首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Biocomposites of thermoplastic starch with surfactant   总被引:2,自引:0,他引:2  
Thermoplastic starch films were prepared by a casting technique. Microfibrillated fibers from husks of corncobs were added as reinforcing agents and glyceryl monostearate (GMS) as surfactant. The films were characterized using X-ray diffraction studies, thermal and mechanical analysis and water uptake experiments. Differential scanning calorimetry (DSC) and X-ray diffraction showed the formation of amylose–GMS complexes. Compared to films without GMS the films with GMS showed significant reductions in water uptake and an increase in tensile strength. Important differences in the DSC measurements in the 160–200 °C range of films with and without GMS were also exhibited. These effects can be related to the reinforcement of the polymer matrix by the web-like network of the microfibrillated fibers, the formation of amylose–GMS complexes and the interactions of the polar groups of the GMS with the hydroxyl groups of the cellulose. Retrogradation tendencies of the TPS films were also changed by these phenomena.  相似文献   

2.
Successive rechromatography of commercial bovine lung heparin on human plasma low density lipoproteins (LDL) immobilized to AffiGel-10 yielded four high reactive heparin (HRH-I to IV) fractions and an unreactive fraction (URH). HRH-I was the most sulphated HRH fraction whereas URH had the least sulphation. In the presence of 10 mM Ca2+, LDL were precipitated by these heparins in the following order: HRH-II greater than HRH-III greater than HRH-IV greater than HRH-I greater than URH. The average molecular weight of HRH-I to IV was 8600, 11400, 10,100, and 10,000, respectively. A plot of log molecular weight versus the concentration of HRH required to give half-maximal precipitation of LDL showed a negative correlation (r = -0.880). These results indicate that heparin chain length is an important determinant of heparin binding to LDL in solution and may have relevance to the binding and precipitation of LDL in the arterial wall.  相似文献   

3.
4.
Physiological constraints from harsh environmental conditions, such as from calcium limitation on acidic soils, is expected not only to affect species richness, but also species abundance distributions. Also, the effects of amendments by calcium addition (soil liming) on these assemblage characteristics are poorly understood. Because of their sensitivity towards calcium availability, we use snails as model organisms and integrate field surveys and literature data. Temperate forest snail data supported a rule-of-thumb calibration with pH measurements in water being one unit higher than in KCl buffer. The resulting large data set suggests stepwise changes in snail richness that occur at transitions in soil buffer systems, especially at pH 3.2. Species abundance distributions follow the logseries model in most soil buffer systems, except for the iron buffer range (pH ≤3.2) where they swap to the geometric model. Our findings thus suggest several smaller soil pH thresholds for snail assemblages associated with shifts between soil buffer systems, and a tipping point at the threshold to pH ≤3.2. Liming with ground carbonate rocks is a technique to temporarily increase soil pH and calcium availability in forest soils, but its effects on snail assemblages produced inconsistent results that did not meet expectations from the ameliorated soil pH and might warrant a re-evaluation of liming applications.  相似文献   

5.
Dependence of erythromycin biosynthesis on the medium active acidity was studied by the following methods: by changing pH of the initial medium, by changing the concentration of the medium components determining the active acidity of the culture, by using buffer mixtures by automatic control of pH. It was found that pH of the initial medium within 5.7-8.1 had no effect on the culture growth. Biosynthesis of erythromycin markedly decreased at pH 6.3 or lower. The values of pH within 6.6-7.5 (optimal values 6.7-6.9) were favourable for the antibiotic biosynthesis. At pH 6.2-6.3 the antibiotic accumulation was equal to 5-10 per cent of the control.  相似文献   

6.
The electrophoretic mobility of double helical DNA in agarose and polyacrylamide gels increases as a function of time after the electric field is applied to the gel and decreases after the field is terminated. The changes are large for long (more than 10 kb) molecules. The effects of other variables are indicated.  相似文献   

7.
1. The extent to which the cytoplasmic membrane of the Gram-positive bacterium Bacillus licheniformis formed inside-out vesicles was studied with the freeze-fracture technique. The membrane orientation appeared to be dependent on the buffer compositon as well as on the lysis procedure used. 2. By manipulating these conditions, membrane preparations were obtained with the percentage of inside-out vesicles varying from 15 to 80%. 3. More vesicles had the opposite orientation when the cells were lysed in potassium phosphate buffer than when they were lysed in sodium phosphate buffer. Tris-HCl buffer favoured the formation of inside-out vesicles more than phosphate buffer. 4. Lysis of protoplasts in hypotonic buffers resulted in more inside-out vesicles than did direct lysis of cells in hypotonic media. 5. In an attempt to explain the observed differences, experiments were performed in which the morphology of thin-sectioned lysing cells in sodium phosphate buffer was compared with that in potassium phosphate buffer. The results from these experiments indicate that the formation of inside-out vesicles is brought about by an effect on the membrane itself rather than on the cell wall, on the cell wall membrane association, or on the cytoplasm.  相似文献   

8.
Integral proteins of the nuclear envelope inner membrane have been proposed to reach their sites by diffusion after their co-translational insertion in the rough endoplasmic reticulum. They are then retained in the inner nuclear membrane by binding to nuclear structures. One such structure is the nuclear lamina, an intermediate filament meshwork composed of A-type and B-type lamin proteins. Emerin, MAN1, and LBR are three integral inner nuclear membrane proteins. We expressed these proteins fused to green fluorescent protein in embryonic fibroblasts from wild-type mice and Lmna -/- mice, which lack A-type lamins. We then studied the diffusional mobilities of emerin, MAN1, and LBR using fluorescence recovery after photobleaching. We show that emerin and MAN1, but not LBR, are more mobile in the inner nuclear membrane of cells from Lmna -/- mice than in cells from wild-type mice. In cells from Lmna -/- mice expressing exogenous lamin A, the protein mobilities were similar to those in cells from wild-type mice. This supports a model where emerin and MAN1 are at least partly retained in the inner nuclear membrane by binding to A-type lamins, while LBR depends on other binding partners for its retention.  相似文献   

9.
10.
Advances in the field of proteomics depend upon the development of high-throughput separation methods. Ion mobility-mass spectrometry is a fast separation method (separations on the millisecond time-scale), which has potential for peptide complex mixture analysis. Possible disadvantages of this technique center around the lack of orthogonality between separation based on ion mobility and separation based on mass. In order to examine the utility of ion mobility-mass spectrometry, the peak capacity (phi) of the technique was estimated by subjecting a large dataset of peptides to linear regression analysis to determine an average trend for tryptic peptides. This trend-line, along with the deviation from a linear relationship observed for this dataset, was used to define the separation space for ion mobility-mass spectrometry. Using the maximum deviation found in the dataset (+/-11%) the peak capacity of ion mobility-mass spectrometry is approximately 2600 peptides. These results are discussed in light of other factors that may increase the peak capacity of ion mobility-mass spectrometry (i.e. multiple trends in the data resulting from multiple classes of compounds present in a sample) and current liquid chromatography approaches to complex peptide mixture analysis.  相似文献   

11.
Certain physical properties of a range of foam film types that are believed to exist in vivo in the lung have been investigated. The contribution of different lung surfactant components found in porcine lung surfactant to molecular surface diffusion in the plane of foam films has been investigated for the first time. The influence of the type and thickness of black foam films, temperature, electrolyte concentration, and extract composition on surface diffusion has been studied using the fluorescence recovery after photobleaching technique. Fluorescent phospholipid probe molecules in foam films stabilized by porcine lung surfactant samples or their hydrophobic extracts consisting of surfactant lipids and hydrophobic lung surfactant proteins, SP-B and SP-C, exhibited more rapid diffusion than observed in films of its principal lipid component alone, L-alpha-phosphatidylcholine dipalmitoyl. This effect appears to be due to contributions from minor lipid components present in the total surfactant lipid extracts. The minor lipid components influence the surface diffusion in foam films both by their negative charge and by lowering the phase transition temperature of lung surfactant samples. In contrast, the presence of high concentrations of the hydrophillic surfactant protein A (SP-A) and non-lung-surfactant proteins in the sample reduced the diffusion coefficient (D) of the lipid analog in the adsorbed layer of the films. Hysteresis behavior of D was observed during temperature cycling, with the cooling curve lying above the heating curve. However, in cases where some surface molecular aggregation and surface heterogeneity were observed during cooling, the films became more rigid and molecules at the interfaces became immobilized. The thickness, size, capillary pressure, configuration, and composition of foam films of lung surfactant prepared in vitro support their investigation as realistic structural analogs of the surface films that exist in vivo in the lung. Compared to other models currently in use, foam films provide new opportunities for studying the properties and function of physiologically important alveolar surface films.  相似文献   

12.
Summary Two acid lateritic rice soils were submerged under laboratory conditions. During 90-day submergence, (a) pH values of submerged soils gradually increased to stabilized values in the neutral range, (b) exchange acidity increased and pH-dependent acidity decreased to fairly stabilized values.  相似文献   

13.
14.
J M Jez  M E Bowman  J P Noel 《Biochemistry》2001,40(49):14829-14838
Chalcone synthase (CHS) belongs to the family of type III polyketide synthases (PKS) that catalyze formation of structurally diverse polyketides. CHS synthesizes a tetraketide by sequential condensation of three acetyl anions derived from malonyl-CoA decarboxylation to a p-coumaroyl moiety attached to an active site cysteine. Gly256 resides on the surface of the CHS active site that is in direct contact with the polyketide chain derived from malonyl-CoA. Thus, position 256 serves as an ideal target to probe the link between cavity volume and polyketide chain-length determination in type III PKS. Functional examination of CHS G256A, G256V, G256L, and G256F mutants reveals altered product profiles from that of wild-type CHS. With p-coumaroyl-CoA as a starter molecule, the G256A and G256V mutants produce notably more tetraketide lactone. Further restrictions in cavity volume such as that seen in the G256L and G256F mutants yield increasing levels of the styrylpyrone bis-noryangonin from a triketide intermediate. X-ray crystallographic structures of the CHS G256A, G256V, G256L, and G256F mutants establish that these substitutions reduce the size of the active site cavity without significant alterations in the conformations of the polypeptide backbones. The side chain volume of position 256 influences both the number of condensation reactions during polyketide chain extension and the conformation of the triketide and tetraketide intermediates during the cyclization reaction. These results viewed in conjunction with the natural sequence variation of residue 256 suggest that rapid diversification of product specificity without concomitant loss of substantial catalytic activity in related CHS-like enzymes can occur by site-specific evolution of side chain volume at position 256.  相似文献   

15.
Molecular dynamics simulations are used to measure the change in properties of a hydrated dipalmitoylphosphatidylcholine bilayer when solvated with ethanol, propanol, and butanol solutions. There are eight oxygen atoms in dipalmitoylphosphatidylcholine that serve as hydrogen bond acceptors, and two of the oxygen atoms participate in hydrogen bonds that exist for significantly longer time spans than the hydrogen bonds at the other six oxygen atoms for the ethanol and propanol simulations. We conclude that this is caused by the lipid head group conformation, where the two favored hydrogen-bonding sites are partially protected between the head group choline and the sn-2 carbonyl oxygen. We find that the concentration of the alcohol in the ethanol and propanol simulations does not have a significant influence on the locations of the alcohol/lipid hydrogen bonds, whereas the concentration does impact the locations of the butanol/lipid hydrogen bonds. The concentration is important for all three alcohol types when the lipid chain order is examined, where, with the exception of the high-concentration butanol simulation, the alcohol molecules having the longest hydrogen-bonding relaxation times at the favored carbonyl oxygen acceptor sites also have the largest order in the upper chain region. The lipid behavior in the high-concentration butanol simulation differs significantly from that of the other alcohol concentrations in the order parameter, head group rotational relaxation time, and alcohol/lipid hydrogen-bonding location and relaxation time. This appears to be the result of the system being very near to a phase transition, and one occurrence of lipid flip-flop is seen at this concentration.  相似文献   

16.
A central feature of intussusceptive angiogenesis is the development of an intravascular pillar that bridges the opposing sides of the microvessel lumen. In this report, we created polydimethyl siloxane (PDMS) microchannels with geometric proportions based on corrosion casts of the colon microcirculation. The structure of the PDMS microchannels was a bifurcated channel with an intraluminal pillar in the geometric center of the bifurcation. The effect of the intraluminal pillar on particle flow paths was investigated using an in vitro perfusion system. The microchannels were perfused with fluorescent particles, and the particle movements were recorded using fluorescence videomicroscopy. We found that the presence of an intravascular pillar significantly decreased particle velocity in the bifurcation system (p < 0.05). In addition, the pillar altered the trajectory of particles in the center line of the flow stream. The particle trajectory resulted in prolonged pillar contact as well as increased residence time within the bifurcation system (p < 0.001). Our results suggest that the intravascular pillar not only provides a mechanism of increasing resistance to blood flow but may also participate in spatial redistribution of cells within the flow stream. Supported in part by NIH Grants HL47078, HL75426, HL054885, HL070542 and HLO74022.  相似文献   

17.
While cancer is commonly described as “a disease of the genes”, it is also a disease of metabolism. Indeed, carcinogenesis and malignancy are highly associated with metabolic re-programming, and there is clinical evidence that interrupting a cancer's metabolic program can improve patients' outcomes. Notably, many of the metabolic adaptations observed in cancer are similar to the same perturbations observed in diabetic patients. For example, metformin is commonly used to reduce hyperglycemia in diabetic patients, and has been demonstrated to reduce cancer incidence. Treatment with PI3K inhibitors can induce hyperinsulinemia, which can blunt therapeutic efficacy if unchecked. While commonalities between metabolism in cancer and diabetes have been extensively reviewed, here we examine a less explored and emergent convergence between diabetic and cancer metabolism: the generation of lactic acid and subsequent acidification of the surrounding microenvironment. Extracellular lactic acidosis is integral in disease manifestation and is a negative prognostic in both disease states. In tumors, this results in important sequela for cancer progression including increased invasion and metastasis, as well as inhibition of immune surveillance. In diabetes, acidosis impacts the ability of insulin to bind to its receptor, leading to peripheral resistance and an exacerbation of symptoms. Thus, acidosis may be a relevant therapeutic target, and we describe three approaches for targeting: buffers, nanomedicine, and proton pump inhibitors.  相似文献   

18.
The effectsof both surfactant distribution patterns and ventilation strategiesutilized after surfactant administration were assessed in lung-injuredadult rabbits. Animals received 50 mg/kg surfactant via intratrachealinstillation in volumes of either 4 or 2 ml/kg. A subset ofanimals from each treatment group was euthanized for evaluation of theexogenous surfactant distribution. The remaining animals wererandomized into one of three ventilatory groups: group1 [tidal volume(VT) of 10 ml/kg with 5 cmH2O positive end-expiratorypressure (PEEP)]; group 2 (VT of 5 ml/kg with 5 cmH2O PEEP); orgroup 3 (VT of 5 ml/kg with 9 cmH2O PEEP). Animals wereventilated and monitored for 3 h. Distribution of the surfactant wasmore uniform when it was delivered in the 4 ml/kg volume. When thedistribution of surfactant was less uniform, arterial PO2 values were greater ingroups 2 and3 compared with group1. Oxygenation differences among the differentventilation strategies were less marked in animals with the moreuniform distribution pattern of surfactant (4 ml/kg). In bothsurfactant treatment groups, a high mortality was observed with theventilation strategy used for group 3.We conclude that the distribution of exogenous surfactant affects theresponse to different ventilatory strategies in this model of acutelung injury.

  相似文献   

19.
Surfactant secretion by lung type II cells occurs when lamellar bodies (LBs) fuse with the plasma membrane and surfactant is released into the alveolar lumen. Surfactant protein A (SP-A) blocks secretagogue-stimulated phospholipid (PL) release, even in the presence of surfactant-like lipid. The mechanism of action is not clear. We have shown previously that an antibody to LB membranes (MAb 3C9) can be used to measure LB membrane trafficking. Although the ATP-stimulated secretion of PL was blocked by SP-A, the cell association of iodinated MAb 3C9 was not altered, indicating no effect on LB movement. FM1-43 is a hydrophobic dye used to monitor the formation of fusion pores. After secretagogue exposure, the threefold enhancement of the number of FM1-43 fluorescent LBs (per 100 cells) was not altered by the presence of SP-A. Finally, there was no evidence of a large PL pool retained on the cell surface through interaction with SP-A. Thus SP-A exposure does not affect these stages in the surfactant secretory pathway of type II cells.  相似文献   

20.
The influence of acyl chain-length asymmetry on the thermodynamic parameters (Tm, delta H, and delta S) associated with the reversible main phase transition of aqueous dispersions prepared from saturated diacyl phosphatidylcholines was studied by high-resolution differential scanning calorimetry. Two series of saturated diacyl phosphatidylcholines, grouped according to their molecular weights of 678 and 706, with a total number of 25 molecular species were examined. The normalized acyl chain-length difference between the sn-1 and sn-2 acyl chains for a given phospholipid molecule in the gel-state bilayer is expressed quantitatively by the structural parameter delta C/CL, and the values of delta C/CL for the two series of lipids under study vary considerably from 0.04 to 0.67. When the value of delta C/CL is within the range of 0.09-0.40, it was shown that the thermodynamic parameters are, to a first approximation, a linear function of delta C/CL with a negative slope. In addition, the experimental Tm values and the predicted Tm values put forward by Huang (Biochemistry (1991) 30, 26-30) are in very good agreement. Beyond the point of delta C/CL = 0.41, the influence of acyl chain-length asymmetry on the thermodynamic parameters deviates significantly from a linear function. In fact, within the range of delta C/CL values of 0.42-0.67, the thermodynamic parameters in the Tm (or delta H) vs. delta C/CL plot were shown to be bell-shaped with the maximal Tm (or delta H) at delta C/CL = 0.57. These results are discussed in terms of changes in the acyl chain packing modes of various phosphatidylcholine molecules within the gel-state bilayer in excess water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号