首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The X-linked hypophosphatemia (XLH), the most common form of hereditary rickets, is caused by loss-of-function mutations of PHEX (phosphate-regulating gene with homology to endopeptidases on the X chromosome) leading to rachitic bone disease and hypophosphatemia. Available evidence today indicates that the bone defect in XLH is caused not only by hypophosphatemia and altered vitamin D metabolism but also by factor(s) locally released by osteoblast cells (ObCs). The identity of these ObC-derived pathogenic factors remains unclear. In our present study, we report our finding of a prominent protein in the culture media derived from ObC of the hypophosphatemic (Hyp) mice, a murine homolog of human XLH, which was identified as the murine procathepsin D (Cat D). By metabolic labeling studies, we further confirmed that Hyp mouse ObCs released greater amount of Cat D into culture media. This increased Cat D release by Hyp mouse ObCs was unlikely to be due to nonspecific cell damage or heterogeneous cell population and was found to be associated with an increased Cat D expression at the protein level, possibly due to a reduced Cat D degradation. However, we were not able to detect a direct effect of PHEX protein on Cat D cleavage. In support of the involvement of Cat D in mediating the inhibitory effect of Hyp mouse ObC-conditioned media on ObC calcification, we found that exposure to Cat D inhibited ObC (45)Ca incorporation and that inhibition of Cat D abolished the inhibitory effect of Hyp mouse-conditioned media on ObC calcification. In conclusion, results from our present study showed that Hyp mouse ObCs release a greater amount of Cat D, which may contribute to the inhibitory effect of Hyp mouse ObC-conditioned media on ObC mineralization.  相似文献   

2.
X-linked hypophosphatemia (XLH) is characterized by hypophosphatemia and impaired mineralization caused by mutations of the PHEX endopeptidase (phosphate-regulating gene with homologies to endopeptidases on the X chromosome), which leads to the overproduction of the phosphaturic fibroblast growth factor 23 (FGF23) in osteocytes. The mechanism whereby PHEX mutations increase FGF23 expression and impair mineralization is uncertain. Either an intrinsic osteocyte abnormality or unidentified PHEX substrates could stimulate FGF23 in XLH. Similarly, impaired mineralization in XLH could result solely from hypophosphatemia or from a concomitant PHEX-dependent intrinsic osteocyte abnormality. To distinguish between these possibilities, we assessed FGF23 expression and mineralization after reciprocal bone cross-transplantations between wild-type (WT) mice and the Hyp mouse model of XLH. We found that increased FGF23 expression in Hyp bone results from a local effect of PHEX deficiency, since FGF23 was increased in Hyp osteocytes before and after explantation into WT mice but was not increased in WT osteocytes after explantation into Hyp mice. WT bone explanted into Hyp mice developed rickets and osteomalacia, but Hyp bone explanted into WT mice displayed persistent osteomalacia and abnormalities in the primary spongiosa, indicating that both phosphate and PHEX independently regulate extracellular matrix mineralization. Unexpectedly, we observed a paradoxical suppression of FGF23 in juvenile Hyp bone explanted into adult Hyp mice, indicating the presence of an age-dependent systemic inhibitor of FGF23. Thus PHEX functions in bone to coordinate bone mineralization and systemic phosphate homeostasis by directly regulating the mineralization process and producing FGF23. In addition, systemic counterregulatory factors that attenuate the upregulation of FGF23 expression in Hyp mouse osteocytes are present in older mice.  相似文献   

3.
4.
FGF-23 inhibits renal tubular phosphate transport and is a PHEX substrate.   总被引:23,自引:0,他引:23  
Oncogenic osteomalacia (OOM), X-linked hypophosphatemia (XLH), and autosomal dominant hypophosphatemic rickets (ADHR) are phenotypically similar disorders characterized by hypophosphatemia, decreased renal phosphate reabsorption, normal or low serum calcitriol concentrations, normal serum concentrations of calcium and parathyroid hormone, and defective skeletal mineralization. XLH results from mutations in the PHEX gene, encoding a membrane-bound endopeptidase, whereas ADHR is associated with mutations of the gene encoding FGF-23. Recent evidence that FGF-23 is expressed in mesenchymal tumors associated with OOM suggests that FGF-23 is responsible for the phosphaturic activity previously termed "phosphatonin." Here we show that both wild-type FGF-23 and the ADHR mutant, FGF-23(R179Q), inhibit phosphate uptake in renal epithelial cells. We further show that the endopeptidase, PHEX, degrades native FGF-23 but not the mutant form. Our results suggest that FGF-23 is involved in the pathogenesis of these three hypophosphatemic disorders and directly link PHEX and FGF-23 within the same biochemical pathway.  相似文献   

5.
The PHEX gene (phosphate-regulating gene with homologies to endopeptidase on the X chromosome) identified as a mutated gene in patients with X-linked hypophosphatemia (XLH), encodes a protein (PHEX) that shows striking homologies to members of the M13 family of zinc metallopeptidases. In the present work the interaction of glycosaminoglycans with PHEX has been investigated by affinity chromatography, circular dichroism, protein intrinsic fluorescence analysis, hydrolysis of FRET substrates flow cytometry and confocal microscopy. PHEX was eluted from a heparin-Sepharose chromatography column at 0.8 M NaCl showing a strong interaction with heparin. Circular dichroism spectra and intrinsic fluorescence analysis showed that PHEX is protected by glycosaminoglycans against thermal denaturation. Heparin, heparan sulfate and chondroitin sulfate inhibited PHEX catalytic activity, however among them, heparin presented the highest inhibitory activity (Ki = 2.5 ± 0.2 nM). Flow cytometry analysis showed that PHEX conjugated to Alexa Fluor 488 binds to the cell surface of CHO-K1, but did not bind to glycosaminoglycans defective cells CHO-745. Endogenous PHEX was detected at the cell surface of CHO-K1 colocalized with heparan sulfate proteoglycans, but was not found at the cell surface of glycosaminoglycans defective cells CHO-745. In permeabilized cells, PHEX was detected in endoplasmic reticulum of both cells. In addition, we observed that PHEX colocalizes with heparan sulfate at the cell surface of osteoblasts. This is the first report that the metallopeptidase PHEX is a heparin binding protein and that the interaction with GAGs modulates its enzymatic activity, protein stability and cellular trafficking.  相似文献   

6.
X-linked hypophosphatemic rickets (XLH) is a dominantly inherited disease characterized by renal phosphate wasting, aberrant vitamin D metabolism, and defective bone mineralization. It is known that XLH in humans and in certain mouse models is caused by inactivating mutations in PHEX/Phex (phosphate-regulating gene with homologies to endopeptidases on the X chromosome). By a genome-wide N-ethyl-N-nitrosourea (ENU)-induced mutagenesis screen in mice, we identified a dominant mouse mutation that exhibits the classic clinical manifestations of XLH, including growth retardation, skeletal abnormalities (rickets/osteomalacia), hypophosphatemia, and increased serum alkaline phosphatase (ALP) levels. Mapping and sequencing revealed that these mice carry a point mutation in exon 14 of the Phex gene that introduces a stop codon at amino acid 496 of the coding sequence (Phex(Jrt) also published as Phex(K496X) [Ichikawa et al., 2012]). Fgf23 mRNA expression as well as that of osteocalcin, bone sialoprotein, and matrix extracellular phosphoglycoprotein was upregulated in male mutant long bone, but that of sclerostin was unaffected. Although Phex mRNA is expressed in bone from mutant hemizygous male mice (Phex(Jrt)/Y mice), no Phex protein was detected in immunoblots of femoral bone protein. Stromal cultures from mutant bone marrow were indistinguishable from those of wild-type mice with respect to differentiation and mineralization. The ability of Phex(Jrt)/Y osteoblasts to mineralize and the altered expression levels of matrix proteins compared with the well-studied Hyp mice makes it a unique model with which to further explore the clinical manifestations of XLH and its link to FGF23 as well as to evaluate potential new therapeutic strategies.  相似文献   

7.
8.
Inactivating mutations and/or deletions of PHEX/Phex (phosphate-regulating gene with homologies to endopeptidases on the X chromosome) are responsible for X-linked hypophosphatemic rickets in humans and in the murine homolog Hyp. The predominant osteoblastic expression of Phex has implicated a primary metabolic osteoblast defect in the pathophysiology of this disorder. By targeting PHEX expression to osteoblasts in the Hyp genetic background, we aimed to correct the corresponding biochemical and morphological abnormalities and obtain information on their pathogenetic mechanism. When transgene Phex expression, driven by a mouse pro-alpha1(I) collagen gene promoter, was crossed into the Hyp background, it improved the defective mineralization of bone and teeth but failed to correct the hypophosphatemia and altered vitamin D metabolism associated with the disorder. Ex vivo bone marrow cultures confirmed the amelioration in the Hyp-associated matrix mineralization defect after Phex expression. These findings suggest that while the Hyp bone and teeth abnormalities partially correct after PHEX gene transfer, additional factors and/or sites of PHEX expression are likely critical for the elaboration of the appropriate molecular signals that alter renal phosphate handling and vitamin D metabolism in this disorder.  相似文献   

9.
The MEPE (matrix extracellular phosphoglycoprotein) gene is a strong candidate for the tumor-derived phosphaturic factor in oncogenic hypophosphatemic osteomalacia (OHO). X-linked hypophosphatemia (XLH) is phenotypically similar to OHO and results from mutations in PHEX, a putative metallopeptidase believed to process a factor(s) regulating bone mineralization and renal phosphate reabsorption. Here we report the isolation of the murine homologue of MEPE, from a bone cDNA library, that encodes a protein of 433 amino acids, 92 amino acids shorter than human MEPE. Mepe, like Phex, is expressed by fully differentiated osteoblasts and down-regulated by 1,25-(OH)2D3. In contrast to Phex, Mepe expression is markedly increased during osteoblast-mediated matrix mineralization. Greater than normal Mepe mRNA levels were observed in bone and osteoblasts derived from Hyp mice, the murine homologue of human XLH. Our data provide the first evidence that MEPE/Mepe is expressed by osteoblasts in association with mineralization.  相似文献   

10.
There is evidence for a hormone/enzyme/extracellular matrix protein cascade involving fibroblastic growth factor 23 (FGF23), a phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PHEX), and a matrix extracellular phosphoglycoprotein (MEPE) that regulates systemic phosphate homeostasis and mineralization. Genetic studies of autosomal dominant hypophosphatemic rickets (ADHR) and X-linked hypophosphatemia (XLH) identified the phosphaturic hormone FGF23 and the membrane metalloprotease PHEX, and investigations of tumor-induced osteomalacia (TIO) discovered the extracellular matrix protein MEPE. Similarities between ADHR, XLH, and TIO suggest a model to explain the common pathogenesis of renal phosphate wasting and defective mineralization in these disorders. In this model, increments in FGF23 and MEPE, respectively, cause renal phosphate wasting and intrinsic mineralization abnormalities. FGF23 elevations in ADHR are due to mutations of FGF23 that block its degradation, in XLH from indirect actions of inactivating mutations of PHEX to modify the expression and/or degradation of FGF23 and MEPE, and in TIO because of increased production of FGF23 and MEPE. Although this model is attractive, several aspects need to be validated. First, the enzymes responsible for metabolizing FGF23 and MEPE need to be established. Second, the physiologically relevant PHEX substrates and the mechanisms whereby PHEX controls FGF23 and MEPE metabolism need to be elucidated. Finally, additional studies are required to establish the molecular mechanisms of FGF23 and MEPE actions on kidney and bone, as well as to confirm the role of these and other potential "phosphatonins," such as frizzled related protein-4, in the pathogenesis of the renal and skeletal phenotypes in XLH and TIO. Unraveling the components of this hormone/enzyme/extracellular matrix pathway will not only lead to a better understanding of phosphate homeostasis and mineralization but may also improve the diagnosis and treatment of hypo- and hyperphosphatemic disorders.  相似文献   

11.
Inorganic phosphate (Pi) is required for cellular function and skeletal mineralization. Serum Pi level is maintained within a narrow range through a complex interplay between intestinal absorption, exchange with intracellular and bone storage pools, and renal tubular reabsorption. The crucial regulated step in Pi homeostasis is the transport of Pi across the renal proximal tubule. Type II sodium-dependent phosphate (Na/Pi) cotransporter (NPT2) is the major molecule in the renal proximal tubule and is regulated by Pi, parathyroid hormone and by 1,25-dihydroxyvitamin D. Recent studies of inherited and acquired hypophosphatemia [X-linked hypophosphatemic rickets/osteomalacia (XLH), autosomal dominant hypophosphatemic rickets/osteomalacia (ADHR) and tumor-induced rickets/osteomalacia (TIO)], which exhibit similar biochemical and clinical features, have led to the identification of novel genes, PHEX and FGF23, that play a role in the regulation of Pi homeostasis. The PHEX gene, which is mutated in XLH, encodes an endopeptidase, predominantly expressed in bone and teeth, but not in kidney. FGF-23 may be a substrate of this endopeptidase and may therefore accumulate in patients with XLH. In the case of ADHR mutations in the furin cleavage site, which prevent the processing of FGF-23 into fragments, lead to the accumulation of a "stable" circulating form of the peptide which also inhibits renal Pi reabsorption. In the case of TIO, ectopic overproduction of FGF-23 overwhelms its processing and degradation by PHEX, leading to the accumulation of FGF-23 in the circulation and inhibition of renal Pi reabsorption. Mice homozygous for severely hypomorphic alleles of the Klotho gene exhibit a syndrome resembling human aging, including atherosclerosis, osteoporosis, emphysema, and infertility. The KLOTHO locus is associated with human survival, defined as postnatal life expectancy, and longevity, defined as life expectancy after 75. In considering the relationship of klotho expression to the dietary Pi level, the klotho protein seemed to be negatively controlled by dietary Pi.  相似文献   

12.
13.
Inactivating mutations of Phex, a phosphate-regulating endopeptidase, cause hypophosphatemia and impaired mineralization in X-linked hypophosphatemia (XLH) and its mouse homologue, Hyp. Because Phex is predominantly expressed in bone and cultured osteoblasts from Hyp mice display an apparent intrinsic mineralization defect, it is thought that reduced expression of Phex in mature osteoblasts is the primary cause of XLH. To test this hypothesis, we studied both targeted expression of Phex to osteoblasts in vivo under the control of the mouse osteocalcin (OG2) promoter and retroviral mediated overexpression of Phex in Hyp-derived osteoblasts (TMOb-Hyp) in vitro. Targeted overexpression of Phex to osteoblasts of OG2 Phex transgenic Hyp mice normalized Phex endopeptidase activity in bone but failed to correct the hypophosphatemia, rickets, or osteomalacia. OG2 Phex transgenic Hyp mice did exhibit a small, but significant, increase in bone mineral density and dry ashed weight, suggesting a partial mineralization effect from restoration of Phex function in mature osteoblasts. Similarly, retroviral mediated overexpression of Phex in TMOb-Hyp osteoblasts restored Phex mRNA levels, protein expression, and endopeptidase activity but failed to correct their intrinsic mineralization defect. In addition, we failed to detect the Phex substrate FGF-23 in osteoblasts. Taken together, these in vivo and in vitro data indicate that expression of Phex in osteoblasts is not sufficient to rescue the Hyp phenotype and that other sites of Phex expression and/or additional factors are likely to be important in the pathogenesis of XLH.  相似文献   

14.
We previously demonstrated that expression of IGF-II modulates the routing of cathepsin D in MCF-7 cells. In our present study, we transfected antisense IGF-II into IGF-II secreting MCF-7 cells to test the hypothesis that blocking IGF-II may reduce the secretion of cathepsin D in breast cancer cells. The concentration of IGF-II in media conditioned by the antisense clone was reduced to almost undetectable levels. Likewise, Northern blotting analysis revealed that IGF-II mRNA was nearly undetectable in the antisense transfected cells. Metabolic labeling experiments performed with 10 mM mannose 6-phosphate present in the medium to block reuptake of lysosomal enzymes demonstrated that cathepsin D secretion was dramatically reduced. Similarly, a significant reduction in cathepsin D was observed when conditioned media and cell extracts were examined by Western blotting after a 48 h incubation. No changes in cathepsin D mRNA in antisense cells were detected by Northern blot analysis. We conclude that endogenous IGF-II may modulate the routing of cathepsin D by interfering with receptor trafficking in MCF-7 cells, and that this modulation is reversible. Abnormally high levels of IGF-II may alter this homeostasis, conferring on breast cancer cells an advantageous mechanism that promotes rapid growth, and may facilitate metastasis.  相似文献   

15.
Osteoclasts are macrophage-derived polykaryons that degrade bone in an acidic extracellular space. This differentiation includes expression of proteinases and acid transport proteins, cell fusion, and bone attachment, but the sequence of events is unclear. We studied two proteins expressed at high levels only in the osteoclast, cathepsin K, a thiol proteinase, and tartrate-resistant acid phosphatase (TRAP), and compared this expression with acid transport and bone degradation. Osteoclastic differentiation was studied using human apheresis macrophages cocultured with MG63 osteosarcoma cells, which produce cytokines including RANKL and CSF-1 that mediate efficient osteoclast formation. Immunoreactive cathepsin K appeared at 3-5 days. Cathepsin K activity was seen on bone substrate but not within cells, and cathepsin K increased severalfold during further differentiation and multinucleation from 7 to 14 days. TRAP also appeared at 3-5 d, independently of cell fusion or bone attachment, and TRAP activity reached much higher levels in osteoclasts attached to bone fragments. Two proteinases that occur in the precursor macrophages, cathepsin B, a thiol proteinase related to cathepsin K, and an unrelated lysosomal aspartate proteinase, cathepsin D, were also studied to determine the specificity of the differentiation events. Cathepsin B occurred at all times, but increased two- to threefold in parallel with cathepsin K. Cathepsin D activity did not change with differentiation, and secreted activity was not significant. In situ acid transport measurements showed increased acid accumulation after 7 days either in cells on osteosarcoma matrix or attached to bone, but bone pit activity and maximal acid uptake required 10-14 days. We conclude that TRAP and thiol proteinase expression begin at essentially the same time, and precede cell fusion and bone attachment. However, major increases in acid secretion and proteinases expression continue during cell fusion and bone attachment from 7 to 14 days.  相似文献   

16.
Mutations in PHEX (phosphate-regulating gene with homologies to endopeptidases on the X-chromosome) cause X-linked familial hypophosphatemic rickets (XLH), a disorder having severe bone and tooth dentin mineralization defects. The absence of functional PHEX leads to abnormal accumulation of ASARM (acidic serine- and aspartate-rich motif) peptide − a substrate for PHEX and a strong inhibitor of mineralization − derived from MEPE (matrix extracellular phosphoglycoprotein) and other matrix proteins. MEPE-derived ASARM peptide accumulates in tooth dentin of XLH patients where it may impair dentinogenesis. Here, we investigated the effects of ASARM peptides in vitro and in vivo on odontoblast differentiation and matrix mineralization. Dental pulp stem cells from human exfoliated deciduous teeth (SHEDs) were seeded into a 3D collagen scaffold, and induced towards odontogenic differentiation. Cultures were treated with synthetic ASARM peptides (phosphorylated and nonphosphorylated) derived from the human MEPE sequence. Phosphorylated ASARM peptide inhibited SHED differentiation in vitro, with no mineralized nodule formation, decreased odontoblast marker expression, and upregulated MEPE expression. Phosphorylated ASARM peptide implanted in a rat molar pulp injury model impaired reparative dentin formation and mineralization, with increased MEPE immunohistochemical staining. In conclusion, using complementary models to study tooth dentin defects observed in XLH, we demonstrate that the MEPE-derived ASARM peptide inhibits both odontogenic differentiation and matrix mineralization, while increasing MEPE expression. These results contribute to a partial mechanistic explanation of XLH pathogenesis: direct inhibition of mineralization by ASARM peptide leads to the mineralization defects in XLH teeth. This process appears to be positively reinforced by the increased MEPE expression induced by ASARM. The MEPE-ASARM system can therefore be considered as a potential therapeutic target.  相似文献   

17.
Autosomal recessive hypophosphatemic rickets (ARHR), which is characterized by renal phosphate wasting, aberrant regulation of 1alpha-hydroxylase activity, and rickets/osteomalacia, is caused by inactivating mutations of dentin matrix protein 1 (DMP1). ARHR resembles autosomal dominant hypophosphatemic rickets (ADHR) and X-linked hypophosphatemia (XLH), hereditary disorders respectively caused by cleavage-resistant mutations of the phosphaturic factor FGF23 and inactivating mutations of PHEX that lead to increased production of FGF23 by osteocytes in bone. Circulating levels of FGF23 are increased in ARHR and its Dmp1-null mouse homologue. To determine the causal role of FGF23 in ARHR, we transferred Fgf23 deficient/enhanced green fluorescent protein (eGFP) reporter mice onto Dmp1-null mice to create mice lacking both Fgf23 and Dmp1. Dmp1(-/-) mice displayed decreased serum phosphate concentrations, inappropriately normal 1,25(OH)(2)D levels, severe rickets, and a diffuse form of osteomalacia in association with elevated Fgf23 serum levels and expression in osteocytes. In contrast, Fgf23(-/-) mice had undetectable serum Fgf23 and elevated serum phosphate and 1,25(OH)(2)D levels along with severe growth retardation and focal form of osteomalacia. In combined Dmp1(-/-)/Fgf23(-/-), circulating Fgf23 levels were also undetectable, and the serum levels of phosphate and 1,25(OH)(2)D levels were identical to Fgf23(-/-) mice. Rickets and diffuse osteomalacia in Dmp1-null mice were transformed to severe growth retardation and focal osteomalacia characteristic of Fgf23-null mice. These data suggest that the regulation of extracellular matrix mineralization by DMP1 is coupled to renal phosphate handling and vitamin D metabolism through a DMP1-dependent regulation of FGF23 production by osteocytes.  相似文献   

18.
Inhibition of MEPE cleavage by Phex   总被引:6,自引:0,他引:6  
X-linked hypophosphatemia (XLH) and the Hyp-mouse disease homolog are caused by inactivating mutations of Phex which results in the local accumulation of an unknown autocrine/paracrine factor in bone that inhibits mineralization of extracellular matrix. In these studies, we evaluated whether the matrix phosphoglycoprotein MEPE, which is increased in calvaria from Hyp mice, is a substrate for Phex. Using recombinant full-length Phex (rPhexWT) produced in Sf9 cells, we failed to observe Phex-dependent hydrolysis of recombinant human MEPE (rMEPE). Rather, we found that rPhex-WT inhibited cleavage of rMEPE by endogenous cathepsin-like enzyme activity present in Sf9 membrane. Sf9 membranes as well as purified cathepsin B cleaved MEPE into two major fragments of approximately 50 and approximately 42kDa. rPhexWT protein in Sf9 membrane fractions, co-incubation of rPhexWT and cathepsin B, and pre-treatment of Sf9 membranes with leupeptin prevented the hydrolysis of MEPE in vitro. The C-terminal domain of Phex was required for inhibition of MEPE cleavage, since the C-terminal deletion mutant rPhex (1-433) [rPhex3(')M] failed to inhibit Sf9-dependent metabolism of MEPE. Phex-dependent inhibition of MEPE degradation, however, did not require Phex enzymatic activity, since EDTA, an inhibitor of rPhex, failed to block rPhexWT inhibition of MEPE cleavage by Sf9 membranes. Since we were unable to identify interactions of Phex with MEPE or actions of Phex to metabolize cathepsin B, Phex may be acting to interfere with the actions of other enzymes that degrade extracellular matrix proteins. Although the molecular mechanism and biological relevance of non-enzymatic actions of Phex need to be established, these findings indicate that MEPE may be involved in the pathogenesis defective mineralization due to Phex deficiency in XLH and the Hyp-mouse.  相似文献   

19.
L P Deiss  H Galinka  H Berissi  O Cohen    A Kimchi 《The EMBO journal》1996,15(15):3861-3870
A functional approach of gene cloning was applied to HeLa cells in an attempt to isolate positive mediators of programmed cell death. The approach was based on random inactivation of genes by transfections with antisense cDNA expression libraries, followed by the selection of cells that survived in the presence of the external apoptotic stimulus. An antisense cDNA fragment identical to human cathepsin D aspartic protease was rescued by this positive selection. The high cathepsin D antisense RNA levels protected the HeLa cells from interferon-gamma- and Fas/APO-1-induced death. Pepstatin A, an inhibitor of cathepsin D, suppressed cell death in these systems and interfered with the TNF-alpha-induced programmed cell death of U937 cells as well. During cell death, expression of cathepsin D was elevated and processing of the protein was affected, which resulted in high steady-state levels of an intermediate, proteolytically active, single chain form of this protease. Overexpression of cathepsin D by ectopic expression induced cell death in the absence of any external stimulus. Altogether, these results suggest that this well-known endoprotease plays an active role in cytokine-induced programmed cell death, thus adding cathepsin D to the growing list of proteases that function as positive mediators of apoptosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号