首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
3.
4.
AIM:To characterize single-cell-derived mouse clonal mesenchymal stem cells (mcMSCs) established with bone marrow samples from three different mouse strains. METHODS:We established mcMSC lines using subfractionation culturing method from bone marrow samples obtained from long bones.These lines were characterized by measuring cell growth, cell surface epitopes, differentiation potential, lineage-specific gene expression and T-cell suppression capability. Nonclonal MSCs isolated by the conventional gradient centrifugation method were used as controls. RESULTS:All mcMSC lines showed typical nonclonal MSC-like spindle shape morphology. Lines differed inoptimal growth density requirement.Cell surface epitope prof iles of these mcMSC lines were similar to those of nonclonal MSCs. However, some lines exhibited different expression levels in a few epitopes, such as CD44 and CD105. Differentiation assays showed that 90% of the mcMSC lines were capable of differentiating into adipogenic and/or chondrogenic lineages, but only 20% showed osteogenic lineage differentiation. T-cell suppression analysis showed that 75% of the lines exhibited T-cell suppression capability. CONCLUSION:mcMSC lines have similar cell morphology and cell growth rate but exhibit variations in their cell surface epitopes, differentiation potential, lineage-specifi c gene expression and T-cell suppression capability.  相似文献   

5.
Adenovirus-mediated transfer of RA538 gene and its antitumor effect   总被引:1,自引:0,他引:1  
The RA538 cDNA was transferred into human ovarian cancer cell line SK-OV-3 and human melanoma cell line WM-983A by its recombinant adenoviral vector constructed through homologous recombination. It was demonstrated that the recombinant adenovirus could transfer RA538 gene with high efficiency, and could obviously inhibit tumor growth, with the inhibiting rates of 85% and 73% respectively, at the same time greatly repress the colony forming ability of the cells. The therapeutic experiments on transplanted subcutaneous tumor model in nude mice demonstrated that RA538 could significantly inhibit tumor growth. Flow cytometry and DNA fragmentation analysis indicated that RA538 could induce the cell cycle G1 arrest/apoptosis of the tumor cells. The expression of cmyc gene was found pronouncedly reduced by Western blot analysis. These results suggest that the RA538 recombinant adenovirus could be a promising drug in cancer gene therapy.  相似文献   

6.
Our previous studies showed that EDRF1 influenced expression of a-globin mRNA and synthesis of hemoglobin in K562 cells and modulated self-renewal of K562 cells. To illuminate the function of EDRF1 in K562 cells, sense and antisense EDRF1 constructs were prepared and transfected into K562 cells. By using microarray and dot blot assay, 60 cytokine receptors and some oncogenes sharing important functions in cell proliferation and differentiation were investigated. The results of this study demonstrated that IL-6 receptor, GM-CSF receptor, c-Jun/c-Fos, c-Myc and c-kit genes were regulated by antisense EDRF1 expression. The regulation was confirmed by RNA blot assay. GATA-1 mRNA expression was modulated by EDRF1 gene transfection. Electrophoretic mobility shift assay suggested that the DNA-binding activity of GATA-1 was remarkably inhibited in K562 cells expressing EDRF1 antisense gene. DNA binding activity of NF-E2 was at the same level as control experiment. Therefore EDRF1 may play a role in erythroid pro  相似文献   

7.
To explore the efficiency and mechanism of ovarian carcinoma gene therapy with the human fast-twitch skeletal muscle troponin I gene (TnI-fast), TnI-fast cDNA was transferred into human ovarian adeno-carcinoma cell-line SK-OV-3. In vitro, the cell growth and cell cycle of TnI-fast-, vector-, and mock-transfected cells were determined by MTT and flow cytometry assay, respectively. The condi-tioned media of TnI-fast-, vector-, and mock-transfected SK-OV-3 cells were collected, and the cell pro-liferation inhibiting rates of human umbilical cord venous endothelial cells (HUVECs) by the three conditioned media were assayed. All the three cell lines were implanted into node mice, and the tumor growth, cell apoptosis, angiogenesis, and expression of TnI-fast were observed or analyzed, respec-tively. In vitro, expression of TnI-fast protein had no inhibiting effect on the growth of the dominant and stable transfectant cells, but endothelium, when compared with vector-transfected cells and nontrans-fected parental SK-OV-3 cells. Implantation of stable clone expressing TnI-fast in the female BALB/c nude mice inhibits primary tumor growth by an average of 73%. The nude mice grafts expressing TnI-fast exhibit a significant decrease of microvascular density, a higher rate of tumor cells apoptosis and a comparable proliferation rate as control. Our study, to our knowledge, shows the slowed down growth of the primary ovarian carcinoma, suggested that grafts were self-inhibitory by halting angio-genesis. Our data might also provide a novel useful strategy for cancer therapy by antiangiogenic gene therapy with a specific angiogenesis inhibitor TnI-fast.  相似文献   

8.
G protein-coupled receptors (GPRs) are highly related to oncogenesis and cancer metastasis. G protein-coupled re- ceptor 137 (GPR137) was initially reported as a novel orphan GPR about 10 years ago. Some orphan GPRs have been implicated in human cancers. The aim of this study is to investigate the role of GPR137 in human colon cancer. Expression levels of GRP137 were analyzed in different colon cancer cell lines by quantitative polymerase chain re- action and western blot analysis. Lentivirus-mediated short hairpin RNA was specifically designed to knock down GPR137 expression in colon cancer cells. Cell viability was measured by methylthiazoletetrazolium and colony forma- tion assays. In addition, cell cycle characteristic was investi- gated by flow cytometry. GRP137 expression was observed in aH seven colon cancer cell lines at different levels. The mRNA and protein levels of GPR137 were down-regulated in both HCTll6 and RKO cells after lentivirus infection. Lentivirus-mediated silencing of GPR137 reduced the proliferation rate and colonies numbers. Knockdown of GPR137 in both cell lines led to cell cycle arrest in the G0/G1 phase. These results indicated that GPR137 plays an important role in colon cancer cell proliferation. A better understanding of GPR137's effects on signal transduction pathways in colon cancer cells may provide insights into the novel gene therapy of colon cancer.  相似文献   

9.
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Basic fibroblast growth factor (bFGF), which is highly expressed in developing tissues and malignant cells, regulates cell growth, differentiation, and migration. Its expression is essential for the progression and metastasis of HCC. This study aims to investigate the effects of bFGF on the expression of angiogenin, another growth factor, which plays an important role in tumor angiogenesis, and on cell proliferation in H7402 human hepatoma cells. The bFGF sense cDNA or antisense cDNA was stably transfected into H7402 cells. Genomic DNA PCR analysis demonstrated that human bFGF sense cDNA or antisense cDNA was inserted into the genome. Furthermore, the expression of bFGF and angiogenin was examined by RT-PCR and Western blot assays. MTT and colony formation assays were employed to determine cell proliferation. Stable bFGF over-expressing and under-expressing transfectants were successfully established. Expression of angiogenin was decreased in the over-expressing bFGF cells (sense transfectants) and was increased in the under-expressing bFGF cells (antisense transfectants). Cell proliferation increased in the bFGF sense transfectants and decreased in the bFGF antisense transfectants. These results demonstrated that the endogenous bFGF may not only negatively regulate the angiogenin expression but also contribute to the overall cell proliferation in H7402 human hepatoma cells. This study may be helpful in finding a potential therapeutic approach to HCC.  相似文献   

10.
To investigate the effect of cell cycle inhibitor p19ARF on replicative senescence of human diploid cell, recombinant p19ARF eukaryotic expression vector was constructed and p19ARF gene was transfected into human diploid fibroblasts (WI-38 cells) by liposome-mediated transfection for overexpression. Then, the effects of p19ARF on replicative senescence of WI-38 cells were observed. The results re- vealed that, compared with control cells, the WI-38 cells in which p19ARF gene was introduced showed significant up-regulation of p53 and p21 expression level, decrease of cell generation by 10 12 generations, decline of cell growth rate with cell cycle being arrested at G1 phase, increase of positive rate of senescent marker SA-β-gal staining, and decrease of mitochondrial membrane potential. The morphology of the transfected fibroblasts presented the characteristics changes similar to senescent cells. These results indicated that high expression of p19ARF may promote the senescent process of human diploid cells.  相似文献   

11.
Administration of 1mM sodium butyrate or N6,2'-O-dibutyryladenosine 3':5'-cyclic monophosphate (dbcAMP) inhibits the growth activity of U937 human monoblastoid cells by blocking them at the G1 or at the G1 + G2 phases of the cell cycle, respectively. Both agents induce the differentiation of U937 cells, as proved by the increased expression of the maturation-associated CD11b antigen and by the increased capacity to reduce nitroblue tetrazolium. RNA blot assays indicate that butyrate and dbcAMP decrease the expression of ornithine decarboxylase and c-myc genes, and stimulate the expression of the vimentin gene. However, while dbcAMP induces c-fos mRNA accumulation, butyrate did not affect the expression of this proto-oncogene.  相似文献   

12.
Grp94 is the main endoplasmic reticulum-resident heat shock protein (HSP) that besides chaperoning native proteins, displays important modulatory effects on both the innate and adaptive immune response. Since the knowledge of a direct influence of Grp94 on the humoral response is lacking, in this work we tested the effect of Grp94 on Ig secretion from peripheral blood mononuclear cells (PBMCs) of five normal volunteers. The concentration of Ig secreted in the medium after incubation of 15 days was found increased in a dose-dependent manner in the presence of Grp94, used at the final concentrations of 10 and 100 ng/ml. However, by measuring the Ig secretion at different incubation times, it was apparent that maximal percent stimulation by Grp94 occurred at 7 days, decreasing thereafter. In addition, the pattern of Ig secretion in time significantly differed in the presence of Grp94 with respect to that of control PBMCs. Grp94 also stimulated in a dose-dependent manner the PBMC proliferation, an effect that preceded the Ig secretion and was accompanied by morphological changes of cells similar to those induced by the pokeweed mitogen. Effects of Grp94 on PBMCs were mediated by an intense activation of the MEK-ERK1/2 pathway and by an increased expression of HSP90. Results indicate that Grp94 can activate the humoral response by a cytokine-like, cell-mediated mechanism that leads to an accelerated process of B cell maturation and differentiation.  相似文献   

13.
14.
Luo B  Lam BS  Lee SH  Wey S  Zhou H  Wang M  Chen SY  Adams GB  Lee AS 《PloS one》2011,6(5):e20364
Hematopoietic stem cell (HSC) homeostasis in the adult bone marrow (BM) is regulated by both intrinsic gene expression products and interactions with extrinsic factors in the HSC niche. GRP94, an endoplasmic reticulum chaperone, has been reported to be essential for the expression of specific integrins and to selectively regulate early T and B lymphopoiesis. In GRP94 deficient BM chimeras, multipotent hematopoietic progenitors persisted and even increased, however, the mechanism is not well understood. Here we employed a conditional knockout (KO) strategy to acutely eliminate GRP94 in the hematopoietic system. We observed an increase in HSCs and granulocyte-monocyte progenitors in the Grp94 KO BM, correlating with an increased number of colony forming units. Cell cycle analysis revealed that a loss of quiescence and an increase in proliferation led to an increase in Grp94 KO HSCs. This expansion of the HSC pool can be attributed to the impaired interaction of HSCs with the niche, evidenced by enhanced HSC mobilization and severely compromised homing and lodging ability of primitive hematopoietic cells. Transplanting wild-type (WT) hematopoietic cells into a GRP94 null microenvironment yielded a normal hematology profile and comparable numbers of HSCs as compared to WT control, suggesting that GRP94 in HSCs, but not niche cells, is required for maintaining HSC homeostasis. Investigating this, we further determined that there was a near complete loss of integrin α4 expression on the cell surface of Grp94 KO HSCs, which showed impaired binding with fibronectin, an extracellular matrix molecule known to play a role in mediating HSC-niche interactions. Furthermore, the Grp94 KO mice displayed altered myeloid and lymphoid differentiation. Collectively, our studies establish GRP94 as a novel cell intrinsic factor required to maintain the interaction of HSCs with their niche, and thus regulate their physiology.  相似文献   

15.
We have tested the hypothesis that differentiation and growth arrest of Y-79 human retinoblastoma cells in culture is associated with a modification of gene expression. We first examined proteins translated from mRNAs isolated from Y-79 cells growing in suspension and in attachment cultures in serum-containing medium and found them to be markedly different. This suggests that membrane-substrate interactions are of major consequence in the biochemical differentiation of these cells. Secondly, we examined the patterns of proteins translated from attached cells which had been induced to morphologically differentiate into neuronal-like and glial-like cells by serum-withdrawal and dibutyryl cAMP treatment respectively. The in vitro translatable proteins of mRNAs isolated from these cultures were found to be markedly different from those of the suspension and attachment cultures. Thirdly, we found that treatment of cells growing in attachment culture in serum-containing medium supplemented with 8-bromo cAMP, butyrate and retinoic acid as well as dibutyryl cAMP resulted in discreet alterations in proteins translated in vitro from extracted mRNAs. Although all these substances inhibit the growth of Y-79 cells, only dibutyryl cAMP and butyrate result in morphological differentiation of cells. Our results suggest that (1) attachment and morphological differentiation of Y-79 cells are both related to specific alterations in gene expression and (2) differentiation and inhibition of cell growth by various agents can be correlated with changes in translatable mRNA species although all agents do not act in the same mode.  相似文献   

16.
采用PCR及RT-PCR方法结合核酸分子杂交技术,首次确定了与Grp94cDNA2231~2500碱基片段对应的Grp94基因序列上有内含子.含有内含子的扩增片段长约708bP.对三种癌细胞系进行了PCR和RT-PCR反应,电泳结果显示存在差异.研究结果为进一步探讨Grp94基因3'端精细结构及其在正常细胞和肿瘤细胞中表达的改变打下了基础.  相似文献   

17.
We previously demonstrated that plasma of type 1 diabetic patients contains antibodies complexed irreversibly with Grp94 that also display proteolytic activity. In this work, we wanted to test whether antibodies obtained from diabetic plasma may convey an inflammatory risk on vascular cells. To this aim, IgG were purified on the Protein-G column from individual plasma of eight type 1 diabetic patients, and then tested on HUVECs to measure effects on cell growth and morphologic changes at different incubation times. The purified fractions of IgG contained a significant amount of Fab/(Fab)2, both free and in big aggregates, and anti-Grp94 antibodies, mostly irreversibly linked with, but also free of Grp94. The purified fractions of both Fab/(Fab)2 and whole IgG stimulated the proliferation and sustained the angiogenic differentiation of human umbilical vein endothelial cells (HUVECs) at sub-nanomolar concentrations. IgG from normal plasma neither stimulated the cell growth nor induced any differentiation of HUVECs. The maximum cell growth stimulation occurred at 6–9 hrs and associated with the strong activation of the ERK1/2 pathway, whereas angiogenic transformation was completed later when the ERK1/2 activation was silenced and cell growth stimulation significantly reduced. Neither proteolytic activity of MMP-9 nor VEGF were apparently involved in mediating the angiogenic differentiation of HUVECs that mostly correlated with an increased expression of HSP70 closely coupled with cell membrane-bound inactive species of MMP-9. Results indicate that effects displayed on HUVECs by antibodies purified from diabetic plasma are likely sustained by immune complexes with Grp94 that may thus predict an increased risk of angiogenic transformation in vivo .  相似文献   

18.
We previously defined the recently revised NESG1 gene as a potential tumor suppressor in nasopharyngeal carcinoma (NPC). Here, we further used proteomics technology to globally examine NESG1‐controlled proteins in NPC cells. Twenty‐six proteins were found to be deregulated by NESG1 using proteomics analysis while enolase 1 (alpha) (ENO1), heat shock protein 90 kDa beta (Grp94), member 1 (HSP90B1), and cathepsin D (CTSD) proteins were differentially expressed by Western blot. Interestingly, a‐enolase (ENO1), an overexpressed gene in NPC, was confirmed as a NESG1‐regulated protein in NPC cells. Overexpressed ENO1 not only restored cell proliferation and cell‐cycle progression, but also antagonized the regulation of NESG1 to cell‐cycle regulators p21 and CCNA1 expression as well as induced the expression of C‐Myc, pRB, and E2F1 in NESG1‐ovexpressed NPC cells. Real‐time PCR and immunohistochemistry analysis showed that NESG1 expression is negatively correlated with ENO1 expression in NPC tissues. Our observations suggest that ENO1 downregulation plays an important role in NESG1‐induced growth inhibition of NPC cancer cells.  相似文献   

19.
Abstract: Recoverin is a calcium-binding protein expressed in retinal photoreceptors. It appears to delay the termination of the phototransduction cascade by blocking the phosphorylation of photoexcited rhodopsin. The goal of this study was to determine if recoverin mRNA and protein are expressed in cultured human Y79 retinoblastoma cells, so that this cell line could be used as a model to study the mechanism of recoverin gene expression in the retina. A cDNA encoding human recoverin was PCR cloned and used for prokaryotic expression of recoverin protein. Polyclonal antibodies raised against pure recombinant recoverin were used for western blotting and immunocytochemistry of Y79 cells grown as attachment cultures in the presence of the differentiating agents dibutyryl cyclic AMP (dbcAMP) or butyrate. Northern blot analysis was performed on mRNA extracted from Y79 cells that were also treated with the differentiating agents. In Y79 cell monolayer cultures, recoverin was immunolocalized to the cell cytoplasm, and immunoreactivity was increased dramatically by the addition of 2 m M butyrate to the culture medium. Butyrate treatment also caused an increase in the development of neurite-like cellular processes. Addition of 4 m M dbcAMP resulted in a moderate increase in both recoverin immunoreactivity and number of cellular processes. Western and northern blots of butyrate and dbcAMP-treated Y79 cell cultures demonstrated an increase in recoverin protein and RNA expression, respectively, comparable with that observed with immunocytochemistry. These data suggest that, under the influence of the differentiating agent butyrate, Y79 cells exhibit an increase in expression of the photoreceptor protein recoverin and a concomitant morphological differentiation toward a neuronal phenotype.  相似文献   

20.
Kedar N. Prasad 《Life sciences》1980,27(15):1351-1358
Butyric acid, a 4-carbon fatty acid, affects morphology, growth rate and gene expression in mammalian cells in culture. Sodium butyrate (0.5 to 3 mM) produces reversible growth inhibition in several mammalian tumor cells in culture, but it causes cell death only in human neuroblastomas and human glioma cells in culture. Sodium butyrate in combination with currently used tumor therapeutic agents produced a synergistic, an additive or no effect on growth of mouse neuroblastoma cells and rat glioma cells in culture. At least in NB cells, the cell death and growth inhibition may be related to the reduction in anaerobic glycolysis. Sodium butyrate increases the expression of one or more differentiated functions in mouse NB cells, mouse erythroleukemic cells, human epidermoid carcinoma, human colon carcinoma cells and Chinese hamster ovary cells. The induction of differentiation by butyrate may in part be related to an increase in the cellular cyclic AMP level. Sodium butyrate increases the activities of several enzymes, whereas, it decreases the activities of some. The increase of some enzymes appears to be correlated to hyperacetylation of histones. Invitro studies suggest that sodium butyrate may be useful in the management of neoplasms by causing selective cell death, and/or cell differentiation and by increasing the cell killing effect in conjuction with currently used tumor therapeutic agents. Sodium butyrate can also be used as a tool to study the regulation of gene expression in mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号