首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four women were studied at 0400 h and 1600 h to determine if their hormonal and hemodynamic responses to exercise varied with the circadian cycle. Esophageal temperature was measured during rest and exercise (60% peak VO2; 30 min) in a warm room (Ta = 35 degrees C; PH2O = 1.7 kPa). Venous blood samples were drawn during rest and exercise and hemoglobin concentration (Hb), hematocrit (Hct), plasma osmolality (Posm), plasma protein concentration (Pp), colloid osmotic pressure (COP), plasma renin activity (PRA), cortisol, aldosterone, norepinephrine (NE) and epinephrine (E) were determined. Changes in plasma volume (PV) were estimated from changes in Hb and Hct. The relative hemoconcentration (-11.2%) was similar at 0400 h and 1600 h, but the absolute PV was smaller at 1600 h than at 0400 h (p = 0.03). The responses of Posm, Pp and COP to exercise were unaffected by time of day. Although PRA was not different at the two times of day, PRA was 244% greater during exercise at 1600 h, but only 103% greater during exercise at 0400 h. The normal circadian rhythms in plasma aldosterone (p = 0.043) and plasma cortisol (p = 0.004) were observed. Plasma aldosterone was 57% greater during exercise, while plasma cortisol did not change. The change in E and NE was greater at 0400 h, but this was due to the lower resting values of the catecholamines at 0400 h. These data indicate that time of day generally did not affect the hormonal or hemodynamic responses to exercise, with the exception that PRA was markedly higher during exercise at 1600 h compared to 0400 h.  相似文献   

2.
The effects of menstrual cycle phase (early follicular vs. midluteal) and menstrual status (eumenorrhea vs. amenorrhea) on plasma arginine vasopressin (AVP), renin activity (PRA), and aldosterone (ALDO) were studied before and after 40 min of submaximal running (80% maximal O2 uptake). Eumenorrheic runners were studied in the early follicular and midluteal phases determined by urinary luteinizing hormone and progesterone and plasma estradiol and progesterone assays; amenorrheic runners were studied once. Menstrual phase was associated with no significant differences in preexercise plasma AVP or PRA, but ALDO levels were significantly higher during the midluteal phase than the early follicular phase. Plasma AVP and PRA were significantly elevated at 4 min after the 40-min run in the eumenorrheic runners during both menstrual phases and returned to preexercise levels by 40 min after exercise. Plasma ALDO responses at 4 and 40 min after exercise were higher in the midluteal phase than the early follicular phase. Menstrual status was associated with no significant differences in preexercise AVP or PRA; however, ALDO levels were significantly higher in the amenorrheic runners. After exercise, responses in the amenorrheic runners were comparable with the eumenorrheic runners during the early follicular phase. Thus, submaximal exercise elicits significant increases in plasma AVP and PRA independent of menstrual phase and status. However, plasma ALDO is significantly elevated during the midluteal phase, exercise results in a greater response during this menstrual phase, and amenorrheic runners have elevated resting levels of ALDO.  相似文献   

3.
The plasma concentrations of aldosterone and its known regulators, plasma renin, potassium and ACTH, were examined during graded intensities of treadmill exercise (50, 70 and 90% of maximal oxygen uptake, VO2max). Sedentary men (n = 7) and two groups of runners of different training status (moderately trained, 15-25 miles/week, n = 7; highly trained, greater than 45 miles/week, n = 7) were studied in an attempt to define whether physical training causes changes in aldosterone homeostasis. Acute exercise was associated with elevations in plasma aldosterone, renin activity, potassium and ACTH in all three groups of subjects at exercise intensities of 70 and 90% VO2max. There were no differences in any of the responses among the three groups except for a blunted response of PRA at 90% VO2max in highly trained athletes. The exercise-induced rise of plasma aldosterone concentration did not correlate with changes in the concentration of its regulatory substances. We conclude that exercise stimulates the renin-angiotensin-aldosterone axis in an intensity-dependent fashion. With increased physical training identical hormonal and metabolic responses result at increased absolute workloads.  相似文献   

4.
Plasma renin activity (PRA), plasma renin concentration (PRC), inactive renin concentration (IRC) and total renin concentration (TRC) were measured in 31 normal controls and in 8 patients with hyperthyroidism. TRC was determined as angiotensin I generated with sheep renin substrate after an acid activation of plasma. The angiotensin I of non-acidified plasma was expressed as PRC. IRC was calculated as TRC minus PRC. The mean values for PRA, PRC, IRC and TRC were significantly (P less than 0.05 to P less than 0.01) higher in the hyperthyroid patients than in the normal or euthyroid controls. The administration of a beta 1-adrenergic blocker, metoprolol (120 mg/day for 14 days), produced a significant (P less than 0.05 to P less than 0.01) fall in levels of T4, PRA and TRC, and reduced the active renin ratio calculated from PRC/TRC significantly (P less than 0.025), as compared to the pretreatment values. Our observations support the idea that the higher PRA in hyperthyroidism is due to an increased secretion of renin. Furthermore, the results may indicate that the conversion of inactive to active renin is accelerated in hyperthyroidism, possibly by an increased sympathetic activity.  相似文献   

5.
Twelve male runners and 12 matched nonathletes performed a prolonged uninterrupted graded exercise test on the bicycle ergometer up to exhaustion to study blood pressure and plasma levels of renin (PRA), vasoconstrictor angiotensin II (ANG II), and 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha), a metabolite of the vasodilator prostacyclin. In the athletes work load was increased by 30 W/4 min, and in the control subjects the increments of work load were adjusted to their lower exercise capacity to equalize total exercise duration. Blood was drawn, and blood pressure and O2 uptake (VO2) were measured at rest and at the fourth, eighth, and last steps of exercise. Peak VO2 averaged 60 +/- 1.6 ml . min-1 . kg-1 in the runners and 46.8 +/- 1.5 in the nonathletes. To evaluate differences between athletes and controls, PRA, ANG II, and 6-keto-PGF1 alpha were first adjusted for significant confounding factors, such as age, weight, hematocrit, 24-h urinary sodium excretion, and O2 uptake. PRA was significantly lower in the athletes (F = 11.2; P less than 0.01); ANG II was not different at rest, but its rise with exercise was less steep in the runners (F = 8.2; P less than 0.01), whereas 6-keto-PGF1 alpha was not different between the groups (F = 1.3; NS). Despite the differences in PRA and ANG II, however, blood pressure was similar in athletes and nonathletes (F = 0.0; NS).  相似文献   

6.
The purpose of this study was to determine the response of plasma renin activity (PRA), plasma aldosterone concentration (PAC) and catecholamines to two graded exercises differing by posture. Seven male subjects (19-25 years) performed successively a running rest on a treadmill and a swimming test in a 50-m swimming pool. Each exercise was increased in severity in 5-min steps with intervals of 1 min. Oxygen consumption, heart rate and blood lactate, measured every 5 min, showed a similar progression in energy expenditure until exhaustion, but there was a shorter time to exhaustion in the last step of the running test. PRA, PAC and catecholamines were increased after both types of exercise. The PRA increase was higher after the running test (20.9 ng AngI X ml-1 X h-1) than after swimming (8.66 ng AngI X ml-1 X h-1). The PAC increase was slightly greater after running (123 pg X ml-1) than swimming (102 pg X ml-1), buth the difference was not significant. Plasma catecholamine was higher after the swimming test. These results suggest that the volume shift induced by the supine position and water pressure during swimming decreased the PRA response. The association after swimming compared to running of a decreased PRA and an enhanced catecholamine response rule out a strict dependence of renin release under the effect of plasma catecholamines and is evidence of the major role of neural pathways for renin secretion during physical exercise.  相似文献   

7.
Plasma prostaglandins (PGE and PGF alpha), catecholamine concentration, and plasma renin activity (PRA) were measured during an uninterrupted graded exercise test on the bicycle ergometer in 11 hypertensive patients. Blood was withdrawn from the brachial and pulmonary arteries after 30 min of recumbent rest, after 15 min of rest sitting, and at the final work load of the exercise test, which averaged 143 +/- 16.5 W. Exercise did not provoke a significant change in these plasma PGE or PGF alpha concentrations, whereas a rise (P less than 0.001) in arterial PRA and (nor)epinephrine concentration was observed. It is thus unlikely that PGE or PGF alpha is an important determinant of PRA release during exercise, although circulating levels of PGE and PGF alpha do not necessarily reflect release rate or activity in the kidney.  相似文献   

8.
Plasma renin system during exercise in normal men   总被引:2,自引:0,他引:2  
The exercise-related increase in plasma renin activity (PRA) and in the plasma concentration of angiotensin II (ANG II) and aldosterone (Aldo) was studied in 43 healthy volunteers whose 24-h urinary sodium excretion (UVNa) ranged from 10 to 250 mmol. Arterial blood samples were obtained at rest and during bicycle ergometry. Compared with rest, PRA, ANG II, and Aldo rose to a similar extent during light and moderate exercise. However, at peak exercise ANG II increased significantly more (P less than 0.001) than PRA and Aldo. Thus, with increasing intensity of exercise, the slope of the linear regression of ANG II on PRA became significantly (P less than 0.001) steeper, whereas at maximal exercise the Aldo response did not follow the acute rise in ANG II. At rest as well as during exercise, Aldo rose with increasing ANG II, but the stimulatory effect of ANG II on Aldo was attenuated with higher sodium intake, as estimated from UVNa. Finally, independent of the level of physical activity, UVNa was negatively correlated with PRA, ANG II, and Aldo.  相似文献   

9.
We compared the determination of plasma renin activity (PRA) and the direct immunoradiometric measurement of active renin (AR) as ways of assessing the activity of the renin-angiotensin system in normal volunteers and in patients with hypertension, heart failure, or liver failure. The levels of plasma renin substrate, angiotensinogen, and the ratio of PRA to AR concentration did not differ in the normal volunteers and the patients with essential or renovascular hypertension. However, compared to the volunteers, patients with severe heart or liver failure had markedly reduced plasma renin substrate levels, which led to a considerable underestimation of AR concentration when it was measured by PRA.  相似文献   

10.
The relationship between plasma renin activity (PRA) at rest and physical fitness was studied in 40 normal young subjects on a liberal sodium intake. Plasma renin activity was measured in arterial blood withdrawn at the end of a 30-min period of rest in recumbency, while physical fitness was expressed by the highest oxygen uptake achieved during an uninterrupted graded exercise test performed in the sitting position on an electromagnetically braked ergometer bicycle (peak VO2). Log PRA correlated significantly and inversely with peak VO2 adjusted for body weight (r = -0.34; P less than 0.05) in single regression analysis. Using multiple regression and adjusted peak VO2, age, urinary sodium excretion and mean intra-arterial pressure as independent variables, no combination of two or more independent variables yielded significant partial correlation coefficients with log PRA. This correlation suggests that PRA at rest is inversely related to the subject's physical fitness.  相似文献   

11.
Plasma vasopressin concentration (PAVP), renal function, and effectors of vasopressin release were evaluated in male volunteers during running at heart rates of 0, 35, 70, and 100% of maximum after 10 h abstinence from water (normal hydration) and at 100% after ingestion of 300 ml water. Plasma renin activity (PRA) and PAVP were linearly correlated and correlated to work intensity over all observations. Changes in PAVP were not correlated with changes in plasma osmolality (POSMOL) and plasma volume (PV) over all observations. Furthermore, despite similar changes in POSMOL, PV, PRA, body weight, mean arterial pressure, and plasma lactate concentration, the increase in PAVP after maximal exercise was greater during normal hydration than the water-supplemented state. Decreased urine flow observed in association with exercise was characterized by increased free water and decreased osmotic and creatinine clearances. Thus increased PAVP associated with exercise appears not to play a role in the concomitant antidiuresis. Vasopressin stimuli are probably variable at different times during exercise and may include factors other than those measured.  相似文献   

12.
The direct assay of total renin (TRC) and active renin concentration (ARC) is a reality due to the availability of monoclonal antibodies against human renin. Because of this, a study has been performed in order to assess the circadian rhythmicity of TRC and ARC. The study was extended to plasma renin activity (PRA) and plasma aldosterone concentration (PAC) for a more complete assessment of the renin-angiotensin-aldosterone system (RAAS). Twelve clinically healthy subjects (6 males and 6 females, age from 20 to 25 years) volunteered for this study. Time-qualified data series were analysed by means of chronobiological procedures in order to validate the circadian rhythm and to correlate the sinusoidal profiles. The circadian rhythm was validated at a high significance for TRC, ARC, PRA and at a borderline significance for PAC. The periodic oscillations were significantly correlated, demonstrating that TRC, ARC, PRA and PAC cycles oscillate in synchronism during the 24-hour span.  相似文献   

13.
In normal children aged one month to 16 years, the plasma active renin concentration (PARC) was measured with a renin immunoradiometricassay (IRMA) kit, and was compared with plasma renin activity (PRA). The IRMA for renin was found to be independent of the amount of renin substrate and not affected by the dilution of plasma samples, and was therefore proved to be a simple and reliable method. PRA measured in non-diluted plasma samples correlated well with PARC. In the age-related change, PARC in infants was significantly higher than that in older children. In infants, PARC was markedly higher in the crying state than that in the non-crying state. In normal children aged 7 to 11 years, PARC was significantly increased in the upright position compared to the supine position. These findings suggest that a hyperresponse of PARC to acute stress during blood sampling may cause an increase in active renin secretion in infants, and that stimulation by short-term standing may accelerate the activation of inactive renin or the release of active renin.  相似文献   

14.
Eighteen patients with ischaemic heart disease were trained for 3 months, three times a week. The effectiveness of the training programme was demonstrated by increases of 27% in peak oxygen uptake and 29% in exercise duration, and by a decrease in resting and submaximal heart rates. Blood pressure, however, was not significantly affected during the training period. At rest and at submaximal exercise plasma renin activity (PRA) was lower after training. Plasma angiotensin I concentration (PA I) and angiotensin II concentration (PA II) were not significantly affected. Plasma aldosterone concentration (PAC), only measured at rest, was not significantly changed after the training period, while plasma norepinephrine (PNE) and epinephrine (PE) concentrations were significantly decreased, but only at high levels of exercise. A reduced sympathetic tone after training, suggested by the lower heart rates and the tendency to a decrease in PNE, is a likely explanation for the decrease in PRA. However, despite this decrease, PA I, PA II, and PAC were not significantly changed after training; the reason for this disrepancy is unknown.  相似文献   

15.
The effect of maximal treadmill exercise on plasma concentrations of vasopressin (AVP); renin activity (PRA); and aldosterone (ALDO) was studied in nine female college basketball players before and after a 5-month basketball season. Pre-season plasma AVP increased (p less than 0.05) from a pre-exercise concentration of 3.8 +/- 0.5 to 15.8 +/- 4.8 pg X ml-1 following exercise. Post-season, the pre-exercise plasma AVP level averaged 1.5 +/- 0.5 pg X ml-1 and increased to 16.7 +/- 5.9 pg X ml-1 after the exercise test. PRA increased (p less than 0.05) from a pre-exercise value of 1.6 +/- 0.6 to 6.8 +/- 1.7 ngAI X ml-1 X hr-1 5 min after the end of exercise during the pre-season test. In the post-season, the pre-exercise PRA was comparable (2.4 +/- 0.6 ngAI X ml- X hr-1), as was the elevation found after maximal exercise (8.3 +/- 1.9 ngAI X ml- X hr-1). Pre-season plasma ALDO increased (p less than 0.05) from 102.9 +/- 30.8 pg X ml-1 in the pre-exercise period to 453.8 +/- 54.8 pg X ml-1 after the exercise test. In the post-season the values were 108.9 +/- 19.4 and 365.9 +/- 64.4 pg X ml-1, respectively. Thus, maximal exercise in females produced significant increases in plasma AVP, renin activity, and ALDO that are comparable to those reported previously for male subjects. Moreover, this response is remarkably reproducible as demonstrated by the results of the two tests performed 5 months apart.  相似文献   

16.
The effect of metabolic acidosis on the renin-aldosterone system remains unclear. In the present study anesthetized mongrel dogs (n = 19) were infused at similar rates with 0.45% NaCl (controls), HCl or NH4Cl (2.5mEq/kg) for 1--3 h. The induced metabolic acidosis in the two experimental groups was not associated with increases in plasma renin activity. Plasma cortisol (as a marker for ACTH secretion) and serum potassium concentration increased in both HCl- and NH4Cl-treated animals. Plasma aldosterone increased after 30 min in the HCl group and 60 min in the NH4Cl group and did not change in controls. These findings demonstrate that metabolic acidosis induced by HCl or NH4Cl is associated with increased aldosterone production without concomitant changes in plasma renin activity.  相似文献   

17.
Acute hemorrhage and horizontal to vertical postural change are accompanied by decrease in blood volume of cardiovascular central reflexogenic areas (CRA) and by central hypoxia, followed by pressor responses. In these both circumstances important reflexogenic and humoral pressor reactions occured, as cathecolamine, renin and aldosterone hypersecretions. Aldosterone hypersecretion is considered as produced by angiotensin II, by a complex renin-angiotensin(RA)-aldosterone system. The main purpose of this work was to clarify the presence of this RA-aldosterone system after acute hemorrhage and in head-up postural change. In this aim we studied on dogs renin, aldosterone and cortisol responses. We analysed in these two circumstances the correlation of plasma renin activity(PRA) and aldosterone plasma concentration(p.c.) in intact and bilaterally nephrectomised(BN) dogs. We also studied correlations between aldosterone and cortisol p.c., having in view that both are stimulated by ACTH, searching in this way another modality for aldosterone secretion.  相似文献   

18.
The effect of oral contraception and of exercise on the renin-angiotensin system was studied in 20 highly trained athletes, of whom 10 were ingesting oral contraceptives (users) and 10 were not (nonusers), and in 24 sedentary age-matched healthy female subjects, of whom 13 were users and 11 were nonusers. No training-related effects were observed with the exception of renin substrate, which was significantly higher in the athletes. The plasma concentrations of active renin and of trypsin-activatable prorenin were significantly lower in the subjects taking oral contraceptives. Renin substrate, however, was significantly higher in the oral contraceptives group. No difference in plasma renin activity (PRA) was observed between users and nonusers. The results demonstrate the well-known estrogen-induced stimulation of renin substrate synthesis by the liver and suggest a decreased secretion of renin by the kidney. Exhaustive exercise of short duration, performed by the trained athletes only, stimulated the renin-angiotensin system. An increase in PRA and in active renin concentration was observed. The prorenin concentration did not change significantly. The magnitude of the exercise-induced changes was considerably influenced by oral contraceptive medication. Nonusers showed a significantly greater increase in PRA and active renin and total renin concentration than users. Renin substrate decreased significantly during exercise in the nonusers only. These results demonstrate that oral contraceptives have a suppressive effect on renin secretion at rest, an effect that becomes more prominent during exercise, i.e., physiological stimulation.  相似文献   

19.
电刺激延髓最后区对血浆肾素活性及肾交感神经...   总被引:1,自引:0,他引:1  
邱慧  柴象枢 《生理学报》1992,44(6):569-575
68 urethan-anesthetized rabbits were prepared for registration of changes of respiration, arterial blood pressure (BP), heart rate (HR) and renal sympathetic nerve activity (RSNA) due to stimulation of area postrema (AP) by rectangular pulse trains each lasting for 4 s for every 30 s. During 40 min of such a stimulation paradigm the venous blood samples were collected for radioimmunoassay of plasma renin activity (PRA) (both pre- and post-stimulation), RSNA registered and processed by a computer. Animals were divided into three groups: (1) with AP stimulation only (n = 47); (2) AP stimulation after bilateral renal denervation (n = 13); (3) AP stimulation after propranolol injection (n = 8). In Group I, a 91% increase in PRA, an augmentation of RSNA, a rise of BP and a decrease of HR were observed, while respiration did not show obvious change. In Group II, hemodynamic and RSNA response was similar to that in Group I, but PRA was not changed significantly. In Group III, the effects on BP, HR, respiration and RSNA showed no remarkable changes compared with Group I, but significant inhibition of the response of PRA [from 0.65 +/- 0.07 ng/(ml.h-1) to 0.72 +/- 0.10 ng/(ml.h-1), P > 0.05] was observed. The results mentioned above suggested that electrical stimulation of AP may induce an increase in renin release and renal sympathetic nerve activity and hemodynamic changes in rabbits.  相似文献   

20.
The effect of 90-min heat exposure (46 degrees C, 35 mbar) on plasma aldosterone (PA) patterns was studied and the respective roles of plasma renin activity (PRA), adrenocorticotropin (ACTH), Na+ and K+ concentrations in the control of PA response were in investigated in eight subjects on a low sodium diet and in five subjects on a high sodium diet. In all subjects, transitory PA increases of varying importance were observed, which were not related to sweat losses (less than 1% bodyweight) or to rectal temperature rise. In sodium-repleted subjects, basal PA and PRA levels as well as heat-induced rises were low (mean PA peak level = 12.62 +/- 1.15 ng/100 ml). They were enhanced by sodium depletion and PA reached a mean peak level of 34.07 +/- 2.73 ng/100 ml. But, in both conditions, the heat-induced PA peaks were 3-times higher than the initial levels. PA correlated with PRA in all but one of the sodium-repleted subjects and in 6 of the 8 sodium-depleted subjects. ACTH release, as measured by plasma cortisol (PC) levels, occurred in those subjects who noted an increased feeling of annoyance and discomfort. Thus, PA correlated positively with PC in 4 sodium-depleted subjects. A high sodium intake improved heat-tolerance. Plasma K+ and Na+ concentrations were not significantly modified by exposure to heat. PA increases can occur without concomitant changes in PRA, PC, K+ or Na+, which suggests that an additional factor may play a role in aldosterone regulation during acute heat exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号