首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The susceptibility of targets to destruction by tumoricidal rat and mouse macrophages was studied with virus-transformed cell lines in which various elements of the transformed phenotype are only expressed at specific temperatures. BHK cells transformed by the ts3 mutant of polyoma virus, rat embryo 3Y1 cells transformed by a temperature-sensitive A cistron mutant of simian virus 40 (SV40) and the ts-H6-15 temperature-sensitive line of SV40-transformed mouse 3T3 cells were killed in vitro by macrophages at both the permissive (33 °C) or nonpermissive (39 °C) temperatures for expression of the transformed phenotype. 3T3, 3Y1 and BHK cells transformed by wild-type SV40 or polyoma virus were also destroyed by tumoricidal macrophages at both 33 and 39 °C, but untransformed 3T3, 3Y1, and BHK cells were not. Thus, transformed cells are killed by macrophages regardless of whether or not they express cell surface LETS protein or Forssman antigen, display surface changes which permit agglutination by low doses of plant lectins, express SV40 T antigen, have a low saturation density, or exhibit density-dependent inhibition of DNA synthesis.  相似文献   

2.
Actin and tubulin are major protein constituents of 3T3 and SV40 virus-transformed 3T3 cells. We have fractionated growing, confluent and SV403T3 cells into particulate and soluble fractions using conditions designed to sediment microtubules, actin filaments or membrane associated actin or tubulin. The ratio of particulate to soluble actin synthesized in growing or confluent 3T3 cells is 2 to 1, while the ratio is reversed in transformed cells. There is also a 60% decrease in particulate tubulin synthesis in SV403T3 cells when compared with that in normal cells. Similar results are obtained when total actin and tubulin amounts are determined. The half-lives of actin, tubulin and total protein are over 3 days in growing 3T3 and SV40 cells and decrease over two-fold in confluent 3T3 cells. The significance of these results with respect to loss of contact inhibition and development of malignancy by these cells after transformation is discussed.  相似文献   

3.
Primate polyoma virus-transformed hamster, mouse, and rat cell lines were examined by indirect immunofluorescence staining for cell surface-associated T antigens, by using a rabbit antiserum prepared against sodium dodecyl sulfate-denatured large T antigen of simian virus 40 (anti-SV40-SDS-T serum). Positive surface staining was shown not only on SV40-transformed cells, but also on BK and JC virus-transformed cells. In contrast, normal cells and cells transformed with mouse polyoma-, human adeno-, and murine sarcoma viruses were negative. The data on SV40-transformed cells confirmed the reports of others demonstrating the cell surface location of SV40 large T antigen, and the data on BK and JC virus-transformed cells proved that these cells have cell-surface T antigens that cross-react with anti-SV40-SDS-T serum.  相似文献   

4.
K L Collins  A A Russo  B Y Tseng    T J Kelly 《The EMBO journal》1993,12(12):4555-4566
DNA polymerase alpha is the only enzyme in eukaryotic cells capable of starting DNA chains de novo and is required for the initiation of SV40 DNA replication in vitro. We have cloned the 70 kDa subunit of human DNA polymerase alpha (hereafter referred to as the B subunit) and expressed it as a fusion protein in bacteria. The purified fusion protein forms a stable complex with SV40 T antigen, both in solution and when T antigen is bound to the SV40 origin of DNA replication. Analysis of mutant forms of the B subunit indicates that the N-terminal 240 amino acids are sufficient to mediate complex formation. The B subunit fusion protein promotes formation of a complex containing T antigen and the catalytic subunit (subunit A) of DNA polymerase alpha, suggesting that it serves to tether the two proteins. These physical interactions are functionally significant, since the ability of T antigen to stimulate the activity of the catalytic subunit of DNA polymerase alpha is highly dependent upon the B subunit. We suggest that the interactions mediated by the B subunit play an important role in SV40 DNA replication by promoting DNA chain initiation at the origin and/or facilitating the subsequent priming and synthesis of DNA chains on the lagging strand template. The protein may play similar roles in cellular DNA replication.  相似文献   

5.
The random cell movement of BALB/c 3T3 and SV40 virus-transformed BALB/c 3T3 cells within homogeneous aggregates was studied by observing the degree of penetration of newly attached [3H]thymidine-labeled cells into the interior of the aggregates. The 3T3 cells penetrated into 3T3 aggregates an average of 0.89 cell diameter in 1.5 days, whereas the SV40-3T3 cells penetrated into SV40-3T3 aggregates an average of 3.20 cell diameters in the same time. Treatment of the aggregates with theophylline, theophylline plus prostaglandin E1, or theophylline plus dibutyryl cyclic AMP all decreased the penetration of the SV40-3T3 cells into SV40-3T3 aggregates (2.36, 1.22, and 0.79 cell diameters, respectively). The same treatments had little effect on 3T3 aggregates. The ultrastructure of 3T3 and SV40-3T3 cells in aggregates was examined by transmission electron microscopy. The 3T3 cells in aggregates were surrounded by microvilli and lamellipodia which were in contact with neighboring cells, whereas SV40-3T3 cells were nearly devoid of microvilli and lamellipodia and made contact at broader, less regular surface undulations. Treatment with theophylline plus dibutyryl cyclic AMP resulted in the appearance of microvilli on SV40-3T3 cells and also appeared to increase the area of intercellular contacts in both 3T3 and SV40-3T3 cells. These observations were supported for the surface cells of the aggregates by scanning electron microscopy.  相似文献   

6.
We performed a comparative electron microscopic analysis of centriolar and cytoplasmic microtubules stained with antibodies to acetylated or tyrosinated α-tubulin during the cell cycle of mouse nonmalignant Balb 3T3 (clone A31) and virus-transformed heteroploid SV40-3T3 cell lines. It was shown that the pattern of centriole immunostaining changed during the cell cycle in 3T3 (A31) cells, but not in tumorigenic SV40-3T3 cells. Remarkable changes in the centriole immunostaining pattern were observed during interphase-mitosis or mitosis-interphase transitions when the microtubule system and protein organization of centrosomes underwent drastic rearrangements. A high level of tyrosinated tubulin in centrioles was observed at all stages of the cell cycle except when entering mitosis, whereas a high level of acetylated tubulin was visualized in centrioles at all stages of the cell cycle except at the end of mitosis.  相似文献   

7.
Components of the renin-angiotensin system were studied in established cell culture lines of 3T3 and SV3T3 mouse fibroblasts. The renin content in 3T3 cells was significantly higher than in virus-transformed SV3T3 cells. With time after infection, renin decreased in Simian virus 40 transformed cells, while it increased steadily in mock-infected 3T3 cells. In contrast to renin, angiotensinase activity was higher in SV3T3 cells. Angiotensin II stimulated cell proliferation in 3T3 mouse fibroblasts and decreased their renin content in a dose-related manner. In contrast, saralasin, an angiotensin receptor antagonist, inhibited cell growth in 3T3 and SV3T3 cells and caused an increase of cellular renin concentration. The angiotensin fragments angiotensin (2-8) heptapeptide and angiotensin (4-8) pentapeptide had no effect on cell growth. A significant negative correlation was found between cell proliferation and renin levels in 3T3 and SV3T3 cells irrespective of the treatment. Our results indicate (1) that angiotensin II may be involved in cell growth regulation, (2) that a negative feedback exist between angiotensin II added and intracellular renin content, and (3) that virus infection causes a decrease in intracellular renin synthesis, while non-specific angiotensinase activity is increased under this condition.  相似文献   

8.
African green monkey cells (CV-1P) were microinjected with highly purified SV40 T antigen using protein-loaded red cell ghosts and polyethylene glycol as fusagen. The microinjected cells were infected with a temperature-sensitive mutant of SV40 (tsA209) which is defective in the initiation of viral DNA synthesis. Using in situ hybridization as an assay method, we found that PEG-microinjection of both partially and highly purified T antigen resulted in an increase in the amount of viral DNA sequences in the monolayer. Moreover, 3H-thymidine-labeled and unlabeled Hirt supernatant from microinjected, tsA209-injected cells contained significantly more SV40 DNA than comparable extracts from sham-injected, tsA209-infected or uninfected cells, which were tested in parallel. Thus the introduction of highly purified, "large" SV40 T antigen led to phenotypic complementation of the tsA defect in viral DNA synthesis.  相似文献   

9.
In the recent years, bioenergetics of tumor cells and particularly cell respiration have been attracting great attention because of the involvement of mitochondria in apoptosis and growing evidence of the possibility to diagnose and treat cancer by affecting the system of oxidative phosphorylation in mitochondria. In the present work, a comparative study of oxygen consumption in 3T3B-SV40 cells transformed with oncovirus SV40 and parental BALB/3T3 cells was conducted. Such fractions of oxygen consumption as “phosphorylating” respiration coupled to ATP synthesis, “free” respiration not coupled to ATP synthesis, and “reserve” or hidden respiration observed in the presence of protonophore were determined. Maximal respiration was shown to be only slightly decreased in 3T3B-SV40 cells as compared to BALB/3T3. However, in the case of certain fractions of cellular respiration, the changes were significant. “Phosphorylating” respiration was found to be reduced to 54% and “reserve” respiration, on the contrary, increased up to 160% in virus-transformed 3T3B-SV40 cells. The low rate of “phosphorylating” respiration and high “reserve” respiration indicate that under normal incubation conditions the larger part of mitochondrial respiratory chains of the virus-transformed cells is in the resting state (i.e. there is no electron transfer to oxygen). The high “reserve” respiration is suggested to play an important role in preventing apoptosis of 3T3B-SV40 cells.  相似文献   

10.
11.
The simian virus 40 (SV40) (cT)-3 mutant [SV40(cT)-3], which is defective in nuclear transport of T antigen, was utilized to determine whether cellular DNA synthesis can be stimulated by SV40 in the absence of detectable nuclear T antigen. Cellular DNA synthesis was examined in the temperature-sensitive cell cycle mutants, BHK ts13 and BHK tsAF8, after microinjection of quiescent cells with plasmid DNA containing cloned copies of wild-type SV40 or SV40(cT)-3. The efficiency of induction of cellular DNA synthesis was identical for both wild-type SV40 and SV40(cT)-3 in both cell lines. The results suggest that cell surface-associated T antigen, either alone or possibly in combination with minimal amounts of nuclear T antigen below our limit of detection, is able to stimulate cellular DNA synthesis.  相似文献   

12.
Hypoxia interrupts the initiation of simian virus 40 (SV40) replication in vivo at a stage situated before unwinding of the origin region. After re-oxygenation, unwinding followed by a synchronous round of viral replication takes place. To further characterize the hypoxia-induced inhibition of unwinding, we analysed the binding of several replication proteins to the viral minichromosome before and after re-oxygenation. T antigen, the 34-kDa subunit of replication protein A (RPA), topoisomerase I, the 48-kDa subunit of primase, the 125-kDa subunit of polymerase delta, and the 37-kDa subunit of replication factor C (RFC) were present at the viral chromatin already under hypoxia. The 70-kDa subunit of RPA, the 180-kDa subunit of polymerase alpha, and proliferating cell nuclear antigen (PCNA) were barely detectable at the SV40 chromatin under hypoxia and significantly increased after re-oxygenation. Immunoprecipitation of minichromosomes with T antigen-specific antibody and subsequent digestion with micrococcus nuclease revealed that most of the minichromosome-bound T antigen was associated with the viral origin in hypoxic and in re-oxygenated cells. T antigen-catalysed unwinding of the SV40 origin occurred, however, only after re-oxygenation as indicated by (a) increased sensitivity of re-oxygenated minichromosomes against digestion with single-stranded DNA-specific nuclease P1; (b) stabilization of RPA-34 binding at the SV40 minichromosome; and (c) additional phosphorylations of RPA-34 after re-oxygenation, probably catalysed by DNA-dependent protein kinase. The results presented suggest that the subunits of the proteins necessary for unwinding, primer synthesis and primer elongation first assemble at the SV40 origin in form of stable, active complexes directly before they start to work.  相似文献   

13.
Nuclear translocation of cAMP-dependent protein kinase   总被引:2,自引:0,他引:2  
A study was made of nuclear translocation of cAMP-dependent protein kinase and its subunits, as well as of the binding of these proteins to metaphase chromosomes. The CHO cell cultures were treated with 3H-labelled protein kinase and its subunits. The results indicate that cAMP-dependent protein kinase became translocated into the nucleus in a dissociated state and that the subunits have specific binding sites on chromatin. Transformation of normal mouse fibroblasts by virus SV40 interferes with the nuclear translocation of the regulatory subunit. The process is restored when the level of cAMP in the system is increased. Binding of the regulatory subunit to metaphase chromosomes of cells transformed by virus SV40 does not change. In the case of spontaneous cancer (KB cells) translocation of the regulatory subunit remains unaffected, whereas acceptance of the protein by the metaphase chromosomes is impeded. The results of this work suggest that compartmentalization of cAMP-dependent protein kinase—and particularly of its regulatory subunit—in the cell is highly significant for cellular processes. Disorders arising as a result of neoplastic transformation involve changes in nuclear translocation of the regulatory subunit and in its binding to the structural elements of the genome.  相似文献   

14.
Previous results indicated that SV40 small t is essential for SV40-induced transformation of diploid cells but dispensable for the transformation of cells with a deletion on the short arm of chromosome 11 (del-11 cells). From these results we concluded that del-11 cells contain a cellular 'SV40 small t-like' factor, which is able to transactivate the HPV16 long control region (LCR) and to complement SV40 large T in transformation. Since SV40 small t and the regulatory 55 kDa subunit (PR55) of protein phosphatase 2A (PP2A), have been shown to inhibit the enzyme activity of PP2A, the PR55 beta subunit could be the putative 'small t-like' factor. In accordance with this hypothesis, we show that the PR55 beta subunit is highly expressed in del-11 but not in diploid cells and is able to trans-activate the HPV16 LCR in diploid cells. Moreover, inhibition of PP2A by okadaic acid resulted in trans-activation of the HPV16 LCR in diploid cells. Alignment of PR55 and SV40 small t showed a common four amino acid motif DKGG. We present evidence that the integrity of this motif is necessary for the PP2A-mediated ability of SV40 small t to trans-activate the HPV16 LCR.  相似文献   

15.
Two-dimensional gels of normal and virally transformed REF52 cells have been quantified and compared using the QUEST system for construction and analysis of protein databases. The REF52 protein map is based on more than 1600 high quality spots, and the relative amounts of these proteins are studied in 79 gels representing 12 major experiments. REF52 cells transformed by SV40, adenovirus, and Kirsten murine sarcoma virus (KiMSV) are compared to normal REF52 cells at several stages of growth from low density to confluence and after refeeding confluent cells. In addition, early (1-4 h) and late (21-24 h) responses to serum stimulation were measured in normal, SV40-and adenovirus-transformed cells. The database has been analyzed with respect to 1) known marker proteins and protein sets, 2) global comparison of protein patterns, and 3) selection of unknown spots which have interesting patterns of regulation. For the marker proteins, which include the tropomyosin family and the proliferation-sensitive nuclear antigen, new aspects of regulation by growth and transformation have been revealed. Proliferation-sensitive nuclear antigen, a protein known to be involved in DNA synthesis, is growth-regulated in normal cells and overexpressed in some SV40- and adenovirus-transformed cells. Global comparisons reveal no overall correlation between growth-regulated changes and transformation-induced changes; however, a set of 26 coregulated proteins, including proliferation-sensitive nuclear antigen, was found to be overexpressed in REF52 cells transformed by SV40 or adenovirus. These proteins are synthesized at rates that correlate with the rate of cell proliferation in REF52 and Kirsten murine sarcoma virus-transformed cells but, in SV40- and adenovirus-transformed cells, these proteins are synthesized at high levels independent of the rate of growth. These data suggest that the transforming proteins of SV40 and adenovirus share a function that results in deregulation of the genes coding for a class of cell cycle-regulated proteins.  相似文献   

16.
Hybrid viral genomes were used to investigate the influence of specific polyomavirus sequences on the transforming behavior of JC virus (JCV). One set of chimeric DNAs was made by exchanging the regulatory regions between JCV and simian virus 40 (SV40) or JCV and BK virus (BKV). A second set of constructs was produced that expressed hybrid JCV-BKV T proteins under the control of either JCV or BKV regulatory signals. Transformation of Rat 2 cells with the parental and chimeric DNAs indicated that both the JCV regulatory signals and the sequence encoding the amino terminus of T protein contributed to the restricted transforming behavior of this virus. Analysis of the viral proteins in the transformed rat cells indicated that the large T antigens of JCV and BKV were less stable than their SV40 counterpart, that small t protein was produced in JCV transformants, and that the subpopulation of T antigen that forms a stable complex with cellular p53 protein was smaller in JCV-transformed cells than in SV40- or BKV-transformed cells.  相似文献   

17.
The ability of simian virus 40 (SV40) large T antigen to catalyze the initiation of viral DNA replication is regulated by its phosphorylation state. Previous studies have identified the free catalytic subunit of protein phosphatase 2A (PP2Ac) as the cellular phosphatase which can remove inhibitory phosphoryl groups from serines 120 and 123. The catalytic C subunit exists in the cell complexed with a 65-kDa A subunit and one of several B subunits. To determine if any of the holoenzymes could activate T antigen, we tested the ability of the heterodimeric AC and two heterotrimeric ABC forms to stimulate T-antigen function in unwinding the origin of SV40 DNA replication. Only free catalytic subunit C and the heterotrimeric form with a 72-kDa B subunit (PP2A-T72) could stimulate T-antigen-dependent origin unwinding. Both the dimeric form (PP2A-D) and the heterotrimer with a 55-kDa B subunit (PP2A-T55) actively inhibited T-antigen function. We found that PP2A-T72 activated T antigen by dephosphorylating serines 120 and 123, while PP2A-D and PP2A-T55 inactivated T antigen by dephosphorylating the p34cdc2 target site, threonine 124. Thus, alterations in the subunit composition of PP2A holoenzymes have significant functional consequences for the initiation of in vitro SV40 DNA replication. The regulatory B subunits of PP2A may play a role in regulating SV40 DNA replication in infected cells as well.  相似文献   

18.
The activity of specific components involved in protein synthesis in 3T3 cells and its SV40-transformed derivative, SV3T3, were examined in a cell-free protein synthetic system, and the results correlated with previous studies, indicating that a decreasing rate of protein synthesis does not accompany the stationary phase of growth. We found that 3T3 and SV3T3 polysome preparations containing endogenous mRNA were equally efficient in supporting cell-free protein synthesis in this system. Further, the net protein synthesis observed was not altered by an increase in the population density of the cellular polysome source. The activity of the aminoacyl-tRNA synthetase enzymes from 3T3 and SV3T3 cells was examined in vitro after isolation by pH 5 precipitation and by ammonium sulfate fractionation. The activity of these preparations from stationary phase 3T3 and nonexponential phase SV3T3 cells was found to be approximately 3 times higher than the activity of fractions from the homologous exponential phase cell. However, at both growth stages, the SV3T3 preparations were 30 to 40 times more active than the 3T3 preparations. These findings may have implications for the different growth properties observed in the two cell types.  相似文献   

19.
The 54K cellular tumor antigen has been translated in vitro, using messenger ribonucleic acids from simian virus 40 (SV40)-transformed cells or 3T3 cells. The in vitro 54K product could be immunoprecipitated with SV40 tumor serum and had a peptide map that was similar, but not identical, to the in vivo product. The levels of this 54K protein in SV3T3 cells were significantly higher than those detected in 3T3 cells (D. I. H. Linzer, W. Maltzman, and A. J. Levine, Virology 98:308-318, 1979). In spite of this, the levels of translatable 54K messenger ribonucleic acid from 3T3 and SV3T3 cells were roughly equivalent or often greater in 3T3 cells. Pulse-chase experiments with the 54K protein from 3T3 or SV3T3 cells demonstrated that this protein, once synthesized, was rapidly degraded in 3T3 cells but was extremely stable in SV3T3 cells. Similarly, in an SV40 tsA-transformed cell line, temperature sensitive for the SV40 T-antigen, the 54K protein was rapidly turned over at the nonpermissive temperature and stable at the permissive temperature, whereas the levels of translatable 54K messenger ribonucleic acid at each temperature were roughly equal. These results demonstrate a post-translational regulation of the 54K cellular tumor antigen and suggest that this control is mediated by the SV40 large T-antigen.  相似文献   

20.
We have made use of the cell-free SV40 DNA replication system to identify and characterize cellular proteins required for efficient DNA synthesis. One such protein, replication protein C (RP-C), was shown to be involved with SV40 large T antigen in the early stages of viral DNA replication in vitro. We demonstrate here that RP-C is identical to the catalytic subunit of cellular protein phosphatase 2A (PP2Ac). The purified protein dephosphorylates specific phosphoamino acid residues in T antigen, consistent with the hypothesis that SV40 DNA replication is regulated by modulating the phosphorylation state of the viral initiator protein. We also show that purified RP-C/PP2Ac preferentially stimulates SV40 DNA replication in extracts from early G1 phase cells. This finding suggests that the activity of a cellular factor that influences the net phosphorylation state of T antigen is cell cycle dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号