献   

17.
The genetic diversity and structure of four populations of the cycad Zamia loddigesii were studied throughout its range in Mexico. Allozyme electrophoresis of 15 loci was conducted. The mean number of alleles per locus was 1.80 ± 0.09, the percentage of polymorphic loci was 66.6 ± 5.4, and the expected heterozygosity was 0.266 ± 0.02. The results indicated that the genetic diversity was relatively higher, with respect to tropical tree species and other cycads. The genetic variation explained by differences among populations was 18%. On average, gene flow between paired populations was similar ( Nm  = 1.6) to other tropical forest trees and cycad species. Our results indicated that the geographical isolation among populations of Z. loddigesii generated allele loss, as well as a clinal variation in the frequencies of two loci ( MDH and MNR2 ), in relation to the latitudinal distribution of populations. The populations have become fragmented due to increasingly higher pressure of habitat conversion and disturbance. The importance of the establishment of sanctuaries and protected areas and a reduction in deforestation is highlighted in this research as a way of preserving the high genetic diversity of this and other endemic species.  © 2006 The Linnean Society of London, Botanical Journal of the Linnean Society , 2006, 152 , 533–544.  相似文献   

18.
Temporal evolution of genetic variability may have far-reaching consequences for a diverse array of evolutionary processes. Within the polders of the Bay of Mont-Saint-Michel (France), populations of the land snail Helix aspersa are characterized by a metapopulation structure with occasional extinction processes resulting from farming practices. A temporal survey of genetic structure in H . aspersa was carried out using variability at four microsatellite loci, in ten populations sampled two years apart. Levels of within-population genetic variation, as measured by allelic richness, H e or F is , did not change over time and similar levels of population differentiation were demonstrated for both sampling years. The extent of genetic differentiation between temporal samples of the same population established (i) a stable structure for six populations, and (ii) substantial genetic changes for four populations. Using classical F -statistics and a maximum likelihood method, estimates of the effective population size ( N e) illustrated a mixture of stable populations with high N e, and unstable populations characterized by very small N e estimates (of 5–11 individuals). Owing to human disturbances, intermittent gene flow and genetic drift are likely to be the predominant evolutionary processes shaping the observed genetic structure. However, the practice of multiple matings and sperm storage is likely to provide a reservoir of variability, minimizing the eroding genetic effects of population size reduction and increasing the effective population size.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 89–102.  相似文献   

19.
The monsoon affected mountains of the southern Arabian Peninsula harbour in climatically favoured refugia vegetation elements of palaeo-African origin. To understand better the temporal and spatial differentiation of these refugia, chloroplast variation in Justicia areysiana Deflers (Acanthaceae), a shrub species endemic to the Yemeni and Omani mountains close to the Arabian Sea, was studied using PCR-RFLP and chloroplast microsatellite diversity. Eleven haplotypes were characterized and show a distinct geographical distribution pattern with a deep split between populations from south Yemeni fog oases and those from Hawf Mountains/Dhofar region in east Yemen and south Oman. Very limited haplotype diversity within populations (hS = 0.15) and a high level of population differentiation (GST = 0.81) demonstrate the strong genetic isolation of populations from each other. Past oscillations between humid and arid periods connected with glacial and interglacial episodes in the Pleistocene and Holocene are considered responsible for the observed patterns of genetic variation.  © 2005 The Linnean Society of London, Botanical Journal of the Linnean Society , 2005, 148 , 437–444.  相似文献   

20.
Cochlearia polonica , a narrow endemic of southern Poland, is one of the rarest and most endangered species of the European flora. All natural populations are extinct and the species has survived in only one transplanted population derived from 14 original individuals. Using AFLPs, the genetic variation and spatial structure of this population were analysed approximately 30 years after transplantation. The incidence of polymorphic AFLP bands (30.46%) is low compared with data from a natural population of another Cochlearia species, C. tatrae . Principal co-ordinates and spatial autocorrelation analyses demonstrated the presence of significant genetic structure. It is recommended that conservation efforts on C. polonica should preserve the complete population area, because local extinctions may lead to a loss of genetic information. The presence of genetic structure should also be taken into account during the sampling of material (plants or seeds) for ex situ conservation measures.  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 155 , 527–532.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号