首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
While investigations into shoot responses to elevated atmospheric CO2 are extensive, few studies have focused on how an elevated atmospheric CO2 environment might impact root functions such as water uptake and transport. Knowledge of functional root responses may be particularly important in ecosystems where water is limiting if predictions about global climate change are true. In this study we investigated the effect of elevated CO2 on the root hydraulic conductivity (Lp) of a C3 perennial, Larrea tridentata, and a C3 annual, Helianthus annuus. The plants were grown in a glasshouse under ambient (360 μmol mol–1) and elevated (700 μmol mol–1) CO2. The Lp through intact root systems was measured using a hydrostatic pressure-induced flow system. Leaf gas exchange was also determined for both species and leaf water potential (ψleaf) was determined in L. tridentata. The Lp of L. tridentata roots was unchanged by an elevated CO2 growth environment. Stomatal conductance (gs) and transpiration (E) decreased and photosynthetic rate (Anet) and Ψleaf increased in L. tridentata. There were no changes in biomass, leaf area, stem diameter or root : shoot (R : S) ratio for L. tridentata. In H. annuus, elevated CO2 induced a nearly two-fold decrease in root Lp. There was no effect of growth under elevated CO2 on Anet, gs, E, above- and below-ground dry mass, R : S ratio, leaf area, root length or stem diameter in this species. The results demonstrate that rising atmospheric CO2 can impact water uptake and transport in roots in a species-specific manner. Possible mechanisms for the observed decrease in root Lp in H. annuus under elevated CO2 are currently under investigation and may relate to either axial or radial components of root Lp.  相似文献   

2.
Recent work has shown that stomatal conductance (gs) and assimilation (A) are responsive to changes in the hydraulic conductance of the soil to leaf pathway (KL), but no study has quantitatively described this relationship under controlled conditions where steady‐state flow is promoted. Under steady‐state conditions, the relationship between gs, water potential (Ψ) and KL can be assumed to follow the Ohm's law analogy for fluid flow. When boundary layer conductance is large relative to gs, the Ohm's law analogy leads to gs = KLsoilleaf)/D, where D is the vapour pressure deficit. Consequently, if stomata regulate Ψleaf and limit A, a reduction in KL will cause gs and A to decline. We evaluated the regulation of Ψleaf and A in response to changes in KL in well‐watered ponderosa pine seedlings (Pinus ponderosa). To vary KL, we systematically reduced stem hydraulic conductivity (k) using an air injection technique to induce cavitation while simultaneously measuring Ψleaf and canopy gas exchange in the laboratory under constant light and D. Short‐statured seedlings (< 1 m tall) and hour‐long equilibration times promoted steady‐state flow conditions. We found that Ψleaf remained constant near ? 1·5 MPa except at the extreme 99% reduction of k when Ψleaf fell to ? 2·1 MPa. Transpiration, gs, A and KL all declined with decreasing k (P < 0·001). As a result of the near homeostasis in bulk Ψleaf, gs and A were directly proportional to KL (R2 > 0·90), indicating that changes in KL may affect plant carbon gain.  相似文献   

3.
Stomatal regulation is crucial for forest species performance and survival on drought‐prone sites. We investigated the regulation of root and shoot hydraulics in three Pinus radiata clones exposed to drought stress and its coordination with stomatal conductance (gs) and leaf water potential (Ψleaf). All clones experienced a substantial decrease in root‐specific root hydraulic conductance (Kroot‐r) in response to the water stress, but leaf‐specific shoot hydraulic conductance (Kshoot‐l) did not change in any of the clones. The reduction in Kroot‐r caused a decrease in leaf‐specific whole‐plant hydraulic conductance (Kplant‐l). Among clones, the larger the decrease in Kplant‐l, the more stomata closed in response to drought. Rewatering resulted in a quick recovery of Kroot‐r and gs. Our results demonstrated that the reduction in Kplant‐l, attributed to a down regulation of aquaporin activity in roots, was linked to the isohydric stomatal behaviour, resulting in a nearly constant Ψleaf as water stress started. We concluded that higher Kplant‐l is associated with water stress resistance by sustaining a less negative Ψleaf and delaying stomatal closure.  相似文献   

4.
Stands of groundnut (Arachis hypogaea L. cv. Kadiri‐3) were grown in controlled environment glasshouses at mean atmospheric CO2 concentrations of 375 or 700 μmol mol?1 and daily mean air temperatures of 28 or 32°C on irrigated or drying soil profiles. Leaf water (Ψl) and solute potential (Ψs), relative water content (RWC), stomatal conductance (gl) and net photosynthesis (Pn) were measured at midday for the youngest mature leaf throughout the growing season. Elevated CO2 and temperature had no detectable effect on the water relations of irrigated plants, but higher values of RWC, Ψl and Ψs were maintained for longer under elevated CO2 during progressive drought. Turgor potential (Ψp) reached zero when Ψl declined to ?1.6 to ?1.8 MPa in all treatments; turgor was lost sooner when droughted plants were grown under ambient CO2. A 4°C increase in mean air temperature had no effect on Ψs in droughted plants, but elicited a small increase in Ψl; midday gl values were lower under elevated than under ambient CO2, and Ψl and gl declined below ?1.5 MPa and 0.25 cm s?1, respectively, as the soil dried. Despite the low gl values recorded for droughted plants late in the season, Pn was maintained under elevated CO2, but declined to zero 3 weeks before final harvest under ambient CO2. Concurrent reductions in gl and increases in water use efficiency under elevated CO2 prolonged photosynthetic activity during drought and increased pod yields relative to plants grown under ambient CO2. The implications of future increases in atmospheric CO2 for the productivity of indeterminate C3 crops grown in rainfed subsistence agricultural systems in the semi‐arid tropics are discussed.  相似文献   

5.
Abstract Increasing atmospheric CO2 concentration decreases stomatal conductance in many species, but the savings of water from reduced transpiration may permit the forest to retain greater leaf area index (L). Therefore, the net effect on water use in forest ecosystems under a higher CO2 atmosphere is difficult to predict. The free air CO2 enrichment (FACE) facility (n = 3) in a 14‐m tall (in 1996) Pinus taeda L. stand was designed to reduce uncertainties in predicting such responses. Continuous measurements of precipitation, throughfall precipitation, sap flux, and soil moisture were made over 3.5 years under ambient (CO2a) and elevated (CO2e) ambient + 200 µmol mol?1). Annual stand transpiration under ambient CO2 conditions accounted for 84–96% of latent heat flux measured with the eddy‐covariance technique above the canopy. Under CO2e, P. taeda transpired less per unit of leaf area only when soil drought was severe. Liquidambar styraciflua, the other major species in the forest, used progressively less water, settling at 25% reduction in sap flux density after 3.5 years under CO2e. Because P. taeda dominated the stand, and severe drought periods were of relatively short duration, the direct impact of CO2e on water savings in the stand was undetectable. Moreover, the forest used progressively more water under CO2e, probably because soil moisture availability progressively increased, probably owing to a reduction in soil evaporation caused by more litter buildup in the CO2e plots. The results suggest that, in this forest, the effect of CO2e on transpiration was greater indirectly through enhanced litter production than directly through reduced stomatal conductance. In forests composed of species more similar to L. styraciflua, water savings from stomatal closure may dominate the response to CO2e.  相似文献   

6.
Stomatal conductance (gs) and mesophyll conductance (gm) represent major constraints to photosynthetic rate (A), and these traits are expected to coordinate with leaf hydraulic conductance (Kleaf) across species, under both steady‐state and dynamic conditions. However, empirical information about their coordination is scarce. In this study, Kleaf, gas exchange, stomatal kinetics, and leaf anatomy in 10 species including ferns, gymnosperms, and angiosperms were investigated to elucidate the correlation of H2O and CO2 diffusion inside leaves under varying light conditions. Gas exchange, Kleaf, and anatomical traits varied widely across species. Under light‐saturated conditions, the A, gs, gm, and Kleaf were strongly correlated across species. However, the response patterns of A, gs, gm, and Kleaf to varying light intensities were highly species dependent. Moreover, stomatal opening upon light exposure of dark‐adapted leaves in the studied ferns and gymnosperms was generally faster than in the angiosperms; however, stomatal closing in light‐adapted leaves after darkening was faster in angiosperms. The present results show that there is a large variability in the coordination of leaf hydraulic and gas exchange parameters across terrestrial plant species, as well as in their responses to changing light.  相似文献   

7.
In the present study the response of stomatal conductance (gs) to increasing leaf‐to‐air vapour pressure difference (D) in early season C3 (Bromus japonicus) and late season C4 (Bothriochloa ischaemum) grasses grown in the field across a range of CO2 (200–550 µmol mol?1) was examined. Stomatal sensitivity to D was calculated as the slope of the response of gs to the natural log of externally manipulated D (dgs/dlnD). Increasing D and CO2 significantly reduced gs in both species. Increasing CO2 caused a significant decrease in stomatal sensitivity to D in Br. japonicus, but not in Bo. ischaemum. The decrease in stomatal sensitivity to D at high CO2 for Br. japonicus fit theoretical expectations of a hydraulic model of stomatal regulation, in which gs varies to maintain constant transpiration and leaf water potential. The weaker stomatal sensitivity to D in Bo. ischaemum suggested that stomatal regulation of leaf water potential was poor in this species, or that non‐hydraulic signals influenced guard cell behaviour. Photosynthesis (A) declined with increasing D in both species, but analyses of the ratio of intercellular to atmospheric CO2 (Ci/Ca) suggested that stomatal limitation of A occurred only in Br. japonicus. Rising CO2 had the greatest effect on gs and A in Br. japonicus at low D. In contrast, the strength of stomatal and photosynthetic responses to CO2 were not affected by D in Bo. ischaemum. Carbon and water dynamics in this grassland are dominated by a seasonal transition from C3 to C4 photosynthesis. Interspecific variation in the response of gs to D therefore has implications for predicting seasonal ecosystem responses to CO2.  相似文献   

8.
Diurnal depression of leaf hydraulic conductance in a tropical tree species   总被引:10,自引:2,他引:8  
Diurnal patterns of hydraulic conductance of the leaf lamina (Kleaf) were monitored in a field‐grown tropical tree species in an attempt to ascertain whether the dynamics of stomatal conductance (gs) and CO2 uptake (Aleaf) were associated with short‐term changes in Kleaf. On days of high evaporative demand mid‐day depression of Kleaf to between 40 and 50% of pre‐dawn values was followed by a rapid recovery after 1500 h. Leaf water potential during the recovery stage was less than ?1 MPa implying a refilling mechanism, or that loss of Kleaf was not linked to cavitation. Laboratory measurement of the response of Kleaf to Ψleaf confirmed that leaves in the field were operating at water potentials within the depressed region of the leaf ‘vulnerability curve’. Diurnal courses of Kleaf and Ψleaf predicted from measured transpiration, xylem water potential and the Kleaf vulnerability function, yielded good agreement with observed trends in both leaf parameters. Close correlation between depression of Kleaf, gs and Aleaf suggests that xylem dysfunction in the leaf may lead to mid‐day depression of gas exchange in this species.  相似文献   

9.
Mesophyll conductance (gm) generally correlates with photosynthetic capacity, although the causal relationship between the two is unclear. The response of gm to various CO2 regimes was measured to determine its relationship to environmental changes that affect photosynthesis. The overall effect of CO2 growth environment on gm was species and experiment dependent. The data did not statistically differ from the previously shown Agm relationship and was unaffected by CO2 treatment. The consequences of the CO2 effect on gm for interpreting photosynthesis in individual cases were investigated. Substantial effects of assumed versus calculated gm on leaf properties estimated from gas‐exchange measurements were found. This differential error resulted in an underestimation in ratio of maximum carboxylation to electron transport, especially in plants with high photosynthetic capacity. Including gm in the calculations also improved the agreement between maximum carboxylation rates and in vitro Rubisco measurements. It is concluded that gm is finite and varies with photosynthetic capacity. Including gm when calculating photosynthesis parameters from gas‐exchange data will avoid systematic errors.  相似文献   

10.
The experiments and simulations reported in this paper show that, for stomata sensitive to both CO2 and water vapour concentrations, responses of stomatal conductance (gws) to boundary layer thickness have two components, one resulting from changes in intercellular CO2 concentration (χci) and another from changes in leaf surface water vapour saturation deficit (Dws). The experiments and simulations also show that the boundary layer conductance (gwb) can significantly alter the apparent response of gws to ambient air CO2 mole fraction (χca) and water vapour mole fraction (χwa). Because of the feedback loop involved the responses of gws for χca and χwa each include responses to both χci and Dws. The boundary layer alters the state of the variables sensed by the guard cells—i.e. χci and Dws—and so it is a source of feedback. Thus, when scaling up from responses of stomata to the response of gws for a whole leaf, the effect of the boundary layer must be considered. The results indicate that, for given responses of gws to χci and Dws, the apparent responses of gws to Dwa and χca depend on the size of the leaf and wind speed, showing that this effect of the boundary layer should be considered when comparing data measured under different conditions, or with different methods.  相似文献   

11.
Naturally regenerated Scots pines (Pinus sylvestris L.), aged 28–30 years old, were grown in open-top chambers and subjected in situ to three ozone (O3) regimes, two concentrations of CO2, and a combination of O3 and CO2 treatments From 15 April to 15 September for two growing seasons (1994 and 1995). The gas exchanges of current-year and 1-year-old shoots were measured, along with the nitrogen content of needles. In order to investigate the factors underlying modifications in photosynthesis, five parameters linked to photosynthetic performance and three to stomatal conductance were determined. Elevated O3 concentrations led to a significant decline in the CO2 compensation point (Г*), maximum RuP2-saturated rate of carboxylation (Vcmax), maximum rate of electron transport (Jmax), maximum stomatal conductance (gsmax), and sensitivity of stomatal conductance to changes in leaf-to-air vapour pressure difference (?gs/?Dv) in both shoot-age classes. However, the effect of elevated O3 concentrations on the respiration rate in light (Rd) was dependent on shoot age. Elevated CO2(700 μmol mol?1) significantly decreased Jmax and gsmax but increased Rd in 1-year-old shoots and the ?gs/?Dv in both shoot-age classes. The interactive effects of O3 and CO2 on some key parameters (e.g. Vcmax and Jmax) were significant. This may be closely related to regulation of the maximum stomatal conductance and stomatal sensitivity induced by elevated CO2. As a consequence, the injury induced by O3 was reduced through decreased ozone uptake in 1-year-old shoots, but not in the current-year shoots. Compared to ambient O3 concentration, reduced O3 concentrations (charcoal-filtered air) did not lead to significant changes in any of the measured parameters. Compared to the control treatment, calculations showed that elevated O3 concentrations decreased the apparent quantum yield by 15% and by 18%, and the maximum rate of photosynthesis by 21% and by 29% in the current-year and 1-year-old shoots, respectively. Changes in the nitrogen content of needles resulting from the various treatments were associated with modifications in photosynthetic components.  相似文献   

12.
The vapor pressure deficit (D) of the atmosphere can negatively affect plant growth as plants reduce stomatal conductance to water vapor (gwv) in response to increasing D, limiting the ability of plants to assimilate carbon. The sensitivity of gwv to changes in D varies among species and has been correlated with the hydraulic conductance of leaves (Kleaf), but the hydraulic conductance of other tissues has also been implicated in plant responses to changing D. Among the 19 grass species, we found that Kleaf was correlated with the hydraulic conductance of large longitudinal veins (Klv, r2 = 0.81), but was not related to Kroot (r2 = 0.01). Stomatal sensitivity to D was correlated with Kleaf relative to total leaf area (r2 = 0.50), and did not differ between C3 and C4 species. Transpiration (E) increased in response to D, but 8 of the 19 plants showed a decline in E at high D, indicative of an ‘apparent feedforward’ response. For these individuals, E began to decline at lower values of D in plants with low Kroot (r2 = 0.72). These results show the significance of both leaf and root hydraulic conductance as drivers of plant responses to evaporative demand.  相似文献   

13.
Internal conductances to CO2 transfer from the stomatal cavity to sites of carboxylation (gi) in hypostomatous sun-and shade-grown leaves of citrus, peach and Macadamia trees (Lloyd et al. 1992) were related to anatomical characteristics of mesophyll tissues. There was a consistent relationship between absorptance of photosynthetically active radiation and chlorophyll concentration (mmol m?2) for all leaves, including sclerophyllous Macadamia, whose transmittance was high despite its relatively thick leaves. In thin peach leaves, which had high gi, the chloro-plast volume and mesophyll surface area exposed to intercellular air spaces (ias) per unit leaf area were similar to those in the thicker leaves of the evergreen species. Peach leaves, however, had the lowest leaf dry weight per area (D/a), the lowest tissue density (Td) and the highest chloro-plast surface area (Sc) exposed to ias. There were negative correlations between gi and leaf thickness or D/a, but positive correlations between gi and Sc or Sc/Td. We developed a one-dimensional diffusion model which partitioned gi into a gaseous diffusion conductance through the ias (gias) plus a liquid-phase conductance through mesophyll cell walls (gcw). The model accounted for a significant amount of variation (r2=0.80) in measured gi by incorporating both components. The gias component was related to the one-dimensional path-length for diffusion across the mesophyll and so was greater in thinner peach leaves than in leaves of evergreen species. The gcw component was related to tissue density and to the degree of chloroplast exposure to the ias. Thus the negative correlations between gi and leaf thickness or D/a related to gias whereas positive correlations between gi and Sc or Sc/Td, related to gcw. The gcw was consistently lower than gias, and thus represented a greater constraint on CO2 diffusion in the mesophylls of these hypostomatous species.  相似文献   

14.
Anatomy and some physiological characteristics of the leaves in Polygonum cuspidatum Sieb. et Zucc., a dioecious clonal herb, were compared between two populations, one from a lowland in Shizuoka City (10 m above sea level), and another from a highland on Mt. Fuji (2500 m above sea level). Leaf mass per area (LMA) of the highland plants was about twice that of the lowland plants. The greater leaf thickness, thicker mesophyll cell walls and higher mesophyll cell density in the highland leaves contributed to the larger LMA. Although mesophyll area exposed to intercellular airspaces was greater in the highland leaves than in the lowland leaves by 30%, the surface area of chloroplasts facing intercellular airspaces was similar between these leaves. CO2 transfer conductance inside the leaf (gi) of the highland leaves (0·75 μmol m?2 s?1 Pa?1) is the lowest recorded for herbaceous plants and was only 40% of that in the lowland leaves. On the other hand, the difference in stomatal conductance was small. δ13C values in the leaf dry matter were greater in the highland leaves by 4‰. These data and the estimation of CO2 partial pressures in the intercellular air spaces and in the chloroplast suggested that the greater dry matter δ13C in the highland leaves, indicative of lower long‐term ratio of the chloroplast stroma to the ambient CO2 partial pressures, would be mainly attributed to their lower gi.  相似文献   

15.
Concurrent measurements of leaf gas exchange and on-line 13C discrimination were used to evaluate the CO2 conductance to diffusion from the stomatal cavity to the sites of carboxylation within the chloroplast (internal conductance; gi). When photon irradiance was varied it appeared that gi and/or the discrimination accompanying carboxylation also varied. Despite this problem, gi, was estimated for leaves of peach (Prunus persica), grapefruit (Citrus paradisi), lemon (C. limon) and macadamia (Macadamia integrifolia) at saturating photon irradiance. Estimates for leaves of C. paradisi, C. limon and M. integrifolia were considerably lower than those previously reported for well-nourished herbaceous plants and ranged from 1.1 to2.2μmol CO2 m?2 s?1 Pa?1, whilst P. persica had a mean value of 3.5 μmol CO2 m?2 s?1 Pa?1. At an ambient CO2 partial pressure of 33Pa, estimates of chloroplastic partial pressure of CO2 (Cc) using measurements of CO2 assimilation rate (A) and calculated values of gi, and of partial pressure of CO2 in the stomatal cavity (Cst) were as low as 11.2 Pa for C. limon and as high as 17.8Pa for peach. In vivo maximum rubisco activities (Vmax) were also determined from estimates of Cc. This calculation showed that for a given leaf nitrogen concentration (area basis) C. paradisi and C. limon leaves had a lower Vmax than P. persica, with C. paradisi and C. limon estimated to have only 10% of leaf nitrogen present as rubisco. Therefore, low CO2 assimilation rates despite high leaf nitrogen concentrations in leaves of the evergreen species examined were explained not only by a low Cc but also by a relatively low proportion of leaf nitrogen being used for photosynthesis. We also show that simple one-dimensional equations describing the relationship between leaf internal conductance from stomatal cavities to the sites of carboxylation and carbon isotope discrimination (Δ) can lead to errors in the estimate of gi. Potential effects of heterogeneity in stomatal aperture on carbon isotope discrimination may be particularly important and may lead to a dependence of gi upon CO2 assimilation rate. It is shown that for any concurrent measurement of A and Δ, the estimate of Cc is an overestimate of the correct photosynthetic capacity-weighted value, but this error is probably less than 1.0 Pa.  相似文献   

16.
Arbutus unedo is a sclerophyllous evergreen, characteristic of Mediterranean coastal scrub vegetation. In Italy, trees of A. unedo have been found close to natural CO2 vents where the mean atmospheric carbon dioxide concentration is about 2200 μmol mol?1. Comparisons were made between trees growing in elevated and ambient CO2 concentrations to test for evidence of adaptation to long-term exposure to elevated CO2. Leaves formed at elevated CO2 have a lower stomatal density and stomatal index and higher specific leaf area than those formed at ambient CO2, but there was no change in carbon to nitrogen ratios of the leaf tissue. Stomatal conductance was lower at elevated CO2 during rapid growth in the spring. In mid-summer, under drought stress, stomatal closure of all leaves occurred and in the autumn, when stress was relieved, the conductance of leaves at both elevated and ambient CO2 increased. In the spring, the stomatal conductance of the new flush of leaves at ambient CO2 was higher than the leaves at elevated CO2, increasing instantaneous water use efficiency at elevated CO2. Chlorophyll fluorescence measurements suggested that elevated CO2 provided some protection against photoinhibition in mid-summer. Analysis of A/Ci curves showed that there was no evidence of either upward or downward regulation of photosynthesis at elevated CO2. It is therefore anticipated that A. unedo will have higher growth rates as the ambient CO2 concentrations increase.  相似文献   

17.
Native scrub‐oak communities in Florida were exposed for three seasons in open top chambers to present atmospheric [CO2] (approx. 350 μmol mol?1) and to high [CO2] (increased by 350 μmol mol?1). Stomatal and photosynthetic acclimation to high [CO2] of the dominant species Quercus myrtifolia was examined by leaf gas exchange of excised shoots. Stomatal conductance (gs) was approximately 40% lower in the high‐ compared to low‐[CO2]‐grown plants when measured at their respective growth concentrations. Reciprocal measurements of gs in both high‐ and low‐[CO2]‐grown plants showed that there was negative acclimation in the high‐[CO2]‐grown plants (9–16% reduction in gs when measured at 700 μmol mol?1), but these were small compared to those for net CO2 assimilation rate (A, 21–36%). Stomatal acclimation was more clearly evident in the curve of stomatal response to intercellular [CO2] (ci) which showed a reduction in stomatal sensitivity at low ci in the high‐[CO2]‐grown plants. Stomatal density showed no change in response to growth in high growth [CO2]. Long‐term stomatal and photosynthetic acclimation to growth in high [CO2] did not markedly change the 2·5‐ to 3‐fold increase in gas‐exchange‐derived water use efficiency caused by high [CO2].  相似文献   

18.
An investigation to determine whether stomatal acclimation to [CO2] occurred in C3/C4 grassland plants grown across a range of [CO2] (200–550 µmol mol?1) in the field was carried out. Acclimation was assessed by measuring the response of stomatal conductance (gs) to a range of intercellular CO2 (a gsCi curve) at each growth [CO2] in the third and fourth growing seasons of the treatment. The gsCi response curves for Solanum dimidiatum (C3 perennial forb) differed significantly across [CO2] treatments, suggesting that stomatal acclimation had occurred. Evidence of non–linear stomatal acclimation to [CO2] in this species was also found as maximum gs (gsmax; gs measured at the lowest Ci) increased with decreasing growth [CO2] only below 400 µmol mol?1. The substantial increase in gs at subambient [CO2] for S. dimidiatum was weakly correlated with the maximum velocity of carboxylation (Vcmax; r2 = 0·27) and was not associated with CO2 saturated photosynthesis (Amax). The response of gs to Ci did not vary with growth [CO2] in Bromus japonicus (C3 annual grass) or Bothriochloa ischaemum (C4 perennial grass), suggesting that stomatal acclimation had not occurred in these species. Stomatal density, which increased with rising [CO2] in both C3 species, was not correlated with gs. Larger stomatal size at subambient [CO2], however, may be associated with stomatal acclimation in S. dimidiatum. Incorporating stomatal acclimation into modelling studies could improve the ability to predict changes in ecosystem water fluxes and water availability with rising CO2 and to understand their magnitudes relative to the past.  相似文献   

19.
In this study, we have examined several physiological, biochemical and morphological features of Buddleja davidii plants growing at 1300 m above sea level (a.s.l.) and 3400 m a.s.l., respectively, to identify coordinated changes in leaf properties in response to reduced CO2 partial pressure (Pa). Our results confirmed previous findings that foliar δ13C, photosynthetic capacity and foliar N concentration on a leaf area basis increased, whereas stomatal conductance (gs) decreased with elevation. The net CO2 assimilation rate (Amax), maximum rate of electron transport (Jmax) and respiration increased significantly with elevation, although no differences were found in carboxylation efficiency of Rubisco (Vcmax). Consequently, also the Jmax to Vcmax ratio was significantly increased by elevation, indicating that the functional balance between Ribulose‐1,5‐biphosphate (RuBP) consumption and RuBP regeneration changes as elevation increases. Our results also indicated a homeostatic response of CO2 transfer conductance inside the leaf (mesophyll conductance, gm) to increasing elevation. In fact, with elevation, gm also increased compensating for the strong decrease in gs and, thus, in the Pi (intercellular partial pressure of CO2) to Pa ratio, leading to similar chloroplast partial pressure of CO2 (Pc) to Pa ratio at different elevations. Because there were no differences in Vcmax, also A measured at similar PPFD and leaf temperature did not differ statistically with elevation. As a consequence, a clear relationship was found between A and gm, and between A and the sum of gs and gm. These data suggest that the higher dry mass δ13C of leaves at the higher elevation, indicative of lower long‐term Pc/Pa ratio, cannot be attributed to changes either in diffusional resistances or in carboxylation efficiency. We speculate that because temperature significantly decreases as the elevation increases, it dramatically affects CO2 diffusion and hence Pc/Pa and, consequently, is the primary factor influencing 13C discrimination at high elevation.  相似文献   

20.
Virtually all current estimates of the maximum carboxylation rate (Vcmax) of ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) and the maximum electron transport rate (Jmax) for C3 species implicitly assume an infinite CO2 transfer conductance (gi). And yet, most measurements in perennial plant species or in ageing or stressed leaves show that gi imposes a significant limitation on photosynthesis. Herein, we demonstrate that many current parameterizations of the photosynthesis model of Farquhar, von Caemmerer & Berry (Planta 149, 78–90, 1980 ) based on the leaf intercellular CO2 concentration (Ci) are incorrect for leaves where gi limits photosynthesis. We show how conventional A–Ci curve (net CO2 assimilation rate of a leaf –An– as a function of Ci) fitting methods which rely on a rectangular hyperbola model under the assumption of infinite gi can significantly underestimate Vcmax for such leaves. Alternative parameterizations of the conventional method based on a single, apparent Michaelis–Menten constant for CO2 evaluated at Ci[Km(CO2)i] used for all C3 plants are also not acceptable since the relationship between Vcmax and gi is not conserved among species. We present an alternative A–Ci curve fitting method that accounts for gi through a non‐rectangular hyperbola version of the model of Farquhar et al. (1980 ). Simulated and real examples are used to demonstrate how this new approach eliminates the errors of the conventional A–Ci curve fitting method and provides Vcmax estimates that are virtually insensitive to gi. Finally, we show how the new A–Ci curve fitting method can be used to estimate the value of the kinetic constants of Rubisco in vivo is presented  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号