共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Fiorella Biasi Elena ChiarpottoBarbara Sottero Marco MainaCinzia Mascia Tina GuinaPaola Gamba Simona GargiuloGabriella Testa Gabriella LeonarduzziGiuseppe Poli 《Biochimie》2013
Cholesterol oxidation products, termed oxysterols, have been shown to be more reactive than unoxidized cholesterol, possessing marked pro-inflammatory and cytotoxic effects in a number of cells and tissues. Oxysterols, absorbed with the diet as products of cholesterol auto-oxidation, have recently been suggested to potentially interfere with homeostasis of the mucosal intestinal epithelium, by promoting and sustaining irreversible damage. 相似文献
3.
Involvement of NADPH oxidase 1 in UVB-induced cell signaling and cytotoxicity in human keratinocytes
Azela Glady Manami Tanaka Catharina Sagita Moniaga Masato Yasui Mariko Hara-Chikuma 《Biochemistry and Biophysics Reports》2018
Members of NADPH oxidase (Nox) enzyme family are important sources of reactive oxygen species (ROS) and are known to be involved in several physiological functions in response to various stimuli including UV irradiation. UVB-induced ROS have been associated with inflammation, cytotoxicity, cell death, or DNA damage in human keratinocytes. However, the source and the role of UVB-induced ROS remain undefined.Here, we show that Nox1 is involved in UVB-induced p38/MAPK activation and cytotoxicity via ROS generation in keratinocytes. Nox1 knockdown or inhibitor decreased UVB-induced ROS production in human keratinocytes. Nox1 knockdown impaired UVB-induced p38 activation, accompanied by reduced IL-6 levels and attenuated cell toxicity. Treatment of cells with N-acetyl-L-cysteine (NAC), a potent ROS scavenger, suppressed p38 activation as well as consequent IL-6 production and cytotoxicity in response to UVB exposure. p38 inhibitor also suppressed UVB-induced IL-6 production and cytotoxicity. Furthermore, the blockade of IL-6 production by IL-6 neutralizing antibody reduced UVB-induced cell toxicity.In vivo assay using wild-type mice, the intradermal injection of lysates from UVB-irradiated control cells, but not from UVB-irradiated Nox1 knockdown cells, induced inflammatory swelling and IL-6 production in the skin of ears. Moreover, administration of Nox1 inhibitor suppressed UVB-induced increase in IL-6 mRNA expression in mice skin.Collectively, these data suggest that Nox1-mediated ROS production is required for UVB-induced cytotoxicity and inflammation through p38 activation and inflammatory cytokine production, such as IL-6. Thus, our findings suggest Nox1 as a therapeutic target for cytotoxicity and inflammation in response to UVB exposure. 相似文献
4.
Reactive oxygen species (ROS) generated upon collagen stimulation act as second messengers to propagate various platelet-activating events. Among the ROS-generating enzymes, NADPH oxidase (NOX) plays a prominent role in platelet activation. Thus, NOX has been suggested as a novel target for anti-platelet drug development. Although kaempferol has been identified as a NOX inhibitor, the influence of kaempferol on the activation of platelets and the underlying mechanism have never been investigated. Here, we studied the effects of kaempferol on NOX activation, ROS-dependent signaling pathways, and functional responses in collagen-stimulated platelets. Superoxide anion generation stimulated by collagen was significantly inhibited by kaempferol in a concentration-dependent manner. More importantly, kaempferol directly bound p47phox, a major regulatory subunit of NOX, and significantly inhibited collagen-induced phosphorylation of p47phox and NOX activation. In accordance with the inhibition of NOX, ROS-dependent inactivation of SH2 domain-containing protein tyrosine phosphatase-2 (SHP-2) was potently protected by kaempferol. Subsequently, the specific tyrosine phosphorylation of key components (Syk, Vav1, Btk, and PLCγ2) of collagen receptor signaling pathways was suppressed by kaempferol. Kaempferol also attenuated downstream responses, including cytosolic calcium elevation, P-selectin surface exposure, and integrin-αIIbβ3 activation. Ultimately, kaempferol inhibited platelet aggregation and adhesion in response to collagen in vitro and prolonged in vivo thrombotic response in carotid arteries of mice. This study shows that kaempferol impairs collagen-induced platelet activation through inhibition of NOX-derived ROS production and subsequent oxidative inactivation of SHP-2. This effect suggests that kaempferol has therapeutic potential for the prevention and treatment of thrombovascular diseases. 相似文献
5.
A comprehensive characterization of membrane vesicles released by autophagic human endothelial cells
Nicolas Pallet Isabelle Sirois Christina Bell Laïla‐Aïcha Hanafi Katia Hamelin Mélanie Dieudé Christiane Rondeau Pierre Thibault Michel Desjardins Marie‐Josée Hebert 《Proteomics》2013,13(7):1108-1120
The stress status of the apoptotic cell can promote phenotypic changes that have important consequences on the immunogenicity of the dying cell. Autophagy is one of the biological processes activated in response to a stressful condition. It is an important mediator of intercellular communications, both by regulating the unconventional secretion of molecules, including interleukin 1β, and by regulating the extracellular release of ATP from early stage apoptotic cells. Additionally, autophagic components can be released in a caspase‐dependent manner by serum‐starved human endothelial cells that have engaged apoptotic and autophagic processes. The nature and the components of the extracellular vesicles released by dying autophagic cells are not known. In this study, we have identified extracellular membrane vesicles that are released by human endothelial cells undergoing apoptosis and autophagy, and characterized their biochemical, ultrastructural, morphological properties as well as their proteome. These extracellular vesicles differ from classical apoptotic bodies because they do not contain nucleus components and are released independently of Rho‐associated, coiled‐coil containing protein kinase 1 activation. Instead, they are enriched with autophagosomes and mitochondria and convey various danger signals, including ATP, suggesting that they could be involved in the modulation of innate immunity. 相似文献
6.
Critical effect of VEGF in the process of endothelial cell apoptosis induced by high glucose 总被引:12,自引:0,他引:12
Yang Z Mo X Gong Q Pan Q Yang X Cai W Li C Ma JX He Y Gao G 《Apoptosis : an international journal on programmed cell death》2008,13(11):1331-1343
The underlying molecular mechanism whereby hyperglycemia causes endothelial cell apoptosis is not well understood. This study
aims to elucidate the role of survival factor VEGF involved in the apoptosis of endothelial cells induced by elevated glucose.
The present study confirmed that high concentration of glucose (25 mmol/l) significantly increased the apoptotic cell number
in cultured primary human umbilical vein endothelial cells (HUVEC). Up-regulation of Bax/Bcl-2 ratio and activation of caspase-3
induced by high glucose suggested that mitochondria apoptosis pathway was involved. High glucose significantly reduced VEGF
expression in HUVEC both at mRNA and protein levels. p42/44 MAPK phosphorylation was transitory attenuated when exposed to
high glucose and preceded VEGF reduction, thus suggesting down-regulation of VEGF through inhibition of p42/44 MAPK. Addition
of VEGF prevented HUVEC apoptosis from high glucose exposure. Moreover, elevated reactive oxygen species (ROS) generation,
calcium overload, Bax/Bcl-2 ratio, caspase-3 activation in HUVEC induced by high glucose were reversed by pre-challenge with
VEGF. This may represent a mechanism for the anti-apoptotic effect of VEGF. These results suggest that down-regulation of
VEGF plays a critical role in apoptosis of endothelial cells induced by high glucose and restoration of VEGF might have benefits
in the early stage of diabetic endothelial dysfunction.
Zhonghan Yang, Xuehua Mo, and Qing Gong have contributed equally to this study. 相似文献
7.
Apoptosis is the common pathway to photoreceptor cell death in many eye diseases including age-related macular degeneration which affects more than 8 million individuals in the United States alone. RdCVF, a truncated mouse thioredoxin is specifically expressed by rod photoreceptor cells and prevents the apoptosis of cone cells. However the protective mechanism of RdCVF and the implications of its human homologue, thioredoxin-like 6 (TXNL6), on the apoptosis of retinal cells remain unknown. In this study, we examined the function of TXNL6 and investigated its mechanism of protection using a cone photoreceptor cell line, 661W. We found that the photooxidative stress-induced degradation of NF-kappaB proteins is rescued by overexpression of TXNL6, which enabled the NF-kappaB transactivation activity. Furthermore, the overexpression of TXNL6 rescued the photooxidative stress-induced apoptosis of 661W cells. Interestingly, this protective effect was significantly blocked by NF-kappaB specific inhibitors demonstrating that TXNL6 exerts its protective effect against apoptosis via NF-kappaB. Taken together, our study shows that the TXNL6 probably protects retinal cells from photooxidative damage-induced apoptosis via upregulation of NF-kappaB activity. The identification of TXNL6 and the demonstration of its protective mechanism offer new insights into treatment possibilities for photoreceptor cell degradation. 相似文献
8.
Sandeep Kumar Vasundhara Kain Sandhya L. Sitasawad 《Biochimica et Biophysica Acta (BBA)/General Subjects》2012
Background
Cardiac cell apoptosis is the initiating factor of cardiac complications especially diabetic cardiomyopathy. Mitochondria are susceptible to the damaging effects of elevated glucose condition. Calcium overload and oxidative insult are the two mutually non-exclusive phenomena suggested to cause cardiac dysfunction. Here, we examined the effect of high-glucose induced calcium overload in calpain-1 mediated cardiac apoptosis in an in vitro setting.Methods
H9c2, rat ventricular myoblast cell line was treated with elevated glucose condition and the cellular consequences were studied. Intracellular calcium trafficking, ROS generation, calpain-1 activation and caspase-12 and caspase-9 pathway were studied using flow cytometry, confocal microscopy and Western blot analysis.Results
High-glucose treatment resulted in increased intracellular calcium ([Ca2 +]i) which was mobilized to the mitochondria. Concomitant intra-mitochondrial calcium ([Ca2 +]m) increase resulted in enhanced reactive oxygen and nitrogen species generation. These events led to mitochondrial dysfunction and apoptosis. Cardiomyocyte death exhibited several classical markers of apoptosis, including activation of caspases, appearance of annexin V on the outer plasma membrane, increased population of cells with sub-G0/G1 DNA content and nuclear condensation. Key findings include elucidation of cell signaling mechanism of high-glucose induced calcium-dependent cysteine protease calpain-1 activation, which triggers non-conventional caspases as alternate mode of cell death.Conclusion
This information increases the understanding of cardiac cell death under hyperglycemic condition and can possibly be extended for designing new therapeutic strategies for diabetic cardiomyopathy.General significance
The novel findings of the study reveal that high glucose induces apoptosis by both mitochondria-dependent and independent pathways via concomitant rise in intracellular calcium. 相似文献9.
Induction of apoptosis by epigallocatechin-3-gallate in human lymphoblastoid B cells 总被引:1,自引:0,他引:1
Noda C He J Takano T Tanaka C Kondo T Tohyama K Yamamura H Tohyama Y 《Biochemical and biophysical research communications》2007,362(4):951-957
(-)-Epigallocatechin-3-gallate (EGCG), a major constituent of green tea polyphenols, has been shown to suppress cancer cell proliferation and induce apoptosis. In this study we investigated its efficacy and the mechanism underlying its effect using human B lymphoblastoid cell line Ramos, and effect of co-treatment with EGCG and a chemotherapeutic agent on apoptotic cell death. EGCG induced dose- and time-dependent apoptotic cell death accompanied by loss of mitochondrial transmembrane potential, release of cytochrome c into the cytosol, and cleavage of pro-caspase-9 to its active form. EGCG also enhanced production of intracellular reactive oxygen species (ROS). Pretreatment with diphenylene iodonium chloride, an inhibitor of NAD(P)H oxidase and an antioxidant, partially suppressed both EGCG-induced apoptosis and production of ROS, implying that oxidative stress is involved in the apoptotic response. Furthermore, we showed that combined-treatment with EGCG and a chemotherapeutic agent, etoposide, synergistically induced apoptosis in Ramos cells. 相似文献
10.
11.
Cyclic AMP alleviates endoplasmic stress and programmed cell death induced by lipopolysaccharides in human endothelial cells 总被引:3,自引:0,他引:3
The possible protection provided by enhancement of the cAMP signal in the process of lipopolysaccharide (LPS)-induced endothelial cell death has been addressed, with special emphasis on the endoplasmic initiation of caspase-12-mediated apoptosis. Human umbilical vein endothelial cells were challenged with LPS to reduce viability after 12 h to less than 20% that of the control. Cell death was preceded by ultrastructural disintegration at the endoplasmic reticulum, PERK-phosphorylation, degradation of caspase-12-like protein and cleavage of caspase 9, resulting in apoptosis through the activation of caspase 3. Treatment with a cell-permeable cAMP analogue led to a dose-dependent reduction of cell death over time, mitigated endoplasmic reticulum disturbances, reduced phosphorylation of PERK, and the degradation of caspases 12, 9 and 3. The selective inhibition of caspase 9 completely supplanted the anti-apoptotic effects obtained by cAMP, while being without any influence on caspase 12 degradation. The data suggest that cAMP positively modulates early endoplasmic alterations and caspase activation in LPS-induced apoptosis.This study was supported in part by a grant from the Herbert Reeck Stiftung. 相似文献
12.
Inhibition of angiogenic differentiation of human umbilical vein endothelial cells by diallyl disulfide (DADS) 总被引:1,自引:0,他引:1
Angiogenesis is a crucial step in the growth and metastasis of cancers. The activation of endothelial cells and their further behaviour are very critical during angiogenesis. We analyzed the effect of diallyl disulfide (DADS) on angiogenesis in in vitro models using human umbilical vein endothelial cells (HUVECs). DADS significantly inhibited endothelial cell migration, invasion and tube formation. (3)H-thymidine proliferation assay clearly showed the inhibitory effect of DADS on the proliferation of HUVECs in vitro. The role of metalloproteinases has been shown to be important in angiogenesis; therefore, zymography was performed to determine whether DADS affected protease activity. Gelatin zymographic analysis showed the inhibitory effect of DADS on the activation of matrix metalloproteinases-MMP-2 and MMP-9. These findings suggest that DADS acts as an angiogenesis inhibitor by inhibiting the activation of matrix metalloproteinases during endothelial morphogenesis. 相似文献
13.
Claudia Goettsch Winfried Goettsch Jochen Seebach Henning Morawietz 《Biochemical and biophysical research communications》2009,380(2):355-360
Nicotine adenine dinucleotide phosphate (NADPH) oxidase (Nox) complexes are the main sources of reactive oxygen species (ROS) formation in the vessel wall. We have used DNA microarray, real-time PCR and Western blot to demonstrate that the subunit Nox4 is the major Nox isoform in primary human endothelial cells; we also found high levels of NADPH oxidase subunit p22phox expression. Nox4 was localized by laser scanning confocal microscopy within the cytoplasm of endothelial cells. Endothelial Nox4 overexpression enhanced superoxide anion formation and phosphorylation of p38 MAPK. Nox4 down-regulation by shRNA has in contrast to TGF-β no effect on p38 MAPK phosphorylation. We conclude that Nox4 is the major Nox isoform in human endothelial cells, and forms an active complex with p22phox. The Nox4-containing complex mediates formation of reactive oxygen species and p38 MAPK activation. This is a novel mechanism of redox-sensitive signaling in human endothelial cells. 相似文献
14.
Reactive oxygen species generated by NADPH oxidase 5 (Nox5) have been implicated in physiological and pathophysiological signaling pathways, including cancer development and progression. However, because immunological tools are lacking, knowledge of the role of Nox5 in tumor biology has been limited; the expression of Nox5 protein across tumors and normal tissues is essentially unknown. Here, we report the characterization and use of a mouse monoclonal antibody against a recombinant Nox5 protein (bp 600–746) for expression profiling of Nox5 in human tumors by tissue microarray analysis. Using our novel antibody, we also report the detection of endogenous Nox5 protein in human UACC-257 melanoma cells. Immunofluorescence, confocal microscopy, and immunohistochemical techniques were employed to demonstrate Nox5 localization throughout UACC-257 cells, with perinuclear enhancement. Tissue microarray analysis revealed, for the first time, substantial Nox5 overexpression in several human cancers, including those of prostate, breast, colon, lung, brain, and ovary, as well as in malignant melanoma and non-Hodgkin lymphoma; expression in most nonmalignant tissues was negative to weak. This validated mouse monoclonal antibody will promote further exploration of the functional significance of Nox5 in human pathophysiology, including tumor cell growth and proliferation. 相似文献
15.
Masahiro Ito Tomomi Yamamoto Masahiro Watanabe Toshiaki Ihara Hitoshi Kamiya Minoru Sakurai 《FEMS immunology and medical microbiology》1996,15(2-3):115-122
Abstract Measles virus (wild strain, Toyoshima strain)-induced cell death is characterized by cell shrinkage, chromatin condensation, and nuclear fragmentation in a human monocytic cell line (THP-1). DNA fragmentation of measles virus-infected THP-1 cells was demonstrated by DNA agarose gel electrophoresis as well as by DNA fragmentation ELISA. When measles virus-infected THP-1 cells were cultured on monolayers of fibroblasts or human umbilical vein endothelial cells (HUVEC), the percentage of measles virus antigen-positive THP-1 cells and DNA fragmentation were significantly decreased. Addition of anti-intercellular adhesion molecule (ICAM)-1 (CD54) monoclonal antibody to culture of measles virus-infected THP-1 cells reduced significantly DNA fragmentation induced by measles virus. These findings suggest that inhibition of virus spread by fibroblasts and HUVEC reduces apoptosis, and ICAM-1 (CD54) may participate in the DNA fragmentation pathway. 相似文献
16.
目的观察低氧条件下HIF-1α/VEGF/Notch信号通路在人脐静脉内皮细胞(HUVEC)血管生成中的作用。
方法将HUVEC进行常氧和低氧[二氯化钴(CoCl2),200 μmol/L]诱导,再将常氧和低氧处理的HUVEC应用Notch1信号通路的抑制剂DAPT (30 μmol/L,24 h)和激活剂JAG-1 (30 μmol/L,24 h)干预。通过体外小管形成实验观察低氧对HUVEC血管生成能力的影响。应用RT-PCR和Western blot检测HUVEC中低氧诱导因子-1α (HIF-1α)、血管内皮生长因子(VEGF)、基质金属蛋白酶-9 (MMP-9)和Notch1信号分子(Notch1、Dell4和JAG-1)的mRNA和蛋白表达。通过Transwell迁移实验和伤口愈合实验观察低氧、DAPT、JAG-1对HUVEC迁移能力的影响。应用MTT法检测低氧及Notch1对HUVEC增殖的影响。两组间比较采用t检验,采用析因设计方差分析低氧和DAPT以及低氧和JAG-1对HUVEC迁移能力、距离、小管形成能力和细胞增殖的交互作用。
结果与常氧组比较,低氧组小管总长[(8.18±0.62)mm比(15.43±1.32)mm]增高,差异具有统计学意义(P < 0.05)。与常氧组比较,低氧组的HIF-1α、VEGF、MMP-9、Notch1、Dell4和JAG-1的mRNA相对表达量和蛋白相对表达量(1.01±0.03比4.43±0.35,1.02±0.03比3.55±0.28,0.98±0.04比3.24±0.25,1.01±0.03比3.22±0.25,0.99±0.02比2.89±0.22,1.02±0.04比2.43±0.19,0.98±0.01比3.13±0.24,0.98±0.02比2.67±0.21,0.97±0.03比2.45±0.19,1.01±0.03比2.44±0.19,1.00±0.04比2.30±0.18,1.03±0.05比2.27±0.18)均升高,差异有统计学意义(P均< 0.05)。Transwell迁移实验和伤口愈合实验显示,低氧条件下,DAPT干预使HUVEC的迁移能力降低,JAG-1干预使HUVEC的迁移能力升高(P均< 0.05)。小管形成和MTT法测定显示,低氧条件下,DAPT干预使HUVEC的小管形成能力和细胞增殖能力降低,JAG-1干预使HUVEC的小管形成能力和细胞增殖能力升高(P均< 0.05)。析因设计的方差分析结果显示,低氧和JAG-1对迁移细胞数、小管形成和细胞增殖能力交互作用具有协同作用(P < 0.05)。
结论低氧可通过激活HIF-1α/VEGF/Notch1信号通路提高HUVEC的血管生成能力、迁移能力和细胞增殖能力。 相似文献
17.
Jung JY Mo HC Yang KH Jeong YJ Yoo HG Choi NK Oh WM Oh HK Kim SH Lee JH Kim HJ Kim WJ 《Life sciences》2007,80(15):1355-1363
Epigallocatechin-3-gallate (EGCG) is a major constituent of green tea polyphenols. This study was aimed to investigate the possible mechanisms of EGCG-mediated inhibition against apoptosis in rat pheochromocytoma PC12 cells by exposure to CoCl(2). Exposure to CoCl(2) caused the generation of ROS and induced cell death with appearance of apoptotic morphology and DNA fragmentation. However, EGCG rescued the loss of viability in the cells exposed to CoCl(2) and led the reduction of DNA fragmentation and sub-G(1) fraction of cell cycle. Also, EGCG attenuated the CoCl(2)-induced disruption of mitochondrial membrane potential (DeltaPsim), release of cytochrome c from the mitochondria to cytosol and abolished the CoCl(2)-stimulated activities of the caspase cascades, caspase-9 and caspase-3. In addition, EGCG ameliorated the increase in the Bax to Bcl-2 ratio, a marker of apoptosis proceeding, induced by CoCl(2) treatment. Taken together, the present results suggest that EGCG inhibit the CoCl(2)-induced apoptosis of PC12 cells through the mitochondria-mediated apoptosis pathway involved in modulating the Bcl-2 family. 相似文献
18.
The mitochondrial unfolded protein response (UPRmt) is involved in numerous diseases that have the common feature of mitochondrial dysfunction. However, its pathophysiological relevance in the context of hypoxia/reoxygenation (H/R) in endothelial cells remains elusive. Previous studies have demonstrated that acetylcholine (ACh) protects against cardiomyocyte injury by suppressing generation of mitochondrial reactive oxygen species (mtROS). This study aimed to explore the role of UPRmt in endothelial cells during H/R and to clarify the beneficial effects of ACh. Our results demonstrated that H/R triggered UPRmt in endothelial cells, as evidenced by the elevation of heat shock protein 60 and LON protease 1 protein levels, and resulted in release of mitochondrial pro-apoptotic proteins, including cytochrome C, Omi/high temperature requirement protein A 2 and second mitochondrial activator of caspases/direct inhibitor of apoptosis-binding protein with low PI, from the mitochondria to cytosol. ACh administration markedly decreased UPRmt by inhibiting mtROS and alleviating the mitonuclear protein imbalance. Consequently, ACh alleviated the release of pro-apoptotic proteins and restored mitochondrial ultrastructure and function, thereby reducing the number of terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end labeling (TUNEL)-positive cells. Intriguingly, 4-diphenylacetoxy-N-methylpiperidine methiodide, a type-3 muscarinic ACh receptor (M3AChR) inhibitor, abolished the ACh-elicited attenuation of UPRmt and TUNEL positive cells, indicating that the salutary effects of ACh were likely mediated by M3AChR in endothelial cells. In conclusion, our studies demonstrated that UPRmt might be essential for triggering the mitochondrion-associated apoptotic pathway during H/R. ACh markedly suppressed UPRmt by inhibiting mtROS and alleviating the mitonuclear protein imbalance, presumably through M3AChR. 相似文献
19.
José Santiago Ibañez-Cabellos Carmen Aguado Daniel Pérez-Cremades José Luis García-Giménez Carlos Bueno-Betí Eva M. García-López Carlos Romá-Mateo Susana Novella Carlos Hermenegildo Federico V. Pallardó 《生物化学与生物物理学报:疾病的分子基础》2018,1864(10):3234-3246
Circulating histones have been proposed as targets for therapy in sepsis and hyperinflammatory symptoms. However, the proposed strategies have failed in clinical trials. Although different mechanisms for histone-related cytotoxicity are being explored, those mediated by circulating histones are not fully understood. Extracellular histones induce endothelial cell death, thereby contributing to the pathogenesis of complex diseases such as sepsis and septic shock. Therefore, the comprehension of cellular responses triggered by histones is capital to design effective therapeutic strategies. Here we report how extracellular histones induce autophagy and apoptosis in a dose-dependent manner in cultured human endothelial cells. In addition, we describe how histones regulate these pathways via Sestrin2/AMPK/ULK1-mTOR and AKT/mTOR. Furthermore, we evaluate the effect of Toll-like receptors in mediating autophagy and apoptosis demonstrating how TLR inhibitors do not prevent apoptosis and/or autophagy induced by histones. Our results confirm that histones and autophagic pathways can be considered as novel targets to design therapeutic strategies in endothelial damage. 相似文献
20.
Banerjee AG Gopalakrishnan VK Vishwanatha JK 《Molecular and cellular biochemistry》2007,305(1-2):113-121
Development of oral cancer is clearly linked to the usage of smokeless tobacco. The molecular mechanisms involved in this
process are however not well understood. Toward this goal, we investigated the effect of smokeless tobacco exposure on apoptosis
of oral epithelial cells. Exposure of oral epithelial cells to smokeless tobacco extract (STE) induces apoptosis in a dose-dependent
manner, until a threshold level of nicotine is achieved upon which apoptosis is inhibited. 1 mM of nicotine is able to inhibit
apoptosis significantly induced by STE in these oral cells. Exposure of cells to nicotine alone has no effect on apoptosis,
but nicotine inhibits apoptosis induced by other agents present in STE. In this study we show that, the anti-apoptotic action
of nicotine is specifically associated with down-regulation of nitric oxide (NO) production. Using specific inducers of NO,
we have demonstrated that inhibition of apoptosis by nicotine is through down-regulation of NO production. Further, we observed
that nicotine clearly acts as a sink of NO radicals, shown using peroxynitrite generator (SIN-1) in conjunction or absence
of radical scavengers. Nicotine thus causes most damage in transformed epithelial cells as depicted by accumulation of nitrotyrosine
in a 3-NT ELISA assay. Inhibition of apoptosis is a hallmark in tumor progression and propels development of cancer. It may
further result in functional loss of apoptotic effector mechanisms in the transformed cells. Thus, our data clearly indicates
that inhibition of NO-induced apoptosis by nicotine may lead to tobacco-induced oral carcinogenesis, and implies careful development
of modalities in tobacco cessation programs.
Abhijit G. Banerjee and Velliyur K. Gopalakrishnan—contributed equally. 相似文献