首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Laboratory colonies of the leaf-cutting ants Atta sexdens that were fed daily with leaves of Canavalia ensiformis showed a high ant mortality, and a significant decrease in fungal garden volume, with complete depletion of nests after 11 weeks of treatment.  相似文献   

2.
Leaf-cutting ants belonging to the tribe Attini are major herbivores and important agriculture pests in the neotropics, these ants being thought to feed on the sap which exudes from the plant material which they cut and also on the mycelium of a symbiotic fungus that grows on plant material inside their nests in what is called "the fungus garden". However, we have found that the survival of Atta sexdens worker ants on leaves, on mycelium of the ants' symbiotic fungus, Leucoagaricus gongylophorus, or on plant polysaccharides was the same as that of starved A. sexdens, while, conversely, significantly longer survival was achieved by ants fed on the fungus garden material or on some of the products (especially glucose) of the hydrolysis of plant polysaccharides. We found that the fungus garden contained glucose at a higher concentration than that found in leaves or fungal mycelium, and that this glucose was consumed by the ant to the extent that it was probably responsible for up to 50% of the nutritional needs of the workers. The fungus garden contained polysaccharide degrading enzymes (pectinase, amylase, xylanase and cellulase) in proportions similar to that observed in laboratory cultures of L. gongylophorus. It thus appears that A. sexdens workers obtain a significant part of their nutrients from plant polysaccharide hydrolysis products produced by the action of extracellular enzymes released by L. gongylophorus. In this paper we discuss the symbiotic nutrition strategy of A. sexdens workers and brood and the role played by plant polysaccharides in the nutrition of attine ants.  相似文献   

3.
Summary Foundresses of the leaf-cutting ant Acromyrmex octospinosus in central Panamá forage for leaves as garden substrate (semi-claustral foundation). The fungal pellet and substrate usually are attached to rootlets, which are used as a platform for the garden. This arrangement keeps the garden suspended away from the earthen chamber of the underground nest during early colony growth, and we hypothesize that it serves to minimize contact between the garden and contaminants. A. octospinosus foundresses produce from 3 to 7 workers in 2.7 months after founding the nest, but workers do not forage for substrate at this time. Incipient nests died or were abandoned at a monthly rate of ca. 50%. We show that ants routinely clean their legs before manipulating the garden substrate. We also describe how foundresses use their fore-legs to rub the surface of the metapleural gland (MPG), and they then use typical grooming behaviors to pass the forelegs through the mouthparts, after which the ant then licks the garden substrate. Similarly, ants apparently use their mouths to transfer fecal droplets to their legs. We briefly discuss the functional significance of these grooming behaviors, and hypothesize that they are prophylactic behaviors that may help the foundress maintain a hygienic garden.  相似文献   

4.
1. Fungal endophytes are microfungi that reside asymptomatically inside of leaf tissues, increasing in density and diversity through time after leaves flush. Previous studies have suggested that the presence of fungal endophytes in the harvest material of leaf‐cutting ants (Atta colombica, Guérin‐Méneville) may negatively affect the ants and their fungal cultivar. 2. In the present study, it was tested whether the presence and diversity of fungal endophytes affected the amount of time necessary for leaf‐cutter ants to cut, process, and plant leaf material in their fungal garden. It was found that ants took 30–43% longer to cut, carry, clean, and plant leaf tissue with high relative to low endophyte abundance, and that the ants responded similarly to leaf tissue with high or low endophyte diversity. 3. It was further investigated whether the fungal cultivars' colonisation rate was greater on leaf material without fungal endophytes. No difference in the ants' cultivar colonisation rate on leaf tissue with high or low endophyte abundance was observed.  相似文献   

5.
1. When leaf-cutting ants were deprived of leaves for 5 days, they increased their consumption rates of 'staphylae', the nutritive bodies produced by their mutualistic fungus. They also pruned their fungus garden more intensively, presumably stimulating increased staphyla production.
2. Depriving fungus gardens of leaves for 5 days led to greater rates of staphyla production compared with control gardens. The rate of substrate exhaustion also increased, possibly because of this increased staphyla production, which led to greater removal of fungal resources by the ants.
3. The availability of leaf substrate directly affected staphyla production by the fungus garden. When leaf fragments were inserted into fungus garden samples, staphyla production was depressed, suggesting that the fungus can allocate resources either to hyphal colonization of fresh substrate or to staphyla production.
4. Under conditions of leaf deprivation, food production for the ants effectively increased, due to the combined effects of increased pruning by the ants and the response of the fungus to lack of substrate. This will allow nests to survive for long periods in the field when forage availability is reduced.
5. Exposing parts of the colony to the stress of leaf deprivation showed that there is a high level of flexibility in the fungus garden's ability to produce staphylae. This may be important during the cyclic production of broods, when demands for larval food will fluctuate widely. Under normal conditions, the optimal strategy may be for the fungus garden to have a moderate rate of production with a low rate of turnover, unless demand for staphylae increases dramatically.  相似文献   

6.
Interactions among the component members of different symbioses are not well studied. For example, leaf-cutting ants maintain an obligate symbiosis with their fungal garden, while the leaf material they provide to their garden is usually filled with endophytic fungi. The ants and their cultivar may interact with hundreds of endophytic fungal species, yet little is known about these interactions. Experimental manipulations showed that (i) ants spend more time cutting leaves from a tropical vine, Merremia umbellata, with high versus low endophyte densities, (ii) ants reduce the amount of endophytic fungi in leaves before planting them in their gardens, (iii) the ants'' fungal cultivar inhibits the growth of most endophytes tested. Moreover, the inhibition by the ants'' cultivar was relatively greater for more rapidly growing endophyte strains that could potentially out-compete or overtake the garden. Our results suggest that endophytes are not welcome in the garden, and that the ants and their cultivar combine ant hygiene behaviour with fungal inhibition to reduce endophyte activity in the nest.  相似文献   

7.
Physically isolating organisms from disease agents should reduce the likelihood of disease transmission and infection, and increase survival and growth, particularly in more vulnerable, early ontogenetic stages. During nest founding in fungus-growing ants, foundresses of most genera use a garden platform to isolate the incipient fungal garden from the soil of the underground chamber. We studied nest founding in Acromyrmex octospinosus to test the hypotheses that the use of a platform (rootlets used to suspend the fungus garden): (i) reduces the likelihood that the garden will be contaminated by soil-borne microbial pathogens; (ii) results in more rapid growth of a young colony; and (iii) increases colony survival. We manipulated natural incipient nests to have gardens either in contact with or isolated from soil surrounding the chamber, and nests with and without foundresses present. We found a higher incidence of infection in gardens that were in contact with the chamber soil and without queens, compared with gardens isolated from the chamber soil with and without foundresses. The production of eggs, larvae and pupae, as well as leaf area harvested, were significantly different between nests with and without platforms, but there were no differences in the production of workers nor garden biomass. Likewise, there were no differences between treatments in colony survival rates over 8 weeks. Using smaller incipient gardens, however, gardens with and without platforms differed in survivorship rates after 24 hours. The results indicate that the use of a platform to cultivate an incipient fungal garden is an adaptation to reduce soil-borne diseases and increase colony performance. Received 28 July 2006; revised 15 November 2006; accepted 22 November 2006.  相似文献   

8.
Neotropical ants in the tribe Attini share the obligatory behaviour of cultivating fungi as an essential food source. Of this complex and well-studied mutualism, little is known about the biological traits of the phylogenetically basal attines, which may offer important clues to the origins and early evolution of this intricate symbiosis. In this paper we focus on the founding of new nests, a key to understanding evolutionary changes in many social insects, which has received comparatively little attention in attine ants. We present a comparative survey of nest-founding behaviour in Attini, based on 441 foundress nests of 20 species in eight attine genera. In general, attine queens are semiclaustral and haplometrotic when founding nests. We show that attine foundresses of most species use an inert platform (discarded forewings, roots, or rocks) on which the incipient fungal garden is physically isolated during nest foundation, and they conduct semiclaustral foundation. This behaviour is not shared with Atta , which places the incipient garden directly on the soil floor of the initial nest chamber, and conducts claustral foundation. Nest-founding maps congruently onto the major clades in attine phylogeny, suggesting that the behavioural mechanisms used to isolate the incipient garden may have been key innovations in the early evolution of attine fungiculture. The evolutionary sequence of gardening in Attini suggests a transformation series from retention and use of detached wings (suspended from the chamber ceiling or placed over the chamber floor) to root-suspension, and finally use of bare soil. We also discuss transitions from semiclaustral to claustral founding, as well as from haplometrosis to pleometrosis, from ecological and evolutionary perspectives.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 81 , 39–48.  相似文献   

9.
We describe a peculiar fungus-coating behavior of the attine ant Mycetosoritis clorindae, where workers plant fungal mycelium on hibernating nestmates. Hibernating nestmates become ultimately enveloped in a live mycelial coat, remain motionless in this coated state, and essentially become integrated into the garden matrix. The shallow nest architecture of M. clorindae (depth of main garden is 15–30 cm) in southern Brazil forces the ants to overwinter at relatively low temperatures in the topmost soil layer. Fungal coating may help the ants to survive the prolonged periods of immobility during winter. Fungus-planting on attine adults is so far unknown from other attine species, but the behavior parallels the planting of mycelium on larvae and pupae occurring in many attine species. Planting of mycelium on adult nestmates may have been overlooked so far in attine ants because this behavior may occur only in dormant nests, which are least frequently collected. The possible adaptive functions of fungus coatings of hibernating adults and developing brood are likely similar, including for example physical protection, prevention of desiccation, shielding against parasites and predators (e.g., army ants), or defense against diseases.  相似文献   

10.
Atta sexdens L. ants feed on the fungus they cultivate on cut leaves inside their nests. The fungus, Leucoagaricus gongylophorus, metabolizes plant polysaccharides, such as xylan, starch, pectin, and cellulose, mediating assimilation of these compounds by the ants. This metabolic integration may be an important part of the ant-fungus symbiosis, and it involves primarily xylan and starch, both of which support rapid fungal growth. Cellulose seems to be less important for symbiont nutrition, since it is poorly degraded and assimilated by the fungus. Pectin is rapidly degraded but slowly assimilated by L. gongylophorus, and its degradation may occur so that the fungus can more easily access other polysaccharides in the leaves.  相似文献   

11.
Leucoagaricus gongylophorus, the symbiotic fungus of the leaf-cutting ants, degrades starch, this degradation being supposed to occur in the plant material which leafcutters forage to the nests, generating most of the glucose which the ants utilize for food. In the present investigation, we show that laboratory cultures of L. gongylophorus produce extracellular -amylase and maltase which degrade starch to glucose, reinforcing that the ants can obtain glucose from starch through the symbiotic fungus. Glucose was found to repress -amylase and, more severely, maltase activity, thus repressing starch degradation by L. gongylophorus, so that we hypothesize that: (1) glucose down-regulation of starch degradation also occurs in the Atta sexdens fungus garden; (2) glucose consumption from the fungus garden by A. sexdens stimulates degradation of starch from plant material by L. gongylophorus, which may represent a mechanism by which leafcutters can control enzyme production by the symbiotic fungus. Since glucose is found in the fungus garden inside the nests, down-regulation of starch degradation by glucose is supposed to occur in the nest and play a part in the control of fungal enzyme production by leafcutters.  相似文献   

12.
Three species of epiphytic Dischidia have been investigated in terms of their relationship to ants on trees. Two species, D. parvifolia and D. astephana , are associated with ants and trees in montane areas. A clear association has been found between ants of the genus Crematogaster and the tree Leptospermum flavescens. This relationship is complex and probably both organisms benefit from the association. The ants live in tunnels in the wood of the major branches and the trunk, and the entire tree is occupied by one ant colony. Trees occupied by ants are maintained by the ants substantially clear of epiphytes other than the two species of Dischidia. The potential benefits to the tree and to the ants of this association are noted. The roots of D. astephana and D. parvifolia penetrate into the cavities of these ant nests and presumably gain nutrients from waste in the ant nests. Both Dischidia species are effectively scavenging upon the waste material from the ant-tree association. The leathery dome-shaped leaves of D. astephana are not vital to the development of the scavenging habit as D. parvifolia has lens-shaped leaves, but may offer some advantage to D. astephana by the uptake of nutrients from waste deposited by the ants under the dome-shaped leaves by interception of stem flow and by uptake of gaseous waste. Ants do not nest under these leaves. Seeds of these species of Dischidia are taken by ants into the central woody area of the ant nest where they germinate. Both Leptospermum and Dischidia can be visualized as showing adaptations to a nutient-deficient tropical montane environment. These adaptations are discussed as is the need for reassessment in this genus of the term 'ant-plant', and the need for wider recognition of the 1ant-tree' relationship between Crematogaster and Leptospermum.  相似文献   

13.
Leaf-cutting ants of the genera Acromyrmex and Atta forage vegetation for incorporation into their mutualistic fungal gardens. However, the presence of certain endophytic fungi in this predominantly leaf-based material could affect the fungal garden and thus the choice of material by the ants. The present study was conducted to document the endophytic fungal communities occurring in the vegetation being transported by workers of Atta laevigata into their nests and to compare this community structure with that of the vegetative material subsequently rejected from the nests. We found considerable diversity in the fungi isolated. Acremonium, Cylindrocladium, Drechslera, Epicoccum, Fusarium, Trichoderma, Ulocladium and two unidentified morphospecies were significantly more common in rejected compared with foraged material, and some of these genera include mycoparasites, which could represent a threat to the fungal gardens. Conversely, Colletotrichum, Pestalotiopsis, Phomopsis, Xylaria and an unidentified morphospecies were more common in carried compared with rejected material. The possibility that ants have a ‘quality-control’ mechanism based on the presence of antagonistic fungal endophytes is discussed, as is the potential use of these fungi as biocontrol agents against Attini pests.  相似文献   

14.
Abstract.  The energetics of colony founding is investigated in the fungus gardening ants (Attini) Trachymyrmex septentrionalis and Cyphomyrmex rimosus . Similar to most ants, inseminated queens of these two species found nests independently unaccompanied by workers (haplometrosis). Whereas most ant founding queens seal themselves in a chamber and do not feed when producing a brood entirely from metabolic stores (claustral founding), the majority of fungus gardening ants must forage during the founding phase (semiclaustral founding). Laboratory-reared T. septentrionalis individuals comprise 84 dealate females collected after mating flights in June 2004. Twenty are immediately killed to obtain values for queen traits and another 20 after worker emergence for queen, fungus garden and worker traits. Cyphomyrmex rimosus comprise 22 dealate females collected in June 2005; ten of which are immediately killed and similarly prepared. Newly-mated T. septentrionalis queens have 25% of their dry weight as fat; whereas newly-mated C. rimosus queens contain 11% fat. These amounts are 50–75% less than most independently founding ant species. Trachymyrmex septentrionalis queens lose merely 5% of their energetic content during colony founding, whereas the total energetic content of their brood is more than three-fold the amount lost by the queen. Incipient T. septentrionalis colonies produce approximately half as much ant biomass per gram of fungus garden as do mature colonies. Similar to most ants, T. septentrionalis produces minim workers that are approximately 40% lighter than workers from mature colonies. Regardless of their size, T. septentrionalis workers contain much lower fat than do workers of claustral species. These data indicate that fungus gardening is adaptive because colonies can produce much cheaper offspring, making colony investment much lower.  相似文献   

15.
16.
We describe a bioassay for the quantification of cultivar preference (symbiont choice) of fungus-growing ants. The bioassay simultaneously presents mycelium of multiple pure cultivar genotypes to worker ants in a cafeteria-style test arena, and preferred versus non-preferred cultivar genotypes can then be identified based on the ants’ quantifiable behavioral tendencies to convert any of the offered mycelium into a fungus garden. Under natural conditions, fungus-growing ants are likely to express such cultivar preferences when mutant cultivars arise in a garden, or when colonies acquire a novel cultivar from a neighboring colony to replace their resident cultivar. We show that workers from different nests of the fungus-growing ant Cyphomyrmex costatus exhibit repeatable preferences vis-à-vis specific cultivar genotypes. The identified preferred and rejected cultivars can then be used in a performance assay to test whether the ants prefer cultivar genotypes that are superior in enhancing colony fitness (measured, for example, as garden productivity or colony growth), as predicted by symbiont-choice theory. Received 24 February 2006; revised 23 June 2006; accepted 26 June 2006.  相似文献   

17.
Abstract. 1. In laboratory nests the ants thoroughly licked leaf fragments by a rasping action of their glossa before inoculating the food fungus. The extent of this licking varied with the substrate and was influenced by the thickness of surface leaf waxes and by the chemical attractiveness of the substrate.
2. Microscopy and wettability studies showed that licking removes the wax layer present on leaves. It also removes or inhibits micro-organisms present.
3. Chemically de-waxed and decontaminated leaves and ant-licked leaves proved the best substrates for artificially culturing the ant fungus.
4. The process of substrate preparation circumvents some of the normal defence mechanisms of green plants against fungal attack. The ant fungus thus utilizes nutritionally richer resources of green leaves normally available only to specialized parasitic fungi, rather than the nutritionally inferior shed leaves normally available to saprophytic fungi.  相似文献   

18.
We profiled the microfungal communities in gardens of fungus-growing ants to evaluate possible species-specific ant-microfungal associations and to assess the potential dependencies of microfungal diversity on ant foraging behavior. In a 1-year survey, we isolated microfungi from nests of Cyphomyrmex wheeleri, Trachymyrmex septentrionalis and Atta texana in Central Texas. Microfungal prevalence was higher in gardens of C. wheeleri (57%) than in the gardens of T. septentrionalis (46%) and A. texana (35%). Culture-dependent methods coupled with a polyphasic approach of species identification revealed diverse and changing microfungal communities in all the sampling periods. Diversity analyses showed no obvious correlations between the number of observed microfungal species, ant species, or the ants' changing foraging behavior across the seasons. However, both correspondence analysis and 5.8S-rRNA gene unifrac analyses suggested structuring of microfungal communities by ant host. These host-specific differences may reflect in part the three different environments where ants were collected. Most interestingly, the specialized fungal parasite Escovopsis was not isolated from any attine garden in this study near the northernmost limit of the range of attine ants, contrasting with previous studies that indicated a significant incidence of this parasite in ant gardens from Central and South America. The observed differences of microfungal communities in attine gardens suggest that the ants are continuously in contact with a diverse microfungal species assemblage.  相似文献   

19.
Leaf‐cutting ants maintain a symbiotic relationship with basidiomycetous fungi cultivated as food. Here, we profiled the non‐symbiotic filamentous fungi in laboratory nests of Atta sexdens rubropilosa submitted to treatments with different toxic bait formulations (using the insecticide sulfluramide as the active ingredient). After treatment, several filamentous fungi were found in different nest compartments. Culture‐dependent techniques recovered a total of 93 fungal isolates comprising 10 genera, 11 species and four unidentified fungi. The genus Penicillium was prevalent in both control and insecticide treatments. Overall, the majority of fungal isolates obtained in this study are commonly found in soil. Escovopsis spp., the specialized parasite of the ant‐fungus mutualism was only recorded in the fungus gardens of nests submitted to the toxic treatments. Moreover, no correlation was found regarding the presence of fungi in the different nest compartments (chi‐square, P > 0.4182). This study reveals that Escovopsis spp. is not the only fungus to overgrow the fungus garden of debilitated nests, thus adding more evidence on the possible negative impacts of such alien fungi. As suggested by previous studies, fast‐growing filamentous fungi likely overgrow the fungus garden in such conditions.  相似文献   

20.
The fungivonis insect Illeis indica is a potential biocontrol agent of Phyllactinia corylea which causes powdery mildew in mulberry. The present study by light and scanning electron microscopy explains the life stages of I. indica and its feeding behaviour on P. corylea borne on infected mulberry leaves. The eggs are laid in clusters of 5–23 on the abaxial surface of infected leaves. Each egg has 16–18 aeropyles circularly arranged at its distal end around a micropylar plate. Total larval period of I. indica is about 15.60 days with four instars and its life cycle is completed in 38.50 days. The grubs feed only on conidia during first instar, on conidia and conidiophores during second instar, and also on parts of mycelia during third instar. The final instar grubs feed on entire aerial mycelial mass leaving only stomatopodia and hyphal remnants attached to them. Pupation is for 6–7 days and the pupae remain motionless and attached to the abaxial leaf surface. Adults also feed voraciously on the fungal mass and the fertilized females lay eggs after about 7.03 ±0.144 days. The grubs and adults clear off the fungal mass from the infected leaves without leaving any mycelial patch and the fungus does not regenerate on such cleared leaves. Field observations indicated a drastic fall in the incidence of powdery mildew disease in mulberry even in the usual peak disease period, with the increased population of I. indica in the mulberry garden.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号