首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The interactions between 20 drugs and a variety of synthetic DNA polymers and natural DNAs were studied by electric linear dichroism (ELD). All compounds tested, including several clinically used antitumour agents, are thought to exert their biological activities mainly by virtue of their abilities to bind to DNA. The selected drugs include intercalating agents with fused and unfused aromatic structures and several groove binders. To examine the role of base composition and base sequence in the binding of these drugs to DNA, ELD experiments were carried out with natural DNAs of widely differing base composition as well as with polynucleotides containing defined alternating and non-alternating repeating sequences, poly(dA).poly(dT), poly(dA-dT).poly(dA-dT),poly(dG).poly(dC) and poly(dG-dC).poly(dG-dC). Among intercalating agents, actinomycin D was found to be by far the most GC-selective. GC selectivity was also observed with an amsacrine-4-carboxamide derivative and to a lesser extent with methylene blue. In contrast, the binding of amsacrine and 9-aminoacridine was practically unaffected by varying the GC content of the DNAs. Ethidium bromide, proflavine, mitoxantrone, daunomycin and an ellipticine derivative were found to bind best to alternating purine-pyrimidine sequences regardless of their nature. ELD measurements provided evidence for non-specific intercalation of amiloride. A significant AT selectivity was observed with hycanthone and lucanthone. The triphenyl methane dye methyl green was found to exhibit positive and negative dichroism signals at AT and GC sites, respectively, showing that the mode of binding of a drug can change markedly with the DNA base composition. Among minor groove binders, the N-methylpyrrole carboxamide-containing antibiotics netropsin and distamycin bound to DNA with very pronounced AT specificity, as expected. More interestingly the dye Hoechst 33258, berenil and a thiazole-containing lexitropsin elicited negative reduced dichroism in the presence of GC-rich DNA which is totally inconsistent with a groove binding process. We postulate that these three drugs share with the trypanocide 4',6-diamidino-2-phenylindole (DAPI) the property of intercalating at GC-rich sites and binding to the minor groove of DNA at other sites. Replacement of guanines by inosines (i.e., removal of the protruding exocyclic C-2 amino group of guanine) restored minor groove binding of DAPI, Hoechst 33258 and berenil. Thus there are several cases where the mode of binding to DNA is directly dependent on the base composition of the polymer. Consequently the ELD technique appears uniquely valuable as a means of investigating the possibility of sequence-dependent recognition of DNA by drugs.  相似文献   

2.
Isothermal titration calorimetry (ITC) is a sensitive technique for probing bimolecular processes and can provide direct information about the binding affinity and stoichiometry and the key thermodynamic parameters involved. ITC has been used to investigate the interaction of the ligand H2TMPyP to the two DNA quadruplexes, [d(AGGGT)]4 and [d(TGGGGT)]. Analysis of the ITC data reveals that porphyrin/quadruplex binding stoichiometry under saturating conditions is 1:2 for [d(AGGGT)]4 and 2:1 for [d(TGGGGT)], respectively.  相似文献   

3.
The DNA binding efficacy and preferred mode of binding of a series of rhodamine-related chalcogenoxanthylium dyes was investigated by isothermal titration calorimetry (ITC) using ctDNA, [poly(dCdG)](2) and [poly(dAdT)](2), and by a topoisomerase I DNA unwinding (Topo I) assay. The dyes of this study showed tight binding to ctDNA with binding constants, K(b), on the order of 10(6)-10(7)M(-1). The ITC and Topo I assay studies suggested that the 9-substituent has a strong impact on binding modes ranging from an apparent preference for intercalation with a 9-2-thienyl substituent (similar binding to [poly(dCdG)](2) and [poly(dAdT)](2), re-supercoiling of DNA in the Topo I assay at <10(-5)M dye), to mixed binding modes with 9-phenyl derivatives (2- to 3-fold preference for binding to [poly(dAdT)](2), re-supercoiling of DNA in the Topo I assay at approximately 2 x 10(-5)M dye), to minor groove binding in a 9-(2-thienyl-5-diethylcarboxamide) derivative (strong preference for binding to [poly(dAdT)](2), did not show complete re-supercoiling in the Topo I assay). No binding to ctDNA was observed in one derivative with a 9-(3-thienyl-2-diethylcarboxamide) substituent, which cannot be co-planar with the xanthylium core. In series of dyes where the chalcogen atom was varied, the selenoxanthylium derivatives had 2- to 3-fold higher values of K(b) than the corresponding xanthylium, thioxanthylium, or telluroxanthylium derivatives, which all showed comparable values of K(b). The chalcogen atom appeared to have little influence on binding mode.  相似文献   

4.
R Bittman  L Blau 《Biochemistry》1975,14(10):2138-2145
Stopped-flow kinetic studies of the association of actinomycins with narural and synthetic DNA duplexes are presented. The actinomycins examined were D (C1), D lactam (in which the pentapeptide rings are closed by lactam instead of lactone linkages), X2, XObeta, and actinomine. The DNAs used included claf-thymus DNA, PM2, DNA, and two synthetic d(A-T)-lide copolymers containing 2,6-diaminopurine (DAP) in place of adenine residues, poly[d(DAP-T)]-poly[d(DAP-T)] and poly[d(DAP-A-T]-poly[d(DAP-A-T)]. Apparent equilibrium constants indicate that the DAP-containing polynucleotides bind actinomycin strongly. Comples formation of actinomycins D, D lactam, X2 and XObeta with these DNAs can be deconvoluted into five rate processes. These steps do not necessarily proceed to completion. The rates of two of these steps display a firstorder dependence on DNA concentration. The large negative entropies of activation of these steps suggest a high degree of restriction to freedom of motion on the respective transition states. The rates of the remaining three steps are independent of DNA concentration. Kinetic parameters of actinimycin binding to DNAs are presented and suggestions are made about some of the molecular evente believed to be responsible for the appearance of the five rate processes. For example, for DNA, poly[d(DAP-A-T)], and poly[d(DAP-T)], the observed order of apparent second-order rate constants, normalized to the concentration of actinomycin binding sites, suggests that binding of the antibiotic occurs most rapidly at binding sites (G-C of d DAT-T) near d(A-T) base pairs, where weakening of the double-helical conformation requires the least energy. Results obtained from studies of actinomycin D binding to heat-denatured poly[d(DAP-A-T)] and of actinomine and actinomycin D lactam binding to DNA suggest that the slow rate processes are related to an actinomycyl-pentapeptide-induced unwinding of the sugar-phosphate backbone of DNA accompanying insertion of the cyclic peptides into DNA.  相似文献   

5.
The interaction of daunomycin with ctDNA and six purine–pyrimidine alternating poly-deoxynucleotides has been studied using fluorometric and uv-visible absorption methods. In the explored binding range of r > 0.05, the intercalation of the drug into the DNAs proved to be anticooperative, as indicated by the pronounced upward curvature of all the Scatchard plots obtained. The experimental data have been analyzed according to the recent theory of Friedman and Manning, which describes the polyelectrolyte effects on the site binding equilibria, drug intercalation included. We found that, accounting for the polyelectrolyte effects in the neighbor site exclusion model, the experimental data were nearly equally well described, in a wide range of binding ratios, by assuming the presence of sequence specificity effects (site size = 2 base pairs, exclusion parameter n = 1) or its absence (site size = 1 base pair, n = 1.7). The relevant results are as follows: (a) Daunomycin binds to all the DNAs considered with a stoichiometry of approximately 1 drug for every two base pairs. (b) The anticooperative nature of the interaction is essentially polyelectrolytic in origin. (c) The binding affinity shown by the drug for the different sites considered decreases in the order of Gm5C > AT > AC-GT > IC > GC > AU, indicating a stabilizing effect of the —CH3 group in position 5 of the pyrimidines. (d) The extent of quenching of the intrinsic fluorescence of daunomycin in the presence of DNA is bound to the presence, at the intercalation site, of a guanine residue, since GC, Gm5C, and AC-GT sites induce a nearly total quenching, whereas AT, AU, and IC sites act only partially in this respect. The structural results obtained from the daunomycin-d[(CGTACG)]2 crystal suggest that the 2-NH2 group of guanine might be responsible for such a phenomenon. The influence of both the temperature and the ionic strength on the free energy of drug intercalation into ctDNA, poly[d(G-C)] : poly[d(G-C)], and poly[d(A-C)] : poly[d(G-T)] is examined and discussed.  相似文献   

6.
Structural results with minor groove binding agents, such as netropsin, have provided detailed, atomic level views of DNA molecular recognition. Solution studies, however, indicate that there is complexity in the binding of minor groove agents to a single site. Netropsin, for example, has two DNA binding enthalpies in isothermal titration calorimetry (ITC) experiments that indicate the compound simultaneously forms two thermodynamically different complexes at a single AATT site. Two proposals for the origin of this unusual observation have been developed: (i) two different bound species of netropsin at single binding sites and (ii) a netropsin induced DNA hairpin to duplex transition. To develop a better understanding of DNA recognition complexity, the two proposals have been tested with several DNAs and the methods of mass spectrometry (MS), polyacrylamide gel electrophoresis (PAGE) and nuclear magnetic resonance spectroscopy in addition to ITC. All of the methods with all of the DNAs investigated clearly shows that netropsin forms two different complexes at AATT sites, and that the proposal for an induced hairpin to duplex transition in this system is incorrect.  相似文献   

7.
Abstract

The drugs Hoechst 33258, berenil and DAPI bind preferentially to the minor groove of AT sequences in DNA Despite a strong selectivity for AT sites, they can interact with GC sequences by a mechanism which remains so far controversial. The 2-amino group of guanosine represents a steric hindrance to the entry of the drugs in the minor groove of GC sequences. Intercalation and major groove binding to GC sites of GC-rich DNA and polynucleotides have been proposed for these drugs. To investigate further the mode of binding of Hoechst 33258, berenil and DAPI to GC sequences, we studied by electric linear dichroism the mutual interference in the DNA binding reaction between these compounds and a classical intercalator, proflavine, or a DNA-threading intercalating drug, the amsacrine-4-carboxamide derivative SN16713. The results of the competition experiments show that the two acridine intercalators markedly affect the binding of Hoechst 33258, berenil and DAPI to GC polynucleotides but not to DNA containing AT/GC mixed sequences such as calf thymus DNA Proflavine and SN16713 exert dissimilar effects on the binding of Hoechst 33258, berenil and DAPI to GC sites. The structural changes in DNA induced upon intercalation of the acridine drugs into GC sites are not identically perceived by the test compounds. The electric linear dichroism data support the hypothesis that Hoechst 33258, berenil and DAPI interact with GC sites via a non-classical intercalation process.  相似文献   

8.
The fluorene derivative tilorone has received great attention as a DNA intercalator and has been widely recognized as an inducer of interferon. The biological activity of tilorone is known to be related to its binding mode with DNA; however, few structural and thermodynamic studies have elaborated on this issue. This paper presents two-dimensional (2-D) NMR and isothermal titration calorimetry (ITC) for the tilorone/DNA complex, coupled with circular dichroism (CD) spectroscopy and viscosity measurements. NMR investigation suggests that tilorone binds to DNA through intercalation, showing greater affinity for insertion between AT base pairs than between CG pairs. CD spectral changes were observed for T/B (tilorone/DNA base pair molar ratio) ratios greater than the stoichiometric ratio generally expected for intercalators (i.e., T/B = 0.5, according to the neighbor-exclusion principle). However, there was a clear plateau in the CD intensity between T/B < 0.35 and T/B > 0.45. From comparison with NMR and other measurements, we postulate that CD changes below the plateau should be related to the intercalation and the latter to electrostatic interactions and nonspecific bindings. ITC data showed that DeltaH < -TDeltaS < 0, which indicated that tilorone/DNA binding is enthalpy controlled. The magnitude of Kb (the binding constant) was of the same order as that of ethidium bromide. The stoichiometric number, obtained from ITC, CD, and UV data, implied a relatively smaller value (0.28-0.35) than that of the neighbor-exclusion principle. This is because side chains located in the groove disrupt further intercalation to the adjacent sites.  相似文献   

9.
The binding of ciprofloxacin to natural and synthetic polymeric DNAs was investigated at different solvent conditions using a combination of spectroscopic and hydrodynamic techniques. In 10 mM cacodylate buffer (pH 7.0) containing 108.6 mM Na(+), no sequence preferences in the interaction of ciprofloxacin with DNA was detected, while in 2 mM cacodylate buffer (pH 7.0) containing only 1.7 mM Na(+), a significant binding of ciprofloxacin to natural and synthetic linear double-stranded DNA was observed. At low ionic strength of solution, ciprofloxacin binding to DNA duplex containing alternating AT base pairs is accompanied by the largest enhancement in thermal stability (e.g. DeltaT(m) approximately 10 degrees C for poly[d(AT)].poly[d(AT)]), and the most pronounced red shift in the position of the maximum of the fluorescence emission spectrum (lambda(max)). Similar red shift in the position of lambda(max) is also observed for ciprofloxacin binding to dodecameric duplex containing five successive alternating AT base pairs in the row. On the other hand, ciprofloxacin binding to poly[d(GC)].poly[d(GC)], calf thymus DNA and dodecameric duplex containing a mixed sequence is accompanied by the largest fluorescence intensity quenching. Addition of NaCl does not completely displace ciprofloxacin bound to DNA, indicating the binding is not entirely electrostatic in origin. The intrinsic viscosity data suggest some degree of ciprofloxacin intercalation into duplex.  相似文献   

10.
Isothermal titration calorimetry (ITC) is a sensitive technique for probing bimolecular processes and can provide direct information about the binding affinity and stoichiometry and the key thermodynamic parameters involved. ITC has been used to investigate the interaction of the ligand H2TMPyP to the two DNA quadruplexes, [d(AGGGT)]4 and [d(TGGGGT)]4. Analysis of the ITC data reveals that porphyrin/quadruplex binding stoichiometry under saturating conditions is 1:2 for [d(AGGGT)]4 and 2:1 for [d(TGGGGT)]4, respectively.  相似文献   

11.
Fluorescence-determined preferential binding of quinacrine to DNA.   总被引:1,自引:0,他引:1       下载免费PDF全文
Quinacrine complexes with native DNA (Calf thymus, Micrococcus lysodeikticus, Escherichia coli, Bacillus subtilis, and Colstridium perfringens) and synthetic polynucleotides (poly(dA) . poly(dT), poly[d(A-T)] . poly[d(A-T)], poly(dG) . poly(dC) and poly[d(G-C)] . poly[d(G-C)]) has been investigated in solution at 0.1 M NaCl, 0.05 M Tris HCl, 0.001 M EDTA, pH 7.5, at 20 degrees C. Fluorescence excitation spectra of complexes with dye concentration D = 5-30 microM and DNA phosphate concentration P = 400 microM have been examined from 300 to 500 nm, while collecting the emission above 520 nm. The amounts of free and bound quinacrine in the dye-DNA complexes have been determined by means of equilibrium dialysis experiments. Different affinities have been found for the various DNAs and their values have been examined with a model that assumes that the binding constants associated with alternating purine and pyrimidine sequences are larger than those relative to nonalternating ones. Among the alternating nearest neighbor base sequences, the Pyr(3'-5')Pur sequences, i.e., C-G, T-G, C-A and T-A seem to bind quinacrine stronger than the remaining sequences. In particular the three sites, where a G . C base pair is involved, are found to display higher affinities. Good agreement is found with recent calculations on the energetics of intercalation sites in DNA. The analysis of the equilibrium shows also that the strength of the excitation spectrum of bound dye depends strongly upon the ratio of bound quinacrine to DNA. This effect can be attributed to dye-dye energy transfer along DNA.  相似文献   

12.
Gene expression can be altered by small molecules that target DNA; sequence as well as shape selectivities are both extremely important for DNA recognition by intercalating and groove‐binding ligands. We have characterized a carbohydrate scaffold (1) exhibiting DNA “shape readout” properties. Thermodynamic studies with 1 and model duplex DNAs demonstrate the molecule's high affinity and selectivity towards B* form (continuous AT‐rich) DNA. Isothermal titration calorimetry (ITC), circular dichroism (CD) titration, ultraviolet (UV) thermal denaturation, and Differential Scanning Calorimetry were used to characterize the binding of 1 with a B* form AT‐rich DNA duplex d[5′‐G2A6T6C2‐3′]. The binding constant was determined using ITC at various temperatures, salt concentrations, and pH. ITC titrations were fit using a two‐binding site model. The first binding event was shown to have a 1:1 binding stoichiometry and was predominantly entropy‐driven with a binding constant of approximately 108 M?1. ITC‐derived binding enthalpies were used to obtain the binding‐induced change in heat capacity (ΔCp) of ?225 ± 19 cal/mol·K. The ionic strength dependence of the binding constant indicated a significant electrolytic contribution in ligand:DNA binding, with approximately four to five ion pairs involved in binding. Ligand 1 displayed a significantly higher affinity towards AT‐tract DNA over sequences containing GC inserts, and binding experiments revealed the order of binding affinity for 1 with DNA duplexes: contiguous B* form AT‐rich DNA (d[5′‐G2A6T6C2‐3′]) >B form alternate AT‐rich DNA (d[5′‐G2(AT)6C2‐3′]) > A form GC‐rich DNA (d[5′‐A2G6C6T2‐3′]), demonstrating the preference of ligand 1 for B* form DNA. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 720–732, 2014.  相似文献   

13.
The binding mode of norfloxacin, a quinolone antibacterial agent, in the synthetic polynucleotides poly[d(G-C)2], poly[d(I-C)2] and poly[d(A-T)2] was studied using polarized light spectroscopy, fluorescence spectroscopy and melting profiles. The absorption, circular and linear dichroism properties of norfloxacin are essentially the same for all the complexes, and the angle of electric transition dipole moment I and II of norfloxacin relative to the DNA helix axis is measured as 68-75 degrees for all complexes. These similarities indicate that the binding mode of norfloxacin is similar for all the polynucleotides. The decrease in the linear dichroism (LD) magnitude at 260 nm upon binding norfloxacin, which is strongest for the norfloxacin-poly[d(G-C)2] complex, and the identical melting temperature of poly[d(A-T)2] and poly[d(I-C)2] in the presence and absence of norfloxacin rule out the possibility of classic intercalation and minor groove binding. However, the characteristics of the fluorescence emission spectra of norfloxacin bound to poly[d(A-T)2] and to poly[d(I-C)2] are similar but are different to that of norfloxacin bound to poly[d(G-C)2]. As the amine group of the guanine base protrudes to the minor groove, this result strongly suggests that norfloxacin binds in the minor groove of B-form DNA in a nonclassic manner.  相似文献   

14.
The interactions of a metal complex [Ru(phen)(2)PMIP](2+) {Ru=ruthenium, phen=1,10-phenanthroline, PMIP=2-(4-methylphenyl)imidazo[4,5-f]1,10-phenanthroline} with yeast tRNA and calf thymus DNA (CT DNA) have been investigated comparatively by UV-vis spectroscopy, fluorescence spectroscopy, viscosity measurements, isothermal titration calorimetry (ITC), as well as equilibrium dialysis and circular dichroism (CD). Spectroscopic studies together with ITC and viscosity measurements indicate that both binding modes of the Ru(II) polypyridyl complex to yeast tRNA and CT DNA are intercalation and yeast tRNA binding of the complex is stronger than CT DNA binding. ITC experiments show that the interaction of the complex with yeast tRNA is driven by a moderately favorable enthalpy decrease in combination with a moderately favorable entropy increase, while the binding of the complex to CT DNA is driven by a large favorable enthalpy decrease with a less favorable entropy increase. The results from equilibrium dialysis and CD suggest that both interactions are enantioselective and the Delta enantiomer of the complex may bind more favorably to both yeast tRNA and CT DNA than the Lambda enantiomer does, and that the complex is a better candidate for an enantioselective binder to yeast tRNA than to CT DNA. Taken together, these results indicate that the structures of nucleic acids have significant effects on the binding behaviors of metal complexes.  相似文献   

15.
The relative immunogenicities of the poly[d(G-C)] and poly[d(A-C) · d(G-T)] families of helices have been determined. The specificities of the resultant immunoglobulins have been characterized for recognition of different synthetic and natural left-handed sequences and conformations. Certain modifications of poly[d(G-C)] in the sugar-phosphate bacbone and cytosine C-5 potentiate the right(R)-to-left(L) (BZ) transition under physiological conditions. The resulting polynucleotides, poly[d(GS-C)], poly[d(G-io5C)], poly[d(G-br5C)] and poly[d(G-m5C)], are also highly immunogenic. In contrast, DNAs incapable of assuming the left-handed conformation under physiological salt concentrations are weakly or non-immunogenic. These include unmodified poly[d(G-C)] as well as members of the poly[d(A-C) · d(G-T)] family of sequences bearing pyrimidine C-5 substitutions (methyl, bromo, iodo). These polynucleotides undergo the R → L isomerization under more stringent ionic and thermal conditions.The specificities of purified polyclonal and monoclonal anti-Z DNA immunoglobulins (IgG) were measured by binding to radiolabeled polynucleotides, by electrophoretic analysis of IgG bound to covalent closed circular DNAs, and by immunofluorescent staining of polytene chromosomes. The salt-induced left-handed forms of poly[d(G-C)] and its derivatives (including the cytidine C-5 methyl, bromo, iodo, and N-5 aza substituted polynucleotides) and of the modified poly[d(A-C) · d(G-T)] polymers are bound to varying degrees by different antibodies. The patterns of substrate recognition demonstrate the existence of several antigenic domains in left-handed DNAs, including the helix convex surface and the sugar-phosphate backbone. Substitutions in these regions can produce enhancing (required substitutions), neutral, or inhibitory effects on subsequent IgG binding. Additionally, certain modifications of either the convex surface of Z DNA at the C-5 position of cytidine (i.e. a methyl group) or of the backbone (i.e. phosphorothioate substitution) can lead to polymorphic lefthanded conformations that are compatible with antibody binding when present individually but not in combination. The recognition patterns exhibited with DNA substrates from the two DNA families indicate that some, but not all, IgGs show specificity for different nucleotide sequences.The anti-Z DNA IgGs were used to probe for specific left-handed Z DNA determinants on plasmid (e.g. pBR322) or viral (e.g. simian virus 40 (SV40)) DNAs and on the acid-fixed polytene chromosomes of dipteran larvae. At their extracted superhelical density, the negatively supercoiled form I, but not the relaxed, nicked, or linear forms of all tested plasmid and viral DNAs specifically bind sequence-independent anti-Z IgGs. Dimers, trimers and higher oligomers of form I DNA cross-linked by bivalent anti-Z IgGs are formed with numerous (e.g. φX174, SV40, pBR322) genomes. Their occurrence depends upon IgG concentration and specificity, the conditions of ionic strength and temperatures and the DNA genome. The IgG cross-linked DNA multimers are converted to monomers by dithiothreitol reduction. Sequence-independent monovalent anti-Z Fab fragments bind form I DNA but do not generate oligomeric species. Multimers of order >2 indicate the existence of at least two anti-Z Ig binding sites per molecule, as in the case of SV40. IgGs differ in their ability to form stable complexes with some sites on natural DNAs, presumably due to their sequence and conformation binding specificities. A differential binding of these antibodies is also observed in certain bands of polytene chromosomes, such as the telomeric regions that are involved in chromosome associations.  相似文献   

16.
The equilibrium binding of the cytotoxic plant alkaloid berberine to various DNAs and energetics of the interaction have been studied. At low ratios of bound alkaloid to base pair, the binding exhibited cooperativity to natural DNAs having almost equal proportions of AT and GC sequences. In contrast, the binding was non-cooperative to DNAs with predominantly high AT or GC sequences. Among the synthetic DNAs, cooperative binding was observed with poly(dA).poly(dT) and poly(dG).poly(dC) while non-cooperative binding was seen with poly(dA-dT).poly(dA-dT) and poly(dG-dC).poly(dG-dC). Both cooperative and non-cooperative bindings were remarkably dependent on the salt concentration of the media. Linear plots of ln K(a) versus [Na(+)] for poly(dA).poly(dT) and poly(dA-dT).poly(dA-dT) showed the release of 0.56 and 0.75 sodium ions respectively per bound alkaloid. Isothermal titration calorimetry results revealed the binding to be exothermic and favoured by both enthalpy and entropy changes in all DNAs except the two AT polymers and AT rich DNA, where the same was predominantly entropy driven. Heat capacity values (DeltaCp(o)) of berberine binding to poly(dA).poly(dT), poly(dA-dT).poly(dA-dT), Clostridium perfringens and calf thymus DNA were -98, -140, -120 and -110 cal/mol K respectively. This study presents new insights into the binding dependent base pair heterogeneity in DNA conformation and the first complete thermodynamic profile of berberine binding to DNAs.  相似文献   

17.
The effect of berenil on plasmid DNA replication was studied on pBR322-derived plasmids containing poly(dA)poly(dT) sequences. In comparison to the parental plasmid pBR322, plasmid pKH47 harboring 100 bp of poly(dA)poly(dT) at the PvuII site showed a decrease in plasmid yield in the presence of berenil. This effect was also observed in pVL26, a related plasmid in which the location of the poly(dA)poly(dT) region had been shifted to the EcoRV site in pBR322. [(3)H]Thymidine incorporation experiments indicated that DNA synthesis may be affected in these plasmids in the presence of the drug. Bromodeoxyuridine incorporation experiments coupled to Cs(2)SO(4) equilibrium density gradient centrifugation indicated that the lower plasmid yield was due to an inhibition of DNA replication by berenil. We have also found that berenil induces DNA degradation in plasmids containing the homopolymer. Our studies strongly suggest that the effect of berenil on plasmid replication and DNA stability results from its binding to the poly(dA)poly(dT) region present in these plasmids. Moreover, we have found a correlation between the position of the poly(dA)poly(dT) region and this inhibitory effect. Thus, plasmid pKH47, containing the poly(dA)poly(dT) region most proximal to the origin of pBR322 replication, was most severely affected.  相似文献   

18.
The sodium dodecyl sulfate driven dissociation reactions of daunorubicin (1), mitoxantrone (2), ametantrone (3), and a related anthraquinone without hydroxyl groups on the ring or side chain (4) from calf thymus DNA, poly[d(G-C)]2, and poly[d(A-T)]2 have been investigated by stopped-flow kinetic methods. All four compounds exhibit biphasic dissociation reactions from their DNA complexes. Daunorubicin and mitoxantrone have similar dissociation rate constants that are lower than those for ametantrone and 4. The effect of temperature and ionic strength on both rate constants for each compound is similar. An analysis of the effects of salt on the two rate constants for daunorubicin and mitoxantrone suggests that both of these compounds bind to DNA through a mechanism that involves formation of an initial outside complex followed by intercalation. The daunorubicin dissociation results from both poly[d(G-C)]2 and poly[d(A-T)]2 can be fitted with a single exponential function, and the rate constants are quite close. The ametantrone and 4 polymer dissociation results can also be fitted with single exponential curves, but with these compounds the dissociation rate constants for the poly[d(G-C)]2 complexes are approximately 10 times lower than for the poly[d(A-T)]2 complexes. Mitoxantrone also has a much slower dissociation rate from poly[d(G-C)]2 than from poly[d(A-T)]2, but its dissociation from both polymers exhibits biphasic kinetics. Possible reasons for the biphasic behavior with the polymers, which is unique to mitoxantrone, are selective binding and dissociation from the alternating polymer intercalation sites and/or dual binding modes of the intercalator with both side chains in the same groove or with one side chain in each groove.  相似文献   

19.
Parazoanthoxanthin A is a fluorescent yellow nitrogenous pigment of the group of zoanthoxanthins, which show a broad range of biological activity. These include, among others, the ability to bind to DNA. In this study we have used a variety of spectroscopic (intrinsic fluorescence emission and UV-spectroscopy) and hydrodynamic techniques (viscometry) to characterize in more detail the binding of parazoanthoxanthin A to a variety of natural and synthetic DNA duplexes in different buffer conditions. Our results reveal the following five significant features: (i) Parazoanthoxanthin A exhibits two modes of DNA binding: One binding mode exhibits properties of intercalation, while the second binding mode is predominantly electrostatic in origin. (ii) The apparent binding "site size" for parazoanthoxanthin A near physiological salt concentration (100 mM NaCl) is in the range of 7 +/- 1 base pairs for natural genomic DNA duplexes (calf thymus and salmon testes DNA) and alternating synthetic polynucleotides (poly[d(AT)]. poly[d(AT)] and poly[d(GC)]. poly[d(GC)]). A slightly larger apparent binding site size of 9 +/- 1 bp was obtained for parazoanthoxanthin A binding to the synthetic homopolymer poly[d(A)]. poly[d(T)]. (iii) Near physiological salt concentration (100 mM NaCl) parazoanthoxanthin A binds with the same approximate binding affinity of 2-5 x 10(5) M(-1) to all DNA polymers studied. (iv) At low salt concentration, parazoanthoxanthin A preferentially binds alternating poly[d(AT)]. poly[d(AT)] and poly[d(GC)]. poly[d(GC)] host duplexes. (v) Parazoanthoxanthin A inhibits DNA polymerase in vitro.  相似文献   

20.
There is compelling evidence that cellular DNA is the target of many anticancer agents. Consequently, elucidation of the molecular nature governing the interaction of small molecules to DNA is paramount to the progression of rational drug design strategies. In this study, we have compared the binding and thermodynamic aspects of two known DNA-binding agents, quinacrine (QNA) and methylene blue (MB), with calf thymus (CT) DNA. The study revealed noncooperative binding phenomena for both the drugs to DNA with an affinity one order higher for QNA compared to MB as observed from diverse techniques, but both bindings obeyed neighbor exclusion principle. The data of the salt dependence of QNA and MB from the plot of log K versus log [Na+] revealed a slope of 1.06 and 0.93 consistent with the values predicted by theories for the binding of monovalent cations, and have been analyzed for contributions from polyelectrolytic and nonpolyelectrolytic forces. The binding of both drugs was further characterized by strong stabilization of DNA against thermal strand separation in both optical melting and differential scanning calorimetry studies. The binding data analyzed from the thermal denaturation and from isothermal titration calorimetry (ITC) were in close proximity to those obtained from spectral titration data. ITC results revealed the binding to be exothermic and favored by both negative enthalpy and positive entropy changes. The heat capacity changes obtained from temperature dependence of enthalpy indicated -146 and -78 cal/(mol.K), respectively, for the binding of QNA and MB to CT DNA. Circular dichroism study further characterized the structural changes on DNA upon intercalation of these molecules. Molecular aspects of interaction of these molecules to DNA are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号