首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We defined the cellular mechanisms for genesis, migration, and differentiation of the initial population of olfactory bulb (OB) interneurons. This cohort of early generated cells, many of which become postmitotic on embryonic day (E) 14.5, differentiates into a wide range of mature OB interneurons by postnatal day (P) 21, and a substantial number remains in the OB at P60. Their precursors autonomously acquire a distinct identity defined by their position in the lateral ganglionic eminence (LGE). The progeny migrate selectively to the OB rudiment in a pathway that presages the rostral migratory stream. After arriving in the OB rudiment, these early generated cells acquire cellular and molecular hallmarks of OB interneurons. Other precursors--including those from the medial ganglionic eminence (MGE) and OB--fail to generate neuroblasts with similar migratory capacity when transplanted to the LGE. The positional identity and migratory specificity of the LGE precursors is rigidly established between E12.5 and E14.5. Thus, the pioneering population of OB interneurons is generated from spatially and temporally determined LGE precursors whose progeny uniquely recognize a distinct migratory trajectory.  相似文献   

2.
3.
Netrin1 (NTN1) deficiency in mouse brain causes defects in axon guidance and cell migration during embryonic development. Here we show that NTN1 is required for olfactory bulb (OB) development at late embryogenesis and at early postnatal stages to facilitate the accumulation of proper numbers of granular and glomerular neuron subtypes and oligodendrocytes into the OB. In addition to the analysis of Ntn1−/− mice we made tissue and neurosphere cultures to clarify the role of NTN1 in the anterior forebrain. We propose that a subset of neural progenitors/precursors requires NTN1 to efficiently enter the rostral migratory stream to migrate into the OB. The analysis of postnatal Ntn1−/− OBs revealed a reduction of specific types of interneurons which have been shown to originate from particular subregions of the lateral ventricle walls. Based on Ntn1 expression in ventral parts of the ventricle walls, we observed a decrease in the mainly ventrally derived type II interneurons that express calcium-binding proteins calretinin and calbindin. Instead, no change in the numbers of dorsally derived tyrosine hydroxylase expressing interneurons was detected. In addition to the specific reduction of type II interneurons, our results indicate that NTN1 is required for oligodendroglial migration into the OB. Furthermore, we characterised the Ntn1 expressing subpopulation of neurosphere-forming cells from embryonic and adult brain as multipotent and self-renewing. However, NTN1 is dispensable for the proliferation of neurosphere forming progenitor cells and for their differentiation.  相似文献   

4.
Olfactory bulbs (OBs) are one of the few brain areas, which show active neurogenesis and neuronal migration processes in adult rats. We constructed a proteome map of the 21 days old rat OBs and identified total 196 proteins, out of which 76 proteins were not reported earlier from rat brain. This includes 24 neuronal activity‐specific proteins present at high levels, 7 of which are reported for the first time from OBs.  相似文献   

5.
Summary Physiological and morphological properties of rabbit, Oryctolagus cuniculus, olfactory bulb interneurons were characterized by using a thin slice preparation in combination with patch-clamp measurements and Lucifer Yellow fills. Two types of interneurons, periglomerular (PG) and juxtaglomerular (JG) cells, were unequivocally distinguished in the glomerular layer. Their properties were compared to those of mitral cells. PG cells closely resembled previously described periglomerular cells in their morphology. During current clamp recording these neurons were characterized by their lack of action potentials upon depolarization. Consistent with these results no Na+ currents could be elicited in voltage clamp experiments. Two types of outward K+ currents were distinguished: one which inactivated and one which did not. From their morphology JG cells appear to be either short axon cells or external tufted cells. JG cells always responded with a single, TTX-blockable action potential in response to maintained current injection. Two types of membrane currents were identified in JG cells during voltage clamp: a fast, inactivating Na+ current that was fully activated at — 80 mV, and a sustained outward current that shared some properties with a delayed rectifier K+ current. The particular relationship between the voltage dependence of the Na+ and K+ currents appeared to preclude repetitive spike activity.Abbreviations JG juxtraglomerular interneuron - LOT lateral olfactory tract - M/T mitral/tufted (cells) - PG periglomerular - SA short axon  相似文献   

6.
Summary Transmitter receptor ion channels from previously identified rabbit olfactory bulb neurons were studied by using a thin slice preparation in combination with patch-clamp measurements. PG cells, which closely resembled previously described periglomerular interneurons in their morphology, responded to microapplication of GABA, acetylcholine, norepinephrine and glycine with the activation of distinct ionic currents. JG cells, which belong either to the class of short axon cells or external tufted cells, never showed GABA responses. In mitral cells ionic currents activated by GABA, acetylcholine, norepinephrine and glutamate could be elicited. Further measurements of GABA-activated currents of PG cells were made and indicated that these cells expressed two different types of GABA receptors: one which showed fast desensitization with a decay time constant of about 5 s, and one which slowly desensitized with a decay time constant of about 20–30 s. Both types were completely inhibited by bicuculline methiodide (50 M). GABA receptors were not blocked by Zn2+ (0.1 mM). From the dose-response relationship of the peak GABA-activated currents, an apparent dissociation constant of 50 M was derived. From single channel measurements in excised outside-out patches, a single channel conductance of GABA-activated Cl currents of 24 pS was obtained during continuous application of the agonist. Single channel events had a mean open time of 1.9 ms.  相似文献   

7.
Neurons born in the postnatal SVZ (subventricular zone) must migrate a great distance before becoming mature interneurons of the OB (olfactory bulb). During migration immature OB neurons maintain an immature morphology until they reach their destination. While the morphological development of these cells must be tightly regulated, the cellular pathways responsible are still largely unknown. Our results show that the non-canonical Wnt pathway induced by Wnt5a is important for the morphological development of OB interneurons both in vitro and in vivo. Additionally, we demonstrate that non-canonical Wnt signalling works in opposition to canonical Wnt signalling in neural precursors from the SVZ in vitro. This represents a novel role for Wnt5a in the development of OB interneurons and suggests that canonical and non-canonical Wnt pathways dynamically oppose each other in the regulation of dendrite maturation.  相似文献   

8.
9.
In the adrenal medulla, binding of the immediate early gene (IEG) proteins, EGR-1 (ZIF-268/KROX-24/NGFI-A) and AP-1, to the tyrosine hydroxylase (Th) proximal promoter mediate inducible Th expression. The current study investigated the potential role of EGR-1 in inducible Th expression in the olfactory bulb (OB) since IEGs bound to the AP-1 site in the Th proximal promoter are also necessary for activity-dependent OB TH expression. Immunohistochemical analysis of a naris-occluded mouse model of odor deprivation revealed weak EGR-1 expression levels in the OB glomerular layer that were activity-dependent. Immunofluorescence analysis indicated that a majority of glomerular cells expressing EGR-1 also co-expressed TH, but only small subset of TH-expressing cells contained EGR-1. By contrast, granule cells, which lack TH, exhibited EGR-1 expression levels that were unchanged by naris closure. Together, these finding suggest that EGR-1 mediates activity-dependent TH expression in a subset of OB dopaminergic neurons, and that there is differential regulation of EGR-1 in periglomerular and granule cells.  相似文献   

10.
啮齿动物的犁鼻器和副嗅球与社会通讯和生殖行为有关,主嗅球影响其觅食行为。达乌尔黄鼠(Spermophilus dauricus)是一种具有较低社会行为的储脂类冬眠动物。本研究用组织学和免疫组织化学方法探究了其犁鼻器和副嗅球的结构特点及嗅球神经元活动对季节变化的适应。结果发现,达乌尔黄鼠犁鼻器具有较大的血管,犁鼻器管腔外侧为非感觉性的呼吸上皮(Respiratory epithelium,RE),内侧为感觉上皮(Sensory epithelium,SE),RE较SE薄,靠近管腔处为假复层柱状上皮。选取犁鼻器中间部位比较,发现SE的厚度、长度及感觉细胞密度均无性别差异。副嗅球位于主嗅球后方背内侧,由6层细胞构成。侧嗅束穿过副嗅球,位于颗粒细胞层之上。雄性达乌尔黄鼠较雌性有更长的僧帽细胞层和颗粒细胞层。春季(3月)和冬季(1月)达乌尔黄鼠主嗅球的嗅小球层、僧帽细胞层和颗粒细胞层的c-Fos-ir神经元密度显著低于夏季(7月)和秋季(10月),且冬季外网织层的c-Fos-ir神经元密度显著低于夏季和秋季,说明达乌尔黄鼠在冬季和春季的嗅觉神经活动较弱,呈现出对冬眠的生理性适应。这些结果丰富了动物犁鼻器和副嗅球的形态学资料,并有助于理解冬眠动物嗅觉系统对季节变化和冬眠的适应。  相似文献   

11.
Neuronal circuits in the olfactory bulb transform odor-evoked activity patterns across the input channels, the olfactory glomeruli, into distributed activity patterns across the output neurons, the mitral cells. One computation associated with this transformation is a decorrelation of activity patterns representing similar odors. Such a decorrelation has various benefits for the classification and storage of information by associative networks in higher brain areas. Experimental results from adult zebrafish show that pattern decorrelation involves a redistribution of activity across the population of mitral cells. These observations imply that pattern decorrelation cannot be explained by a global scaling mechanism but that it depends on interactions between distinct subsets of neurons in the network. This article reviews insights into the network mechanism underlying pattern decorrelation and discusses recent results that link pattern decorrelation in the olfactory bulb to odor discrimination behavior.  相似文献   

12.
Precise control of neuronal migration is essential for proper function of the brain. Taking a forward genetic screen, we isolated a mutant mouse with defects in interneuron migration. By genetic mapping, we identified a frame shift mutation in the pericentrin (Pcnt) gene. The Pcnt gene encodes a large centrosomal coiled-coil protein that has been implicated in schizophrenia. Recently, frame shift and premature termination mutations in the pericentrin (PCNT) gene were identified in individuals with Seckel syndrome and microcephalic osteodysplastic primordial dwarfism (MOPD II), both of which are characterized by greatly reduced body and brain sizes. The mouse Pcnt mutant shares features with the human syndromes in its overall growth retardation and reduced brain size. We found that dorsal lateral ganglionic eminence (dLGE)-derived olfactory bulb interneurons are severely affected and distributed abnormally in the rostral forebrain in the mutant. Furthermore, mutant interneurons exhibit abnormal migration behavior and RNA interference knockdown of Pcnt impairs cell migration along the rostal migratory stream (RMS) into the olfactory bulb. These findings indicate that pericentrin is required for proper migration of olfactory bulb interneurons and provide a developmental basis for association of pericentrin function with interneuron defects in human schizophrenia.  相似文献   

13.
Understanding the mechanisms that regulate neurogenesis is a prerequisite for brain repair approaches based on neuronal precursor cells. One important regulator of postnatal neurogenesis is polysialic acid (polySia), a post-translational modification of the neural cell adhesion molecule NCAM. In the present study, we investigated the role of polySia in differentiation of neuronal precursors isolated from the subventricular zone of early postnatal mice. Removal of polySia promoted neurite induction and selectively enhanced maturation into a calretinin-positive phenotype. Expression of calbindin and Pax6, indicative for other lineages of olfactory bulb interneurons, were not affected. A decrease in the number of TUNEL-positive cells indicated that cell survival was slightly improved by removing polySia. Time lapse imaging revealed the absence of chain migration and low cell motility, in the presence and absence of polySia. The changes in survival and differentiation, therefore, could be dissected from the well-known function of polySia as a promoter of precursor migration. The differentiation response was mimicked by exposure of cells to soluble or substrate-bound NCAM and prevented by the C3d-peptide, a synthetic ligand blocking NCAM interactions. Moreover, a higher degree of differentiation was observed in cultures from polysialyltransferase-depleted mice and after NCAM exposure of precursors from NCAM-knockout mice demonstrating that the NCAM function is mediated via heterophilic binding partners. In conclusion, these data reveal that polySia controls instructive NCAM signals, which direct the differentiation of subventricular zone-derived precursors towards the calretinin-positive phenotype of olfactory bulb interneurons.  相似文献   

14.
Summary We have studied the distribution of calbindin D-28k immunoreactivity in the rat olfactory bulb using specific monoclonal antibodies and the avidin-biotin-immunoperoxidase method. The largest number of positive neurons was located in the periglomerular layer. These neurons were identified as periglomerular cells; they have been described also by other authors as calbindin-positive elements. Close to these neurons, a second population of nerve cells was identified as superficial shortaxon neurons. The remaining layers showed a smaller number of stained elements. Other labeled neurons were located along the external border of the external plexiform layer; the scarce neurons marking its internal border were identified as van Gehuchten cells. No immunoreactive structures were found in the mitral cell layer, although we observed another population of immunostained short-axon cells at its internal border. Some reactive structures, identified by us as horizontal and vertical cells of Cajal, were located in the boundary zone between the internal plexiform layer and the granule layer. In the white matter, we found a neuronal type characterized by its large size and oriented arborization of varicose dendrites.  相似文献   

15.
Summary The ultrastructure of differentiating rat presumptive olfactory bulb in organ culture was investigated with particular reference to mitral cell differentiation and formation of synapses. The presumptive olfactory bulb and olfactory mucosa were dissected en bloc from rat embryos on the fifteenth day of gestation and cultured for 7 days, after which the expiants were examined by electron microscopy. The presumptive olfactory bulb had differentiated into a laminated structure with layers corresponding to the glomerular, external plexiform and mitral cell layers. Mitral-like cells were identified by their location and large cell size. Ultrastructural observations indicated that they were relatively well-differentiated. Their dendrites extended into the glomerular layer in which they were postsynaptic to incoming olfactory axons. The distal part of these dendrites frequently contained coated vesicles. Both asymmetrical and symmetrical synapses were found. The symmetrical synapses involved dendrodendritic contacts between periglomerular cells. Synapses in reciprocal arrangements were not observed in the organ cultures.  相似文献   

16.
龙娣  郭炳冉  高玲  江乐  高燕  卢少俊 《兽类学报》2011,31(3):272-277
利用免疫组化法检测c-Fos 蛋白在不同季节刺猬嗅球各层次的表达差异,探讨c-Fos、嗅觉、冬眠三者的关系。分别选取春、夏、秋、冬四个季节各6 只野生健康刺猬,固定剥离嗅球,石蜡切片,免疫组化显色,拍片,载入Motic Images Advanced 3.2 软件,测量四个季节刺猬嗅球各层次c-Fos 的表达率,将结果载入GraphPadPrism4 软件分析,Microsoft Excel 作图。结果表明:c-Fos 蛋白在成年刺猬嗅球各层均有不同程度的表达,阴性对照不着色,且表现出明显的季节性差异。1)与秋季相比,冬眠期c-Fos 蛋白在刺猬嗅球各层次的表达均有极显著的降低(P <0.01);2)与夏季相比,冬眠期c-Fos 蛋白在外网丛层、僧帽细胞层、颗粒细胞层的表达有极显著降低(P < 0. 01),在嗅神经层、嗅小球层、室管膜层的表达也有显著降低(P < 0. 05);3)与冬眠期相比,春季c-Fos 蛋白在嗅小球层、僧帽细胞层、颗粒细胞层的表达有极显著的升高(P <0. 01),在嗅神经层、外网丛层、室管膜层的表达却没有显著变化(P ﹥ 0.05);4)嗅神经层c-Fos 的表达在春季显著低于秋季,夏季与秋季没有显著差异。颗粒细胞层夏季显著低于秋季(P < 0.05)。秋季c-Fos 在其余各层次的表达与春季、夏季相比都有极显著的提高(P <0.01)。结论:秋季刺猬嗅球神经元最活跃,嗅觉最灵敏,冬眠期刺猬嗅球活跃性大大降低,嗅觉系统最迟钝。c-Fos 在刺猬嗅球中的强表达表明其在嗅觉信息的传递中可能发挥一定作用,c-Fos 表达率的显著季节性差异揭示了刺猬嗅球的活跃性与其冬眠具有一定的相关性。  相似文献   

17.
Summary The terminals of centrifugal fibers to the olfactory bulbs of goldfish were studied by electron microscopy after transection of the medial, lateral or entire olfactory tract. The centrifugal fibers originate in the telencephalic hemisphere, pass through both the medial and the lateral olfactory tract, and form synaptic contacts with dendrites in the granule cell layer.  相似文献   

18.
Long-term potentiation of synaptic transmission is considered to be an elementary process underlying the cellular mechanism of memory formation. In the present study we aimed to examine whether or not the dendrodendritic mitral-to-granule cell synapses in the carp olfactory bulb show plastic changes after their repeated activation. It was found that: (1) the dendrodendritic mitral-to-granule cell synapses showed three types of plasticity after tetanic electrical stimulation applied to the olfactory tract—long-term potentiation (potentiation lasting >1 h), short-term potentiation (potentiation lasting <1 h) and post-tetanic potentiation (potentiation lasting <10 min); (2) Long-term potentiation was generally induced when both the dendrodendritic mitral-to-granule cell synapses and centrifugal fiber-to-granule cell synapses were repeatedly and simultaneously activated; (3) long-term enhancement (>1 h) of the odor-evoked bulbar response accompanied the electrically-induced LTP, and; (4) repeated olfactory stimulation enhanced dendrodendritic mitral-to-granule cell transmission. Based on these results, it was proposed that long-term potentiation (as well as olfactory memory) occurs at the dendrodendritic mitral-to-granule cell synapses after strong and long-lasting depolarization of granule cells, which follows repeated and simultaneous synaptic activation of both the peripheral and deep dendrites (or somata).  相似文献   

19.
Insulin-like growth factor I (IGF-I) and its receptor (IGF-IR) are involved in growth of neurons. In the rat olfactory epithelium, we previously showed IGF-IR immunostaining in subsets of olfactory receptor neurons. We now report that IGF-IR staining was heaviest in the olfactory nerve layer of the rat olfactory bulb at embryonic days 18, and 19 and postnatal day 1, with labeling of protoglomeruli. In the adult, only a few glomeruli were IGF-IR-positive, some of which were unusually small and strongly labeled. Some IGF-IR-positive fibers penetrated deeper into the external plexiform layer, even in adults. In developing tissues, IGF-IR staining co-localized with that for olfactory marker protein and growth associated protein GAP-43, but to a lesser extent with synaptophysin. In the adult, IGF-IR-positive fibers were compartmentalized within glomeruli. IGF-I may play a role in glomerular synaptogenesis and/or plasticity, possibly contributing to development of coding patterns for odor detection or identification.  相似文献   

20.
Neuroblasts in the subventricular zone of the walls of the lateral ventricle in the brain of young and adult rodents migrate into the olfactory bulb where they differentiate into local interneurons. These cells move closely associated with each other, forming chains without radial glial or axonal guidance. The migrating neuroblasts express PSA-NCAM on their surface and PSA residues are crucial for cell-cell interaction during chain migration. This migration occurs throughout the lateral wall of the lateral ventricle, where the precursors form an extensive network of chains. Cells remain organized as chains until they reach the olfactory bulb, where they disperse organized as chains until they reach the olfactory bulb, where they disperse radially as individual cells. Chain migration defines a novel form of neuronal precursor translocation which is based on homotypic interactions between cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号