首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trifolin: a Rhizobium recognition protein from white clover   总被引:22,自引:0,他引:22  
A protein agglutinin, trifoliin, was purified from white clover seeds and seedling roots. Trifoliin specifically agglutinates the symbiont of clover, Rhizobium trifolii, at concentrations as low as 0.2 microgram protein/ml, and binds to the surface of encapsulated R. trifolii 0403. This clover protein has a subunit with Mr approximately 50 000, an isoelectric point of 7.3, and contains carbohydrate. Antibody to purified trifoliin binds to the root hair region of 24-h-old clover seedlings, but does not bind to alfalfa, birdsfoot trefoil or joint vetch. The highest concentration of trifoliin on a clover root is present at sites where material in the capsule of R. trifolii binds. 2-Deoxy-D-glucose elutes trifoliin from intact clover-seedling roots, suggesting that this protein is anchored to root cell walls through its carbohydrate binding sites. We propose that trifoliin on the root hair surface plays an important role in the recognition of R. trifolii by clover.  相似文献   

2.
Quantitative microscope techniques were utilized to examine the adsorption of rhizobial cells to clover root hairs. Adsorption of cells of noninfective strains of Rhizobium trifolii or infective R. meliloti strains to clover root hairs was four to five times less than that of the infective R. trifolii strains. Attachment of the rod-shaped bacteria to clover root cells occurred in a polar, end-on fashion. Viable or heat-killed R. trifolii cells precoated with a clover lectin having 2-deoxyglucose specificity had increased adsorption to clover roots. Adsorption of bacteria to roots was not increased if the clover lectin was inactivated by heat or 2-deoxyglucose treatment prior to incubation with R. trifolii. Adsorption of R. trifolii to clover root hairs was inhibited by 2-deoxyglucose (30 mM) but not by 2-deoxygalactose or alpha-D-glucose. Adsorption of R. meliloti cells to alfalfa root hairs was not affected by 2-deoxyglucose at that concentration. These results suggest that expression of host specificity in the Rhizobium-clover symbiosis involves a preferential adsorption of infective cells to clover root hairs through a 2-deoxyglucose-sensitive receptor site.  相似文献   

3.
A protein agglutinin, trifoliin, was purified from white clover seeds and seedling roots. Trifoliin specifically agglutinates the symbiont of clover, Rhizobium trifolii, at concentrations as low as 0.2 μg protein/ml, and binds to the surface of encapsulated R. trifolii 0403. This clover protein has a subunit with Mr ≈ 50 000, an isoelectric point of 7.3, and contains carbohydrate. Antibody to purified trifoliin binds to the root hair region of 24-h-old clover seedlings, but does not bind to alfalfa, birdsfoot trefoil or joint vetch. The highest concentration of trifoliin on a clover root is present at sites where material in the capsule of R. trifolii binds. 2-Deoxy-d-glucose elutes trifoliin from intact clover-seedling roots, suggesting that this protein is anchored to root cell walls through its carbohydrate binding sites. We propose that trifoliin on the root hair surface plays an important role in the recognition of R. trifolii by clover.  相似文献   

4.
Receptor Site on Clover and Alfalfa Roots for Rhizobium   总被引:17,自引:4,他引:13       下载免费PDF全文
Sites on white clover and alfalfa roots that bind Rhizobium trifolii and R. meliloti capsular polysaccharides, respectively, were examined by fluorescence microscopy. Fluorescein isothiocyanate-labeled capsular material from R. trifolii bound specifically to root hairs of clover but not alfalfa. Binding was most intense at the root hair tips. Treatment of clover roots with 2-deoxyglucose (2-dG) prevented binding of R. trifolii capsular material to the roots. The sugar 2-dG enhanced the elution of clover root protein, which could bind to and specifically agglutinate R. trifolii but not R. meliloti or R. japonicum. The mild elution procedure left the roots intact. Agglutination of R. trifolii and passive hemagglutination of rabbit erythrocytes coated with the capsular material of R. trifolii were specifically inhibited by 2-dG. These results suggest that clover roots contain proteins that cross-link complementary polysaccharides on the surface of clover root hairs and infective R. trifolii through 2-dG-sensitive binding sites. Alfalfa root hairs were shown to specifically bind to a surface polysaccharide from R. meliloti.  相似文献   

5.
Adsorption of Rhizobium meliloti to alfalfa roots before their infection and nodule formation shows the specificity of the symbiotic association (G. Caetano-Anollés and G. Favelukes, Appl. Environ. Microbiol. 52:377-382, 1986). The time course of specific adsorption of R. meliloti (10(3) to 10(4) cells per ml) to roots shows an initial lag period of 3 h, suggesting that either or both symbionts must become conditioned for the adsorption process. Preincubation of R. meliloti L5-30 for 3 h with dialyzed alfalfa root exudate (RE) markedly increased early adsorption of rhizobia to alfalfa roots. The activity in RE was linked to a nondialyzable, thermolabile, trypsin-sensitive factor(s), very different from the root-exuded flavonoid compounds also involved in early Rhizobium-legume interactions. The lack of activity in the RE from plants grown in 5 mM NO3- suggested its negative regulation by the nitrogen nutritional status of the plant. Preincubation of R. meliloti with heterologous clover RE did not stimulate adsorption of rhizobial cells to roots. A short pretreatment of RE with homologous (but not heterologous) strains eliminated the stimulatory activity from solution. The stimulation of adsorption of R. meliloti to alfalfa roots was strongly dependent on the growth phase of the rhizobia, being greater at the late exponential stage. Nevertheless, the capacity of R. meliloti L5-30 to eliminate from solution the stimulatory activity in RE appeared to be constitutive in the rhizobia. The low concentration of rhizobial cells used in these experiments was critical to detect the stimulation of adsorption. The early interaction of spontaneously released alfalfa root macromolecular factor(s) and free-living R. meliloti, which shows the specificity and regulatory properties characteristic of infection and nodulation, would be an initial recognition event in the rhizosphere which triggers the process of symbiotic association.  相似文献   

6.
7.
Transfer of an IncP plasmid carrying the Rhizobium meliloti nodFE, nodG, and nodH genes to Rhizobium trifolii enabled R. trifolii to nodulate alfalfa (Medicago sativa), the normal host of R. meliloti. Using transposon Tn5-linked mutations and in vitro-constructed deletions of the R. meliloti nodFE, nodG, and nodH genes, we showed that R. meliloti nodH was required for R. trifolii to elicit both root hair curling and nodule initiation on alfalfa and that nodH, nodFE, and nodG were required for R. trifolii to elicit infection threads in alfalfa root hairs. Interestingly, the transfer of the R. meliloti nodFE, nodG, and nodH genes to R. trifolii prevented R. trifolii from infecting and nodulating its normal host, white clover (Trifolium repens). Experiments with the mutated R. meliloti nodH, nodF, nodE, and nodG genes demonstrated that nodH, nodF, nodE, and possibly nodG have an additive effect in blocking infection and nodulation of clover.  相似文献   

8.
Regions of the Rhizobium meliloti nodulation genes from the symbiotic plasmid were transferred to Agrobacterium tumefaciens and Rhizobium trifolii by conjugation. The A. tumefaciens and R. trifolii transconjugants were unable to elicit curling of alfalfa root hairs, but were able to induce nodule development at a low frequency. These were judged to be genuine nodules on the basis of cytological and developmental criteria. Like genuine alfalfa nodules, the nodules were initiated from divisions of the inner root cortical cells. They developed a distally positioned meristem and several peripheral vascular bundles. An endodermis separated the inner tissues of the nodule from the surrounding cortex. No infection threads were found to penetrate either root hairs or the nodule cells. Bacteria were found only in intercellular spaces. Thus, alfalfa nodules induced by A. tumefaciens and R. trifolii transconjugants carrying small nodulation clones of R. meliloti were completely devoid of intracellular bacteria. When these strains were inoculated onto white clover roots, small nodule-like protrusions developed that, when examined cytologically, were found to more closely resemble roots than nodules. Although the meristem was broadened and lacked a root cap, the protrusions had a central vascular bundle and other rootlike features. Our results suggest that morphogenesis of alfalfa root nodules can be uncoupled from infection thread formation. The genes encoded in the 8.7-kilobase nodulation fragment are sufficient in A. tumefaciens or R. trifolii backgrounds for nodule morphogenesis.  相似文献   

9.
The nod C gene of Rhizobium meliloti encodes a protein of mol. wt. 44 000 which is highly conserved in at least three Rhizobium species. In order to overproduce this protein, a gene fusion of lambda cI repressor sequences to a large fragment of nod C was constructed. The fusion was placed under control of the tac promoter on plasmid pEA305 to yield pJS1035. IPTG-induced Escherichia coli cells harbouring pJS1035 accumulated the cI-nod C hybrid protein up to 19% of total cellular protein. The synthesis of the hybrid protein drastically inhibits the growth rate of the bacterium. The fusion protein was purified by gel and hydroxyapatite chromatography in the presence of SDS. Antibodies raised against the purified fusion protein precipitated the mol. wt. 44 000 nod C proteins of R. meliloti and of the broad-host range Rhizobium strain NGR234, which were both expressed in E. coli mini-cells. The hybrid protein is associated with the outer membrane of E. coli cells, and the cI-nod C fusion protein appears to be an integral membrane protein. Nodulation of alfalfa by R. meliloti and of clover by R. trifolii was markedly inhibited (approximately 50%) by the addition of antibodies against the hybrid protein to plant growth medium and inoculum.  相似文献   

10.
To investigate the role of dicarboxylate transport in nitrogen-fixing symbioses between Rhizobium and tropical legumes, we made a molecular genetic analysis of the bacterial transport system in Rhizobium sp. NGR234. This braod host range strain fixes nitrogen in association with evolutionarily divergent legumes. Two dicarboxylate transport systems were cloned from Rhizobium NGR234. One locus was chromosomally located, whereas the other was carried on the symbiotic plasmid (pSym) and contained a dctA carrier protein gene, which was analyzed in detail. Although the DNA and derived amino acid sequences of the structural gene were substantially homologous to that of R. meliloti, its promoter sequences was quite distinct, and the upstream sequence also exhibited no homology to dctB, which is found at this position in R. meliloti. A site-directed internal deletion mutant in dctA of NGR234 exhibited a (unique) exclusively symbiotic phenotype that could grow on dicarboxylates ex planta, but could not fix nitrogen in planta. This phenotype was found for tested host plants of NGR234 with either determinate- or indeterminate-type nodules, confirming for the first time that symbiosis-specific uptake of dicarboxylates is a prerequisite for nitrogen fixation in tropical legume symbioses.  相似文献   

11.
Rhizobia synthesize mono- N -acylated chitooligosaccharide signals, called Nod factors, that are required for the specific infection and nodulation of their legume hosts. The biosynthesis of Nod factors is under the control of nodulation ( nod ) genes, including the nodABC genes present in all rhizobial species. The N -acyl substitution can vary between species and can play a role in host specificity. In Rhizobium meliloti , an alfalfa symbiont, the acyl chain is a C16 unsaturated or a (ω-1) hydroxylated fatty acid, whereas in Rhizobium tropici , a bean symbiont, it is vaccenic acid (C18:1). We constructed R. meliloti derivatives having a non-polar deletion of nodA , and carrying a plasmid with either the R. meliloti or the R. tropici nodA gene. The strain with the R. tropici nodA gene produced Nod factors acylated by vaccenic acid, instead of the C16 unsaturated or hydroxylated fatty acids characteristic of R. meliloti Nod factors, and infected and nodulated alfalfa with a significant delay. These results show that NodA proteins of R. meliloti and R. tropici specify the N -acylation of Nod factors by different fatty acids, and that allelic variation of the common nodA gene can contribute to the determination of host range.  相似文献   

12.
Erwinia herbicola was isolated from roots of plants derived from surface-sterilized seeds of all alfalfa varieties that were tested. Some of these E. herbicola strains affected nodulation by certain strains of Rhizobium meliloti. In previously published work we presented the isolation of slow-and fast-nodulating variants from a single culture of R. meliloti 102F51. In the absence of E. herbicola, the slow-nodulating variant induced the formation of nodules on alfalfa as rapidly as the faster-nodulating strain. The rates of nodulation by the faster-nodulating variant were the same in the presence and absence of E. herbicola. All of the previously reported slower-nodulating strains derived from R. meliloti 102F51 nodulated more rapidly on sterilized plants than in the presence of certain E. herbicola isolates.  相似文献   

13.
Erwinia herbicola was isolated from roots of plants derived from surface-sterilized seeds of all alfalfa varieties that were tested. Some of these E. herbicola strains affected nodulation by certain strains of Rhizobium meliloti. In previously published work we presented the isolation of slow-and fast-nodulating variants from a single culture of R. meliloti 102F51. In the absence of E. herbicola, the slow-nodulating variant induced the formation of nodules on alfalfa as rapidly as the faster-nodulating strain. The rates of nodulation by the faster-nodulating variant were the same in the presence and absence of E. herbicola. All of the previously reported slower-nodulating strains derived from R. meliloti 102F51 nodulated more rapidly on sterilized plants than in the presence of certain E. herbicola isolates.  相似文献   

14.
Rhizobia are attracted to localized sites on legume roots.   总被引:12,自引:5,他引:7       下载免费PDF全文
Clouds of Rhizobium meliloti were attracted to localized sites on the surface of the infectible region of alfalfa roots. This behavior, which required active motility and chemotaxis, was not species specific. Correlation between the behavior of various mutants and their competitiveness for nodulation suggests that cloud formation has a role in the infection of host legume roots by rhizobia.  相似文献   

15.
Rhizobium leguminosarum bv. trifolii is the bacterial symbiont which induces nitrogen-fixing root nodules on the leguminous host, white clover (Trifolium repens L.). In this plant-microbe interaction, the host plant excretes a flavone, 4',7-dihydroxyflavone (DHF), which activates expression of modulation genes, enabling the bacterial symbiont to elicit various symbiosis-related morphological changes in its roots. We have investigated the accumulation of a diglycosyl diacylglycerol (BF-7) in wild-type R. leguminosarum bv. trifolii ANU843 when grown with DHF and the biological activities of this glycolipid bacterial factor on host and nonhost legumes. In vivo labeling studies indicated that wild-type ANU843 cells accumulate BF-7 in response to DHF, and this flavone-enhanced alteration in membrane glycolipid composition was suppressed in isogenic nodA::Tn5 and nodD::Tn5 mutant derivatives. Seedling bioassays performed under microbiologically controlled conditions indicated that subnanomolar concentrations of purified BF-7 elicit various symbiosis-related morphological responses on white clover roots, including thick short roots, root hair deformation, and foci of cortical cell divisions. Roots of the nonhost legumes alfalfa and vetch were much less responsive to BF-7 at these low concentrations. A structurally distinct diglycosyl diacylglycerol did not induce these responses on white clover, indicating structural constraints in the biological activity of BF-7 on this legume host. In bioassays using aminoethoxyvinylglycine to suppress plant production of ethylene, BF-7 elicited a meristematic rather than collaroid type of mitogenic response in the root cortex of white clover. These results indicate an involvement of flavone-activated nod expression in membrane accumulation of BF-7 and a potent ability of this diglycosyl diacylglycerol glycolipid to perform as a bacterial factor enabling R. leguminosarum bv. trifolii to activate segments of its host's symbiotic program during early development of the root nodule symbiosis.  相似文献   

16.
Bacteria adsorbed in low numbers to alfalfa or clover root surfaces were counted after incubation of seedlings in mineral solution with very dilute inocula (less than 105 bacteria per ml) of an antibiotic-resistant strain under defined conditions. After specified washing, bacteria which remained adsorbed to roots were selectively quantitated by culturing the roots embedded in yeast extract-mannitol-antibiotic agar and counting the microcolonies along the root surface; the range was from about 1 bacterium per root (estimated as the most probable number) to 50 bacteria per cm of root length (by direct counting). This simple procedure can be used with any pair of small-rooted plant and antibiotic-resistant bacterium, requires bacterial concentrations comparable to those frequently found in soils, and yields macroscopic localization and distribution data for adsorbed bacteria over the root surface. The number of adsorbed bacteria was proportional to the size of the inoculum. One of every four Rhizobium meliloti cells adsorbed in very low numbers to alfalfa roots resulted in the formation of a nodule. Overall adsorption of various symbiotic and nonsymbiotic bacterial strains to alfalfa and clover roots did not reflect the specificities of these legumes for their respective microsymbionts, R. meliloti and R. trifolii.  相似文献   

17.
The symbiosis between Rhizobium and legumes is highly specific. For example, R. meliloti elicits the formation of root nodules on alfalfa and not on vetch. We recently reported that R. meliloti nodulation (nod) genes determine the production of acylated and sulfated glucosamine oligosaccharide signals. We now show that the biochemical function of the major host-range genes, nodH and nodPQ, is to specify the 6-O-sulfation of the reducing terminal glucosamine. Purified Nod factors (sulfated or not) from nodH+ or nodH- strains exhibited the same plant specificity in a variety of bioassays (root hair deformations, nodulation, changes in root morphology) as the bacterial cells from which they were purified. These results provide strong evidence that the molecular mechanism by which the nodH and nodPQ genes mediate host specificity is by determining the sulfation of the extracellular Nod signals.  相似文献   

18.
Root cells of four common legumes were found to remain susceptible to nodulation by rhizobia for only a short period of time. Delayed inoculation experiments conducted with these legume hosts indicated that the initially susceptible region of the root became progressively less susceptible if inoculations were delayed by a few hours. Profiles of the frequency of nodule formation relative to marks indicating the regions of root and root hair development at the time of inoculation indicated that nodulation of Vigna sinensis (L.) Endl. cv California Black Eye and Medicago sativa L. cvs Moapa and Vernal roots was inhibited just below the region that was most susceptible at the time of inoculation. This result suggests the existence of a fast-acting regulatory mechanism in these hosts that prevents overnodulation. Nodulation in white clover may occur in two distinct phases. In addition to the transient susceptibility of preemergent and developing root hair cells, there appeared to be an induced susceptibility of mature clover root hair cells. A cell-free bacterial exudate preparation from Rhizobium trifolii cells was found to render mature root hair cells of white clover more rapidly susceptible to nodulation.  相似文献   

19.
Transgenic alfalfa (Medicago sativa L. cv Regen) roots carrying genes encoding soybean lectin or pea (Pisum sativum) seed lectin (PSL) were inoculated with Bradyrhizobium japonicum or Rhizobium leguminosarum bv viciae, respectively, and their responses were compared with those of comparably inoculated control plants. We found that nodule-like structures formed on alfalfa roots only when the rhizobial strains produced Nod factor from the alfalfa-nodulating strain, Sinorhizobium meliloti. Uninfected nodule-like structures developed on the soybean lectin-transgenic plant roots at very low inoculum concentrations, but bona fide infection threads were not detected even when B. japonicum produced the appropriate S. meliloti Nod factor. In contrast, the PSL-transgenic plants were not only well nodulated but also exhibited infection thread formation in response to R. leguminosarum bv viciae, but only when the bacteria expressed the complete set of S. meliloti nod genes. A few nodules from the PSL-transgenic plant roots were even found to be colonized by R. leguminosarum bv viciae expressing S. meliloti nod genes, but the plants were yellow and senescent, indicating that nitrogen fixation did not take place. Exopolysaccharide appears to be absolutely required for both nodule development and infection thread formation because neither occurred in PSL-transgenic plant roots following inoculation with an Exo(-) R. leguminosarum bv viciae strain that produced S. meliloti Nod factor.  相似文献   

20.
This study examined the symbiotic properties of Agrobacterium transconjugants isolated by transferring a Tn5-mob-marked derivative of the 315 kb megaplasmid pRt4Sa from Rhizobium leguminosarum bv. trifolii 4S (wild-type strain) to Agrobacterium tumefaciens A136 as the recipient. The genetic characteristics of the AT4S transconjugant strains were ascertained by random amplified polymorphic DNA (RAPD) analyses and Southern hybridization using Tn5-mob and nod genes as probes. Several of these AT4S transconjugants carrying pRt4Sa were able to nodulate roots of the normal legume host, white clover. In addition, some AT4S transconjugant strains were able to induce nodules on other leguminous plants, including alfalfa and hairy vetch. A characteristic bacteroid differentiation was observed in clover and alfalfa nodules induced by the AT4S-series strains, although nitrogen-fixing activity (acetylene reduction) was not found. Furthermore, strain H1R1, obtained by retracing transfer of the pRt4Sa::Tn5-mob from strain AT4Sa to strain H1 (pRt4Sa cured derivative of 4S), induced Fix(+) nodules on clover roots. These results indicate the evidence that only nod genes can be expressed in the Agrobacterium background.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号