首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The molecular mechanism of the unique cis to trans isomerization of unsaturated fatty acids in the solvent-tolerant bacterium Pseudomonas putida S12 was studied. For this purpose, the carbon isotope fractionation of the cistrans isomerase was estimated. In resting cell experiments, addition of 3-nitrotoluene for activation of the cistrans isomerase resulted in the conversion of the cis-unsaturated fatty acids into the corresponding trans isomers. For the conversion of C16:1 cis to its corresponding trans isomer, a significant fractionation was measured. The intensity of this fractionation strongly depended on the rate of cistrans isomerization and the added concentration of 3-nitrotoluene, respectively. The presence of a significant fractionation provides additional indication for a transition from the sp2 carbon linkage of the cis-double bond to an intermediate sp3 within an enzyme–substrate complex. The sp2 linkage is reconstituted after rotation to the trans configuration has occurred. As cytochrome c plays a major role in the catabolism of Cti polypeptide, these findings favour a mechanism for the enzyme in which electrophilic iron (Fe3+), provided by a heme domain, removes an electron of the cis double bond thereby transferring the sp2 linkage into sp3.  相似文献   

2.
Forty Large White pigs were fed from 30kg to 103kg body mass on diets supplemented with 6% of pure high-oleic sunflower oil (HO) or HO plus increasing amounts of partially hydrogenated rape seed oil (HR; 1.85%, 3.70%, 5.55%), containing high levels of j 6 to j 11 C 18:1 trans fatty acid isomers. Increasing dietary C 18: trans fatty acids resulted in a linear increase in C 18:1 trans fatty acids and conjugated linoleic acid (cis-9, trans-11 CLA) in backfat (BF) as well as in neutral lipids (NL) and phospholipids (PL) of M. long. dorsi. Thus, the rate of bioconversion of trans vaccenic acid (TVA) into CLA and incorporation of C 18:1 trans and CLA into pig adipose tissue was not limited up to 25g total C 18:1 trans fatty acids including 3.3g of TVA perkg feed. BF was higher in C 18:1 trans fatty acids and CLA than M. long. dorsi NL and PL. In BF and NL the sum of saturated fatty acids (SFA) increased with increasing dietary amounts of HR, while in PL SFA were reduced. Thus, according to their physical properties, C 18:1 trans fatty acids partly replaced SFA in PL. Firmness of backfat was also significantly increased (P<0.05) with increasing amounts of HR in feed.  相似文献   

3.
4.
Lactobacillus plantarum AKU 1009a effectively transforms linoleic acid to conjugated linoleic acids of cis-9,trans-11-octadecadienoic acid (18:2) and trans-9,trans-11–18:2. The transformation of various polyunsaturated fatty acids by washed cells of L. plantarum AKU 1009a was investigated. Besides linoleic acid, α-linolenic acid [cis-9,cis-12,cis-15-octadecatrienoic acid (18:3)], γ-linolenic acid (cis-6,cis-9,cis-12–18:3), columbinic acid (trans-5,cis-9,cis-12–18:3), and stearidonic acid [cis-6,cis-9,cis-12,cis-15-octadecatetraenoic acid (18:4)] were found to be transformed. The fatty acids transformed by the strain had the common structure of a C18 fatty acid with the cis-9,cis-12 diene system. Three major fatty acids were produced from α-linolenic acid, which were identified as cis-9,trans-11,cis-15–18:3, trans-9,trans-11,cis-15–18:3, and trans-10,cis-15–18:2. Four major fatty acids were produced from γ-linolenic acid, which were identified as cis-6,cis-9,trans-11–18:3, cis-6,trans-9,trans-11–18:3, cis-6,trans-10–18:2, and trans-10-octadecenoic acid. The strain transformed the cis-9,cis-12 diene system of C18 fatty acids into conjugated diene systems of cis-9,trans-11 and trans-9,trans-11. These conjugated dienes were further saturated into the trans-10 monoene system by the strain. The results provide valuable information for understanding the pathway of biohydrogenation by anaerobic bacteria and for establishing microbial processes for the practical production of conjugated fatty acids, especially those produced from α-linolenic acid and γ-linolenic acid. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
The physiological state of littoral and sublittoral microbial communities in a marine shallow-water hydrothermal ecosystem (Kraternaya Bight) was studied using lipid biomarkers. The ratio trans/cis (n-7) isomers of monoenic fatty acids (FAs) of polar lipids in intertidal and subtidal algobacterial and bacterial mats of the bight exceeded 0.1 significantly; this indicated a stress state in bacteria. No concomitant increase was found in the ratio of cyclopropane fatty acids to 16: 1 and 18: 1 (n-7) cis monoenic fatty acids. In bottom sediments, the ratio trans/cis (n-7) isomers of monoenic fatty acids was below 0.1. A positive correlation (r = 0.71) was revealed between the ratio trans/cis isomers of (n-7) monoenic fatty acids and the content of saturated fatty acids.  相似文献   

6.
Summary The fluorescent fatty acids,trans-parimaric andcis-parinaric acid, were used as analogs of saturated and unsaturated fatty acids in order to evaluate binding of fatty acids to liver plasma membranes isolated from normal fed rats. Insulin (10–8 to 10–6 m) decreasedtrans-parinaric acid binding 7 to 26% whilecis-parinaric acid binding was unaffected. Glucagon (10–6 m) increasedtrans-parinaric acid binding 44%. The fluorescence polarization oftrans-parinarate,cis-parinarate and 1,6-diphenyl-1,3,5-hexatriene was used to investigate effects of triiodothyronine, insulin and glucagon on the structure of liver plasma membranes from normal fed rats or from rats treated with triiodothyronine or propylthiouracil. The fluorescence polarization oftrans-parinarate,cis-parinarate, and 1,6-diphenyl-1,3,5-hexatriene was 0.300±0.004, 0.251±0.003, and 0.302±0.003, respectively, in liver plasma membranes from control rats and 0.316±0.003, 0.276±0.003 and 0.316±0.003, respectively, in liver plasma membranes from hyperthyroid rats (p<0.025,n=5). Propylthiouracil treatment did not significantly alter the fluorescence polarization of these probe molecules in the liver plasma membranes. Thus, liver plasma membranes from hyperthyroid animals appear to be more rigid than those of control animals. The effects of triiodothyronine, insulin and glucagon addedin vitro to isolated liver plasma membrane preparations were also evaluated as follows: insulin (10–10 m) and triiodothyronine (10–10 m) increased fluorescence polarization oftrans-parinaric acid,cis-parinaric acid and 1,6-diphenyl-1,3,5-hexatriene in liver plasma membranes while glucagon (10–10 m) had no effects. These hormonal effects on probe fluorescence polarization in liver plasma membranes were abolished by pretreatment of the rats for 7 days with triiodothyronine. Administration of triiodothyronine (10–10 m)in vitro increased the fluorescence polarization of trans-parinaric acid in liver plasma membranes from propylthiouracil-treated rats. Thus, hyperthyroidism appeared to abolish thein vitro increase in polarization of probe molecules in the liver plasma membranes. Temperature dependencies in Arrhenius plots of absorption-corrected fluorescence and fluorescence polarization oftrans-parinaric acid,cis-parinaric acid and 1,6-diphenyl-1,3,5-hexatriene were noted near 25°C in liver plasma membranes from triiodothyronine-treated rats and near 18°C in liver plasma membranes from propylthiouracil-treated rats. In summary, hormones such as triiodothyronine, insulin and glucagon may at least in part exert their biological effects on metabolism by altering the structure of the liver plasma membranes.  相似文献   

7.
An oleaginous and psychrotrophic strain (F38-3) of Sporobolomyces roseus Kluyver & van Niel was isolated from a salt marsh environment in Nova Scotia, Canada following a screening program to select for high producers of 18-carbon unsaturated fatty acids. Fatty acid production was characterised as a function of temperature at 20 g glucose L−1, and optimal yields were obtained at 14°C, achieving 5.7 g dw biomass and 39.2% total fatty acids by dry weight, with 18:1, 18:2 and 18:3 all-cis fatty acids accounting for 49.4%, 14.3% and 6.7% of total fatty acids (TFA), respectively—the highest reported for this species. Production of 18:3 was inversely correlated to growth temperature, rising from 2% of TFA at 30°C to 8.9% at 6°C. Cultivation of isolate F38-3 on universally 13C (U-13C) labelled glucose and subsequent transesterification and isolation of the fatty acid methyl esters (FAMEs) by preparative chromatography yielded pure, highly 13C-enriched (>90%) 18:1, 18:2 and 18:3 all-cis FAMEs. The U-13C 18:1 FAME was catalytically converted to U-13C 18:1 trans-9 and purified to >99.5% purity. The U-13C 18:2 was converted by alkaline isomerisation into a 50/50 mixture of 18:2 cis-9, trans-11 and 18:2 trans-10, cis-12 isomers and purified to >95.0% purity. Overall, 10%, by weight, of labelled glucose fed to isolate F38-3 was recovered as fatty acid methyl esters and 7.5% as 18-carbon unsaturated fats, and the final isomerisation reactions resulted in yields of 80% or greater. The ultimate goal of the work is to develop methodologies to produce 13C-labelled metabolic tracers as tools to study the metabolism of trans fats.  相似文献   

8.
The phospholipids of Pseudomonas putida P8 contain monounsaturated fatty acids in the cis and trans configuration. Cells of this phenol-degrading bacterium change the proportions of these isomers in response to the addition or elimination of a membrane active compound such as 4-chlorophenol. This study undoubtedly reveals that the cis unsaturated fatty acids are directly converted into trans isomers without involvement of de novo synthesis of fatty acids. Oleic acid, which cannot be synthesized by this bacterium, was incorporated as a cis unsaturated fatty acid marker in the membrane lipids of growing cells. The conversion of this fatty acid into the corresponding trans isomer was demonstrated by gas chromatographic-mass spectrometric analysis and use of 14C-labeled oleic acid. Separation and isolation of the cellular membranes showed that the fatty acid isomerase is located in the cytoplasmic membrane of P. putida P8.Abbreviation 4-CP 4-chlorophenol  相似文献   

9.
Abstract— —Selectivity in the esterification of fatty acids to lysolecithin by rat-brain enzymes in vitro was investigated using free fatty acids (activation plus esterification) and CoA esters (esterification) of two naturally-occurring monoenoic fatty-acid isomers, oleic acid [18:1 (n - 9)] and cis-vaccenic acid [18:1 (n - 7)]. Esterification of free acids to l-acyl-sn-glycero-3-phosphorylcholine (1-acyl GPC) was dependent on CoA and ATP, and was stimulated by MgCl2 and NaF. Under comparable conditions, fatty-acid activation (acyl-CoA synthetase [acid: CoA ligase (AMP)] EC 6.2.1.3.) appeared to be rate-limiting to 1-acyl GPC acyltransferase (acyl-CoA:l-acylglycero-3-phosphocholine O-acyltrans-ferase, EC 2.3.1.23.), since rates were always less with free fatty acids than with the CoA esters. A comparison of substrate curves obtained with free fatty acids and CoA esters suggests a preference for oleic acid during activation. Acyltransferase activity with 2-acyl GPC was similar with both acyl-CoA isomers, whereas with 1-acyl GPC, activity with oleoyl-CoA consistently exceeded that with cis-vaccenoyl-CoA. This difference between patterns of selectivity in esterification of positions 1 and 2 of lecithin suggests that separate enzymes catalyze the two reactions. The transfer of the isomers to the 2 position was affected in a similar manner by changes in pH and temperature, as well as in protein, fatty acid (or acyl-CoA), and 1-acyl GPC concentrations. Patterns of incorporation with simultaneous incubation of both isomers suggests one enzyme. Differences in acyltransferase activity with the two isomerie acyl-CoA's were observed in subcellular distribution, activity changes with brain maturation, and loss of activity on preincubation of microsomes at 45C. From these results it is not certain whether oleic and cis-vaccenic acids are esterified to the 2 position by separate enzymes, or by one enzyme with different affinities for the isomers. However, the investigation clearly indicates that acyltransferases, and possibly acyl-CoA synthetases in brain possess selectivity related to subtle differences in double-bond position. These selectivities probably are important in determining the specific fatty-acid composition of the complex lipids of brain.  相似文献   

10.
We have investigated the effects of NaCl and GTP on the inhibition of platelet adenylate cyclase by 1-O-octadecyl-2-O-acetyl-sn-glyceryl-3-phosphorylcholine (1-octadecyl-2-acetyl-G-3-PC), using particulate fractions from human and rabbit platelets that had been frozen and thawed in the presence of ethylene glycol bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetate to prevent Ca2+-dependent proteolysis. When 10 μM GTP was present, 100 mM NaCl stimulated the activity of the rabbit enzyme 5.6-fold and that of the human enzyme 2.2-fold. Under these conditions, maximum inhibitions of 90% and 64% were obtained on addition of 100 nM 1-octadecyl-2-acetyl-G-3-PC to rabbit and human preparations, respectively. These inhibitions resulted partly from an NaCl-independent inhibition of basal enzyme activity and partly from reversal of the stimulatory effect of NaCl. The relative abilities of the chlorides of different monovalent cations to enhance inhibition of rabbit platelet adenylate cyclase were: NaCl >LiCl >KCl >choline chloride. NaCl also increased the concentrations of 1-octadecyl-2-acetyl-G-3-PC required for half-maximal inhibition of adenylate cyclase but this action of NaCl did not correlate with its stimulatory effect on enzyme activity. After particulate fractions from platelets of either species were washed, 10 μM GTP inhibited basal adenylate cyclase activity in the absence of NaCl but stimulated the enzyme in the presence of NaCl. Inhibition of adenylate cyclase by 1-octadecyl-2-acetyl-G-3-PC was then either enhanced by GTP (rabbit material) or completely dependent on added GTP (human material). Stimulation of the activity of the washed human preparations by NaCl required GTP, but concentrations lower than required for potentiation of the inhibitory effect of 1-octadecyl-2-acetyl-G-3-PC by NaCl were effective.  相似文献   

11.
We examined the effect of reduced water availability on the fatty acid composition of Pseudomonas putida strain mt-2 grown in a defined medium in which the water potential was lowered with the permeating solutes NaCl or polyethylene glycol (PEG) with a molecular weight of 200 (PEG 200) or the nonpermeating solute PEG 8000. Transmission electron microscopy showed that −1.0-MPa PEG 8000-treated cells had convoluted outer membranes, whereas −1.0-MPa NaCl-treated or control cells did not. At the range of water potential (−0.25 to −1.5 MPa) that we examined, reduced water availability imposed by PEG 8000, but not by NaCl or PEG 200, significantly altered the amounts of trans and cis isomers of monounsaturated fatty acids that were present in whole-cell fatty acid extracts. Cells grown in basal medium or under the −0.25-MPa water potential imposed by NaCl or PEG 200 had a higher trans:cis ratio than −0.25-MPa PEG 8000-treated cells. As the water potential was lowered further with PEG 8000 amendments, there was an increase in the amount of trans isomers, resulting in a higher trans:cis ratio. Similar results were observed in cells grown physically separated from PEG 8000, indicating that these changes were not due to PEG toxicity. When cells grown in −1.5-MPa PEG 8000 amendments were exposed to a rapid water potential increase of 1.5 MPa or to a thermodynamically equivalent concentration of the permeating solute, NaCl, there was a decrease in the amount of trans fatty acids with a corresponding increase in the cis isomer. The decrease in the trans/cis ratio following hypoosomotic shock did not occur in the presence of the lipid synthesis inhibitor cerulenin or the growth inhibitors chloramphenicol and rifampicin, which indicates a constitutively operating enzyme system. These results indicate that thermodynamically equivalent concentrations of permeating and nonpermeating solutes have unique effects on membrane fatty acid composition.  相似文献   

12.
Positional and geometric isomers of mono-, di- and tri-unsaturated fatty acids containing 18 carbon atoms were separated on commercially available reversed-phase columns in gradient systems composed of acetonitrile and water, utilizing photodiode array detection. The biological samples were hydrolyzed with 2 M NaOH for 35–40 min at 85–90°C. After cooling, the hydrolysates were acidified with 4 M HCl and the free fatty acids were extracted with dichloromethane. The organic solvent was removed in a gentle stream of argon. The fatty acids were determined after pre-column derivatization with dibromacetophenone in the presence of triethylamine. The reaction components were mixed and reacted for 2 h at 50°C. Separations of derivatized fatty acids were performed on two C18 columns (Nova Pak C18, 4 μm, 250×4.6 mm, Waters) by binary or ternate gradient programs and UV detection at 254 and 235 nm. The geometric and positional isomers of some unsaturated fatty acids were substantially retained on the C18 columns and were distinct from some saturated fatty acids, endogenous substances in biological samples or background interference. Only slight separation of critical pairs of cis-9 C18:1/cis-11 C18:1 and cis-6 C18:1/trans-11 C18:1 was obtained. A ternate gradient program can be used for complete fractionation of a mixture of conjugated linoleic acid isomers (CLA) from cis-9, cis-12 and trans-9, trans-12 isomers of C18:2. The CLA isomers in the effluent were monitored at 235 nm. The CLA isomers were differentiated from saturated and unsaturated fatty acids using a photodiode array detector. The utility of the method was demonstrated by evaluating the fatty acid composition of duodenal digesta, rapeseed and maize oils.  相似文献   

13.
Specific isomers of conjugated linoleic acid (CLA), a fatty acid with potentially beneficial physiological and anticarcinogenic effects, were efficiently produced from linoleic acid by washed cells of Lactobacillus acidophilus AKU 1137 under microaerobic conditions, and the metabolic pathway of CLA production from linoleic acid is explained for the first time. The CLA isomers produced were identified as cis-9, trans-11- or trans-9, cis-11-octadecadienoic acid and trans-9, trans-11-octadecadienoic acid. Preceding the production of CLA, hydroxy fatty acids identified as 10-hydroxy-cis-12-octadecaenoic acid and 10-hydroxy-trans-12-octadecaenoic acid had accumulated. The isolated 10-hydroxy-cis-12-octadecaenoic acid was transformed into CLA during incubation with washed cells of L. acidophilus, suggesting that this hydroxy fatty acid is one of the intermediates of CLA production from linoleic acid. The washed cells of L. acidophilus producing high levels of CLA were obtained by cultivation in a medium containing linoleic acid, indicating that the enzyme system for CLA production is induced by linoleic acid. After 4 days of reaction with these washed cells, more than 95% of the added linoleic acid (5 mg/ml) was transformed into CLA, and the CLA content in total fatty acids recovered exceeded 80% (wt/wt). Almost all of the CLA produced was in the cells or was associated with the cells as free fatty acid.  相似文献   

14.
Summary In this article, I review the current information concerning the partition of the fluorescent probes, cis-parinaric acid (9, 11, 13, 15-cis, trans, trans, cis-octadecatetraenoic acid) and trans-parinaric acid (9, 11, 13, 15-all trans-octadecatetraenoic acid) among aqueous, solid lipid, and fluid lipid phases. The association of these probes with lipid is described by a mole fraction partition coefficient whose value is typically in the range of 1–5 × 106, a reasonable value in light of partition coefficients for other fatty acids between hydrophobic phases and water. The partition coefficient, in the absence of lipid phase changes, is relatively independent of temperature and only slightly dependent on the total aqueous probe concentration.In lipid samples which contain coexisting fluid and solid phases, trans-parinaric acid preferentially partitions into the solid phase, while cis-parinaric acid distributes nearly equally between fluid and solid phases. This partition behavior probably arises from the molecular shape of the cis and trans parinaric acid isomers. From measurements of the polarization of fluorescence of cis and trans parinaric acid in mixed lipid systems or membranes it is possible to evaluate the proportion of lipid components involved in phase changes or phase separation. From fluorescence energy transfer between protein typtophan residues and the parinaric acid isomers it is possible to gain information about the organization of lipids and proteins in membranes and model systems. I close the review by considering some of the membrane research areas where these probes and their various lipid derivatives may be particularly useful.  相似文献   

15.
The effect of certain lipids on adenylate cyclase activity [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] from fibroblasts in culture has been investigated. The unsaturated fatty acids, as well as lysolecithin, were found to act as potent inhibitors of fibroblast adenylate cyclase activity. Increasing the degree of unsaturation increases the extent of inhibition noted at a given fatty acid concentration. The inhibitory effect of the unsaturated fatty acids or lysolecithin is not selective for a specific function of the adenylate cyclase system since basal, and hormone- or fluoride-stimulated cyclase activities are inhibited to the same extent. The fatty acid-inactivated state of fibroblast adenylate cyclase is not readily reversed for enzyme activity is not restored when arachidonate-treated membranes are washed with Tris buffer containing 10 mm EDTA, 0.15 mm albumin, or 0.15 m KCl. Previous studies have shown that the adenylate cyclase system from Moloney sarcoma virus-transformed NRK (MNRK) cells is not stimulated by the addition of GTP or hormones. Of interest is the present finding that the addition of unsaturated fatty acids, or lysolecithin, over a narrow concentration range (0.1 – 0.2 mm) leads to partial restoration of GTP activation of MNRK cyclase activity. Hormonal responsiveness to l-epinephrine or prostaglandin E1 is not restored to the MNRK enzyme with fatty acid or lysolecithin treatment.  相似文献   

16.
All-trans-retinoic acid (all-trans-RA) and 13-cis-retinoic acid (13-cis-RA), due to their effects on cell differentiation, proliferation and angiogenesis, improved treatment results in some malignancies. Pharmacokinetic studies of all-trans-RA and 13-cis-RA along with monitoring of retinoic acid metabolites may help to optimize retinoic acid therapy and to develop new effective strategies for the use of retinoic acids in cancer treatment. Therefore, we developed a HPLC method for the simultaneous determination in human plasma of the physiologically important retinoic acid isomers, all-trans-, 13-cis- and 9-cis-retinoic acid, their 4-oxo metabolites, 13-cis-4-oxoretinoic acid (13-cis-4-oxo-RA) and all-trans-4-oxoretinoic acid (all-trans-4-oxo-RA), and vitamin A (all-trans-retinol). Analysis performed on a silica gel column with UV detection at 350 nm using a binary multistep gradient composed on n-hexane, 2-propanolol and glacial acetic acid. For liquid-liquid extraction a mixture of n-hexane, dichloromethane and 2-propanolol was used. The limits of detection were 0.5 ng/ml for retinoic acids and 10 ng/ml for all-trans-retinol. The method showed good reproducibility for all components (within-day C.V.: 3.02–11.70%; day-to-day C.V.: 0.01–11.34%. Furthermore, 9-cis-4-oxoretinoic acid (9-cis-4-oxo-RA) is separated from all-trans-4-oxo-RA and 13-cis-4-oxo-RA. In case of clinical use of 9-cis-retinoic acid (9-cis-RA) the pharmacokinetics and metabolism of this retinoic acid isomer can also be examined.  相似文献   

17.
A membrane-bound enzyme, which catalyses the cleavage of fatty acid hydroperoxides to carbonyl fragments, has been partially purified from cucumber fruit. The isomeric 9- and 13-hydroperoxydienes (but not the hydroxydienes) derived from both linoleic and linolenic acids are cleaved by the enzyme but a mixture of 9- and 10-hydroperoxymonoenoic derivatives of oleic acid was not attacked. No evidence was obtained for free intermediates between fatty acid hydroperoxides and the cleavage products. Major volatile products were: cis-3-nonenal and hexanal (from 9- and 13-hydroperoxides of linoleic acid respectively) or cis-3,cis-6-nonadienal and cis-3-hexenal (from 9- and 13-hydroperoxides of linolenic acid). The increase in the ratio of cis-3- to trans-2-enal products with enzyme purification indicated that cis-3-enals are the immediate cleavage products and that the trans-2- forms are produced by subsequent isomerization.  相似文献   

18.
Effects of Long-Chain Fatty Acids on Growth of Rumen Bacteria   总被引:5,自引:2,他引:3       下载免费PDF全文
The effects of low concentrations of long-chain fatty acids (palmitic, stearic, oleic, and vaccenic) on the growth of seven species (13 strains) of rumen bacteria were investigated. Except for Bacteroides ruminicola and several strains of Butyrivibrio fibrisolvens, bacterial growth was not greatly affected by either palmitic or stearic acids. In contrast, growth of Selenomonas ruminantium, B. ruminicola, and one strain of B. fibrisolvens was stimulated by oleic acid, whereas the cellulolytic species were markedly inhibited by this acid. Vaccenic acid (trans Δ11 18:1) had far less inhibitory effect on the cellulolytic species than oleic acid (cis Δ9 18:1). Inclusion of powdered cellulose in the medium appeared to reverse both inhibitory and stimulatory effects of added fatty acids. However, there was little carry-over effect observed when cells were transferred from a medium with fatty acids to one without. Considerable variation in response to added fatty acids was noted among five strains of B. fibrisolvens. In general, exogenous long-chain fatty acids appear to have little, if any, energy-sparing effect on the growth of rumen bacteria.  相似文献   

19.
To elucidate the factors involved in dry skin and the skin damage caused by UV light, it is necessary to analyze small amounts of stratum corneum to determine amino acid contents. A new assay method for this purpose is described. Dabsylated amino acids including histidine and the cis and trans isomers of urocanic acid were analyzed quantitatively by high-performance liquid chromatography (HPLC), using a reversed-phase column. Histidine and the isomers of urocanic acid were separated from 36 other amino acids thought to be present in the extract of stratum corneum. In the presence of the 36 amino acids, standard calibration curves were obtained from 0.25 to 2.5 pmol/μl, for histidine and for both isomers of urocanic acid. The coefficients of variation for the reproducibility of the analysis at 1.0 pmol/μl were 3.8%, 2.9% and 2.5% for the cis and trans isomers of urocanic acid and for histidine, respectively. Amounts of 2 to 50 pmol of cis and trans isomers of urocanic acid and histidine in the stratum corneum were detected. The ratio of the cis to the trans isomer of urocanic acid in sunburned stratum corneum was more than three times that in normal stratum corneum. This method appears to be useful for the determination of small amounts of histidine and of the cis and trans isomers of urocanic acid in the stratum corneum.  相似文献   

20.
Monounsaturated fatty acids (MUFA) are emerging health biomarkers, and in particular the ratio between palmitoleic acid (9cis-16:1) and palmitic acid (16:0) affords the delta-9 desaturase index that is increased in obesity. Recently, other positional and geometrical MUFA isomers belonging to the hexadecenoic family (C16 MUFA) were found in circulating lipids, such as sapienic acid (6cis-16:1), palmitelaidic acid (9trans-16:1) and 6trans-16:1. In this work we report: i) the identification of sapienic acid as component of human erythrocyte membrane phospholipids with significant increase in morbidly obese patients (n = 50) compared with age-matched lean controls (n = 50); and ii) the first comparison of erythrocyte membrane phospholipids (PL) and plasma cholesteryl esters (CE) in morbidly obese patients highlighting that some of their fatty acid levels have opposite trends: increases of both palmitic and sapienic acids with the decrease of linoleic acid (9cis,12cis-18:2, omega-6) in red blood cell (RBC) membrane PL were reversed in plasma CE, whereas the increase of palmitoleic acid was similar in both lipid species. Consequentially, desaturase enzymatic indexes gave different results, depending on the lipid class used for the fatty acid content. The fatty acid profile of morbidly obese subjects also showed significant increases of stearic acid (C18:0) and C20 omega-6, as well as decreases of oleic acid (9cis-18:1) and docosahexaenoic acid (C22:6 omega-3) as compared with lean healthy controls. Trans monounsaturated and polyunsaturated fatty acids were also measured and found significantly increased in both lipid classes of morbidly obese subjects. These results highlight the C16 MUFA isomers as emerging metabolic marker provided that the assignment of the double bond position and geometry is correctly performed, thus identifying the corresponding lipidomic pathway. Since RBC membrane PL and plasma CE have different fatty acid trends, caution must also be used in the choice of lipid species for the interpretation of lipidomic profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号