首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A strain of the filamentous cyanobacterium Nostoc sp. isolated from a lake in Finland was found to produce at least nine hepatotoxic peptides with chemical and toxicological properties similar to those of the hepatotoxic hepta- and pentapeptides produced by other cyanobacteria. Toxins were isolated and purified by high-performance liquid chromatography. Amounts available for five of the purified toxins (P6, P14, P15, P16, and P18) were adequate for high-performance liquid chromatography amino acid analysis and determination of molecular weight by fast-atom bombardment-mass spectrometry (FAB-MS). Quantities of three toxins (P14, P15, and P16) were adequate for further analysis by high-resolution FAB-MS, FAB-MS/MS, and 1H-nuclear magnetic resonance. Analysis showed that the toxins are new types of microcystin-LR homologs. Microcystin-LR contains equimolar amounts of D-alanine, L-leucine, D-erythro-beta-methylaspartic acid, L-arginine, ADDA (3-amino-9-methoxy-2,6,8-trimethyl-10-phenyl-4,6-decadienoic acid), D-glutamic acid, and N-methyldehydroalanine (molecular weight [MW], 994). Nostoc sp. strain 152 was found to produce the following microcystin-LR homologs: (i) P6 contains an extra methylene group most probably due to the presence of N-methyldehydrobutyrine instead of N-methyldehydroalanine (MW, 1,008); (ii) P14 is O-acetyl-O-demethyl ADDA-microcystin-LR (MW, 1,022); (iii) P15 is 3-demethyl-O-acetylADDA-homoarginine-microcystin-LR (MW, 1,036); (iv) P16 is 3-demethyl-O-acetyl-O-demethylADDA-microcystin-LR (MW, 1,008); (v) P18 is 3-demethyl-O-acetyl-O-demethylADDA-homoarginine-microcystin- LR (MW, 1,022). The toxicities of the new microcystin homologs were not significantly different from those of microcystin-LR or demethylmicrocystin-LR.  相似文献   

2.
The production of hepatotoxic cyclic heptapeptides, microcystins, is almost exclusively reported from planktonic cyanobacteria. Here we show that a terrestrial cyanobacterium Nostoc sp. strain IO-102-I isolated from a lichen association produces six different microcystins. Microcystins were identified with liquid chromatography-UV mass spectrometry by their retention times, UV spectra, mass fragmentation, and comparison to microcystins from the aquatic Nostoc sp. strain 152. The dominant microcystin produced by Nostoc sp. strain IO-102-I was the highly toxic [ADMAdda(5)]microcystin-LR, which accounted for ca. 80% of the total microcystins. We assigned a structure of [DMAdda(5)]microcystin-LR and [d-Asp(3),ADMAdda(5)]microcystin-LR and a partial structure of three new [ADMAdda(5)]-XR type of microcystin variants. Interestingly, Nostoc spp. strains IO-102-I and 152 synthesized only the rare ADMAdda and DMAdda subfamilies of microcystin variants. Phylogenetic analyses demonstrated congruence between genes involved directly in microcystin biosynthesis and the 16S rRNA and rpoC1 genes of Nostoc sp. strain IO-102-I. Nostoc sp. strain 152 and the Nostoc sp. strain IO-102-I are distantly related, revealing a sporadic distribution of toxin production in the genus Nostoc. Nostoc sp. strain IO-102-I is closely related to Nostoc punctiforme PCC 73102 and other symbiotic Nostoc strains and most likely belongs to this species. Together, this suggests that other terrestrial and aquatic strains of the genus Nostoc may have retained the genes necessary for microcystin biosynthesis.  相似文献   

3.
[D-Leu1]Microcystin-LR was identified as the most abundant microcystin from a laboratory strain of the cyanobacterium Microcystis sp. isolated from a hepatotoxic Microcystis bloom from brackish waters in the Patos Lagoon estuary, southern Brazil. Toxicity of [D-Leu1]microcystin-LR, according to bioassay and protein phosphatase inhibition assay, was similar to that of the commonly-occurring microcystin-LR, which was not detectable in the Patos Lagoon laboratory isolate. This is the first report of a microcystin containing [D-Leu1] in the cyclic heptapeptide structure of these potent cyanobacterial toxins.  相似文献   

4.
The cellular fatty acids of free-living, nitrogen-fixing cyanobacteria belonging to the genera Anabaena and Nostoc were analyzed to differentiate the genera. The fatty acid compositions of 10 Anabaena strains and 10 Nostoc strains that were grown for 12 days on BG-11o medium were determined by gas-liquid chromatography-mass spectroscopy. Of the 53 fatty acids detected, 17 were major components; the average level for each of these 17 fatty acids was at least 0.9% of the total fatty acids (in at least one of the genera). These fatty acids included (with mean percentages in the Anabaena and Nostoc strains, respectively) the saturated fatty acids 16:0 (30.55 and 23.23%) and 18:0 (0.77 and 1.27%); several unsaturated fatty acids, including 14:1 cis-7 (2.50 and 0.11%), 14:1 cis-9 (3.10 and 3.41%), a polyunsaturated 16-carbon (sites undetermined) fatty acid with an equivalent chain length of 15.30 (1.20 and 1.03%), 16:4 cis-4 (0.95 and 0.87%), 16:3 cis-6 (2.16 and 1.51%), 16:1 cis-7 (1.44 and 0.36%), 16:1 cis-9 (6.53 and 18.76%), 16:1 trans-9 (4.02 and 1.35%), 16:1 cis-11 (1.62 and 0.42%), 18:2 cis-9 (10.16 and 12.44%), 18:3 cis-9 (18.19 and 17.25%), 18:1 cis-9 (4.01 and 5.10%), and 18:1 trans-9 (0.92 and 1.94%); and the branched-chain fatty acids iso-16:0 (2.50 and 1.14%) and iso-15:1 (0.34 and 2.05%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
A novel immunoassay was developed for specific detection of cyanobacterial cyclic peptide hepatotoxins which inhibit protein phosphatases. Immunoassay methods currently used for microcystin and nodularin detection and analysis do not provide information on the toxicity of microcystin and/or nodularin variants. Furthermore, protein phosphatase inhibition-based assays for these toxins are not specific and respond to other environmental protein phosphatase inhibitors, such as okadaic acid, calyculin A, and tautomycin. We addressed the problem of specificity in the analysis of protein phosphatase inhibitors by combining immunoassay-based detection of the toxins with a colorimetric protein phosphatase inhibition system in a single assay, designated the colorimetric immuno-protein phosphatase inhibition assay (CIPPIA). Polyclonal antibodies against microcystin-LR were used in conjunction with protein phosphatase inhibition, which enabled seven purified microcystin variants (microcystin-LR, -D-Asp3-RR, -LA, -LF, -LY, -LW, and -YR) and nodularin to be distinguished from okadaic acid, calyculin A, and tautomycin. A range of microcystin- and nodularin-containing laboratory strains and environmental samples of cyanobacteria were assayed by CIPPIA, and the results showed good correlation (R2 = 0.94, P < 0.00001) with the results of high-performance liquid chromatography with diode array detection for toxin analysis. The CIPPIA procedure combines ease of use and detection of low concentrations with toxicity assessment and specificity for analysis of microcystins and nodularins.  相似文献   

6.
The producing strain Streptomyces sp. 1010 was isolated from a shallow sea sediment from the region of Livingston Island, Antarctica. From the culture broth of this strain naturally active secondary metabolites were isolated identical to phthalic acid diethyl ester (C12H14O4, MW. 222); 1, 3-bis (3-phenoxyphenoxy)benzene (C30H22O4, MW.446); hexanedioic acid dioctyl ester (C22H42O4, MW.370) and the new substance 2-amino- 9, 13 -dimethyl heptadecanoic acid (C19H39NO2, MW.313). These compounds represent diverse classes of chemical structures and provide evidence for the untapped biosynthetic potential of marine bacteria from Antarctica.  相似文献   

7.
Phylogenetic analysis of 4 cyanobacterial strains isolated from hot springs in Rajgir, India, was carried out using the 16S rRNA gene (1400 bp). These strains were identified as members of Chroococcales ( Cyanothece sp. strain HKAR-1) and Nostocales ( Nostoc sp. strain HKAR-2, Scytonema sp. strain HKAR-3, and Rivularia sp. strain HKAR-4). Furthermore, we evaluated the presence of ultraviolet-screening and (or) photoprotective compounds, such as mycosporine-like amino acids (MAAs) and scytonemin, in these cyanobacteria by using high-performance liquid chromatography. Well-characterized MAAs, including the critical and highly polar compounds shinorine, porphyra-334, and mycosporine-glycine, as well as several unknown MAAs, were found in these hot-spring-inhabiting microorganisms. The presence of scytonemin was detected only in Scytonema sp. strain HKAR-3 and Rivularia sp. strain HKAR-4. The results indicate that hot spring cyanobacteria, namely Cyanothece, Nostoc, Scytonema, and Rivularia, belonging to different groups possess various photoprotective compounds to cope up with the negative impacts of damaging radiations.  相似文献   

8.
Microcystins produced by cyanobacterial 'blooms' in reservoirs and lakes pose significant public health problems because they are highly toxic due to potent inhibition of protein serine/threonine phosphatases in the PPP family. A dehydrobutyrine (Dhb)-containing microcystin variant [Asp3, ADMAdda5, Dhb7]microcystin-HtyR isolated from Nostoc sp. was found to potently inhibit PP1, PP2A, PPP4 and PPP5 with IC50 values similar to those of microcystin-LR. However, in contrast to microcystin-LR, which forms a covalent bond with a cysteine residue in these protein phosphatases, Asp,ADMAdda,Dhb-microcystin-HtyR did not form any covalent interaction with PP2A. Since the LD50 for Asp,ADMAdda,Dhb-microcystin-HtyR was 100 microg kg(-1) compared to 50 microg kg(-1) for microcystin-LR, the data indicate that the non-covalent inhibition of protein phosphatases accounts for most of the harmful effects of microcystins in vivo. A 3-amino-6-hydroxy-2-piperidone containing cyclic peptide, nostocyclin, also isolated from Nostoc sp., was non-toxic and exhibited more than 500-fold less inhibitory potency towards PP1, PP2A, PPP4 and PPP5, consistent with the conclusion that potent inhibition of one or more these protein phosphatases underlies the toxicity of microcystins, both lacking and containing Dhb.  相似文献   

9.
Polyadenylated RNA in two filamentous cyanobacteria.   总被引:2,自引:2,他引:0       下载免费PDF全文
Polyadenylated RNA was detected in the cyanobacteria Nostoc sp. strain MAC and Anabaena variabilis by oligodeoxythymidylic acid-cellulose chromatography and by hybridization to [3H]polyuridylic acid. Polyadenylate tracts from A. variabilis were located at the 3' end of RNA chains and had an estimated length of 15 to 22 nucleotides.  相似文献   

10.
The activities of uptake of thirteen 14C-labeled amino acids were determined in nine cyanobacteria, including the unicellular strains Synechococcus sp. strain PCC 7942 and Synechocystis sp. strain PCC 6803; the filamentous strain Pseudanabaena sp. strain PCC 6903, and the filamentous, heterocyst-forming strains Anabaena sp. strains PCC 7120 and PCC 7937; Nostoc sp. strains PCC 7413 and PCC 7107; Calothrix sp. strain PCC 7601 (which is a mutant unable to develop heterocysts); and Fischerella muscicola UTEX 1829. Amino acid transport mutants, selected as mutants resistant to some amino acid analogs, were isolated from the Anabaena, Nostoc, Calothrix, and Pseudanabaena strains. All of the tested cyanobacteria bear at least a neutral amino acid transport system, and some strains also bear transport systems specific for basic or acidic amino acids. Two genes, natA and natB, encoding elements (conserved component, NatA, and periplasmic binding protein, NatB) of an ABC-type permease for neutral amino acids were identified by insertional mutagenesis of strain PCC 6803 open reading frames from the recently published genomic DNA sequence of this cyanobacterium. DNA sequences homologous to natA and natB from strain PCC 6803 were detected by hybridization in eight cyanobacterial strains tested. Mutants unable to transport neutral amino acids, including natA and natB insertional mutants, accumulated in the extracellular medium a set of amino acids that always included Ala, Val, Phe, Ile, and Leu. A general role for a cyanobacterial neutral amino acid permease in recapture of hydrophobic amino acids leaked from the cells is suggested.  相似文献   

11.
This is the first report on microcystins, cyclic heptapeptide hepatotoxins, from Brazilian water supplies. A colony isolate (NPJB-1) of the colonial cyanobacteriumMicrocystis aeruginosa from Lagoa das Garças, São Paulo, was cultured under non-axenic conditions. Exponential phase cells were harvested, concentrated and lyophilized for mouse bioassays and toxin extraction. The LD100 of lyophilized cell suspensions was approximately 31 mg kg–1 (dry cell weight/animal weight). Isolation, purification and characterization of the toxins were carried out by reversed phase HPLC, HPLC amino acid analysis and fast atom bombardment mass spectrometry. Strain NPJB-1 produces two different hepatotoxic heptapeptide microcystins. The main one was microcystin-LR, the most commonly reported microcystin from cyanobacteria. The other was microcystin-LF, the phenylalanine variant of microcystin-LR. This is the first published report for microcystin-LF.  相似文献   

12.
Yin XX  Chen J  Qin J  Sun GX  Rosen BP  Zhu YG 《Plant physiology》2011,156(3):1631-1638
Arsenic (As) is a pervasive and ubiquitous environmental toxin that has created worldwide human health problems. However, there are few studies about how organisms detoxify As. Cyanobacteria are capable of both photolithotrophic growth in the light and heterotrophic growth in the dark and are ubiquitous in soils, aquatic systems, and wetlands. In this study, we investigated As biotransformation in three cyanobacterial species (Microcystis sp. PCC7806, Nostoc sp. PCC7120, and Synechocystis sp. PCC6803). Each accumulated large amounts of As, up to 0.39 g kg(-1) dry weight, 0.45 g kg(-1) dry weight, and 0.38 g kg(-1) dry weight when treated with 100 μM sodium arsenite for 14 d, respectively. Inorganic arsenate and arsenite were the predominant species, with arsenate making up >80% of total As; methylated arsenicals were detected following exposure to higher As concentrations. When treated with arsenate for 6 weeks, cells of each cyanobacterium produced volatile arsenicals. The genes encoding the As(III) S-adenosylmethionine methyltransferase (ArsM) were cloned from these three cyanobacteria. When expressed in an As-hypersensitive strain of Escherichia coli, each conferred resistance to arsenite. Two of the ArsM homologs (SsArsM from Synechocystis sp. PCC6803 and NsArsM from Nostoc sp. PCC7120) were purified and were shown to methylate arsenite in vitro with trimethylarsine as the end product. Given that ArsM homologs are widespread in cyanobacteria, we propose that they play an important role in As biogeochemistry.  相似文献   

13.
The photobiont of the lichen, Dictyonema glabratum (Scytonema sp.), was isolated and cultivated in a soil-extract medium and submitted to chemical analysis. Successive extractions with CHCl3-MeOH, aqueous MeOH, and H2O gave rise to solutions of lipids (25%), low-molecular-weight carbohydrates (22%), and polysaccharides (4%), respectively. TLC of the lipid extract showed the presence of glycolipids, which were further purified and examined by NMR spectroscopy and GC-MS. Monogalactosyldiacylglycerol (1%), digalactosyldiacylglycerol (0.8%), trigalactosyldiacylglycerol (0.4%), and sulfoquinovosyldiacylglycerol (0.5%) were identified. The most abundant fatty acid ester in each fraction was palmitic (C16:0), but a great variation of the ester composition from one to another was found. Others present were those of C12:0, C14:0, C15:0, C16:1, C17:0, C18:0, C18:1, C18:2, C18:3, C22:0, C22:2, and C24:0. The lipid extract was also subjected to acid methanolysis, which gave rise to dodecane, 2-Me-heptadecane, 2,6-Me2-octadecane, and 8-Me-octadecane, methyl esters of C14:0, C15:0, C16:0, C16:1, C17:0, C18:0, C18:1, C18:2, C20:0, and C24:0 fatty acids, and the dimethyl ester of decanedioic acid. The polysaccharide had mainly Glc, Gal, and Man, with small amounts of 3-O-methylrhamnose and 2-O-methylxylose, both found in plants, and unexpectedly, some of the units were beta-galactofuranose, typical of fungal, but not cyanobacterial polysaccharides. The low-molecular-weight carbohydrates showed mannose as the main free reducing sugar, which differs from Nostoc sp. and Trebouxia sp. photobionts.  相似文献   

14.
Mass culture of an axenic clone ofMicrocystis viridis (NIES-102) was carried out, and three toxins were isolated from the cell. Structure elucidation of one of the toxins, designated cyanoviridin RR (microcystin RR), was performed mainly by means of modern NMR techniques. Cyanoviridin RR was a cyclic heptapeptide consisting of seven amino acids, Adda, l-arginine, erthro-β-methyl-aspartic acid, l-arginine, d-alanine, N-methyldehydroalanine, and d-glutamic acid. Structurally, this toxin belongs to the cyanoginosins already isolated fromM. aeruginosa.  相似文献   

15.
Abstract A rapid procedure is described for the identification of peptide toxins from Microcystis sp. strains. The amphiphilic toxins were isolated by (1) water extraction of dried cells, (2) adsorption onto reversed-phase C18 cartridges and differential elution, and (3) high-performance liquid chromatography. The method is suitable for quantification and might substitute for the mouse bioassay.  相似文献   

16.
Vibrio sp. strain ABE-1 is a unique marine bacterium in terms of its ability to synthesize delta 9-trans-hexadecenoic acid and delta 7-cis-tetradecenoic acid (14:1(7c); Okuyama, H., Sasaki, S., Higashi, S. and Murata, N. (1990) J. Bacteriol. 172, 3515-3518). The present study, involving labeling with [1-14C]acetate, demonstrated that 14:1 is synthesized by the anaerobic pathway. When cells of this bacterium were grown in the presence of [1-14C]myristic acid (14:0), this compound was converted to palmitic (16:0) and hexadecenoic (16:1) acids but not to 14:1, under aerobic conditions. These results suggest that the incorporated 14:0 was elongated to 16:0 and then converted to 16:1 by the aerobic desaturation of 16:0. It appears that the anaerobic pathway and aerobic desaturation are both involved in the synthesis of unsaturated fatty acids during aerobic growth of Vibrio sp. strain ABE-1.  相似文献   

17.
A novel immunoassay was developed for specific detection of cyanobacterial cyclic peptide hepatotoxins which inhibit protein phosphatases. Immunoassay methods currently used for microcystin and nodularin detection and analysis do not provide information on the toxicity of microcystin and/or nodularin variants. Furthermore, protein phosphatase inhibition-based assays for these toxins are not specific and respond to other environmental protein phosphatase inhibitors, such as okadaic acid, calyculin A, and tautomycin. We addressed the problem of specificity in the analysis of protein phosphatase inhibitors by combining immunoassay-based detection of the toxins with a colorimetric protein phosphatase inhibition system in a single assay, designated the colorimetric immuno-protein phosphatase inhibition assay (CIPPIA). Polyclonal antibodies against microcystin-LR were used in conjunction with protein phosphatase inhibition, which enabled seven purified microcystin variants (microcystin-LR, -D-Asp3-RR, -LA, -LF, -LY, -LW, and -YR) and nodularin to be distinguished from okadaic acid, calyculin A, and tautomycin. A range of microcystin- and nodularin-containing laboratory strains and environmental samples of cyanobacteria were assayed by CIPPIA, and the results showed good correlation (R2 = 0.94, P < 0.00001) with the results of high-performance liquid chromatography with diode array detection for toxin analysis. The CIPPIA procedure combines ease of use and detection of low concentrations with toxicity assessment and specificity for analysis of microcystins and nodularins.  相似文献   

18.
The cyanobacteria Anacystis nidulans (Synechococcus sp. PCC6301), Synechocystis sp. PCC6803, Anabaena sp. PCC 7120, and Nostoc sp. PCC8009 were grown photoautotrophically under reduced oxygen tension in a medium with sulfate replaced by thiosulfate and nitrate replaced by ammonium as the S- and N-sources, respectively. In addition, Anabaena and Nostoc were grown under dinitrogen-fixing conditions in a medium free of combined nitrogen. Membranes were isolated from late-logarithmic cells (culture density corresponding to approximately 3 microliters packed cells per milliliter); cytoplasmic and thylakoid membranes were separated and purified according to established procedures. Acid-labile hemes were extracted from the membranes and subjected to reversed-phase high-performance liquid chromatography. Separated hemes were analyzed spectroscopically and identified by comparison with authentic standards. In addition to hemes B, A, and O, the latter of which was induced under semianaerobic conditions only, substitution of thiosulfate and ammonium for the oxy-anions sulfate and nitrate led to the appearance of spectrally discernible heme D in the membranes and extracts therefrom. However, spectroscopic and kinetic investigation of the membrane-bound heme D rather disproved any reaction with oxygen or carbon monoxide. Kinetic measurements performed with the membrane-bound respiratory oxidase gave evidence for only two kinetically competent terminal oxidases, a3 and o3, both apparently associated with a single type of apoprotein, viz. subunit I of the known cyanobacterial aa3-type cytochrome c oxidase. The heme D, on the other hand, seems to form a spectrally distinguished, yet kinetically ill-defined hemoprotein complex which does not qualify as a fully functional d-type terminal oxidase on our (wild-type) cyanobacteria even after growth under semianaerobic pseudo-reducing conditions. Also growth (of Anabaena and Nostoc) under dinitrogen-fixing conditions did not change this situation. Thus, we are left with (wild-type) cyanobacteria forming an unbranched respiratory chain with only a single type of terminal oxidase protein, viz. the known aa3-type cytochrome c oxidase. This oxidase, however, may incorporate different prosthetic (heme) groups in the sense of "heme promiscuity." Biosynthesis of the different heme groups thereby seems to respond to the ambient redox environment. In particular, however, conditions for expression of the two quinol oxidases potentially and additionally coded for by the genome of, e. g., Synechocystis sp. PCC6803 (see http://www.kazusa.or.jp/cyano), have not yet been found.  相似文献   

19.
The present study was carried out in order to examine and characterize the bidirectional hydrogenase in the cyanobacterium Nostoc sp. strain PCC 73102. Southern hybridizations with the probes Av1 and Av3 (hoxY and hoxH, bidirectional hydrogenase small and large subunits, respectively) revealed the occurrence of corresponding sequences in Anabaena variabilis (control), Anabaena sp. strain PCC 7120, and Nostoc muscorum but not in Nostoc sp. strain PCC 73102. As a control, hybridizations with the probe hup2 (hupL, uptake hydrogenase large subunit) demonstrated the presence of a corresponding gene in all the cyanobacteria tested, including Nostoc sp. strain PCC 73102. Moreover, with three different growth media, a bidirectional enzyme that was functional in vivo was observed in N. muscorum, Anabaena sp. strain PCC 7120, and A. variabilis, whereas Nostoc sp. strain PCC 73102 consistently lacked any detectable in vivo activity. Similar results were obtained when assaying for the presence of an enzyme that is functional in vitro. Native polyacrylamide gel electrophoresis followed by in situ hydrogenase activity staining was used to demonstrate the presence or absence of a functional enzyme. Again, bands corresponding to hydrogenase activity were observed for N. muscorum, Anabaena sp. strain PCC 7120, and A. variabilis but not for Nostoc sp. strain PCC 73102. In conclusion, we were unable to detect a bidirectional hydrogenase in Nostoc sp. strain PCC 73102 with specific physiological and molecular techniques. The same techniques clearly showed the presence of an inducible bidirectional enzyme and corresponding structural genes in N. muscorum, Anabaena sp. strain PCC 7120, and A. variabilis. Hence, Nostoc sp. strain PCC 73102 seems to be an unusual cyanobacterium and an interesting candidate for future biotechnological applications.  相似文献   

20.
In this study, 4 Penicillium species (17 strains) were classified on the basis of metabolite profile (chemotaxonomy) by using liquid chromatography-electrospray ionization ion trap-mass spectrometry (LC-ESI-MS), gas chromatography-ion trap-mass spectrometry (GC-IT-MS) and multivariate statistical analysis. The LC-ESI-MS-based dendrogram was similar to the internal transcribed spacer (ITS)-based dendrogram, in that Penicillium oxalicum was separated from the other 3 species. Moreover, vermiculidiol, meleagrin, oxaline, glandicolin A and B, and secalonic acid D were identified as metabolites that enable discrimination of Penicillium species by partial least squares discriminant analysis (PLS-DA). Evaluation of the species-specific metabolites produced by P. expansum, P. echinulatum, and P. solitum revealed that the 3 species differed from each other. On the other hand, GC-IT-MS-based dendrogram revealed that P. expansum was clearly classified separately from the other 3 species, and this result correlated with the antioxidant activity of the 4 species: P. expansum had a higher radical scavenging activity than the other 3 species. The metabolites produced in higher amounts in P. expansum were gluconic acid (12, 29, 33); andrastin A (16), B (15), and C (17); chaetoglobosin C (14), a class of sugar (31, 32); and salicylic acid (28). The results of this study demonstrated that metabolite-based chemotaxonomy could be used not only as a classification method but also as a tool for evaluation of species-specific activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号