共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Gregory J. Wadsworth Simos M. Marmaras Benjamin F. Matthews 《Plant molecular biology》1993,21(6):993-1009
Five aspartate aminotransferase (EC 2.6.1.1; AAT) isozymes were identified in soybean seedling extracts and designated AAT1 to AAT5 based on their rate of migration on non-denaturing electrophoretic gels. AAT1 was detected only in extracts of cotyledons from dark-grown seedlings. AAT3 and AAT4 were detected in crude extracts of leaves and in cotyledons of seedlings grown in the light. AAT2 and AAT5 were detected in all tissues examined. A soybean leaf cDNA clone, pSAT17, was identified by hybridization to a carrot AAT cDNA clone at low stringency. pSAT17 had an open reading frame which could encode a 50 581 Da protein. Alignment of the deduced amino acid sequence from the pSAT17 open reading frame with mature AAT protein sequences from rat disclosed a 60 amino acid N-terminal extension in the pSAT17 protein. This extension had characteristics of a plastid transit peptide.A plasmid, pEXAT17, was constructed which encoded the mature protein lacking the putative chloroplast transit polypeptide. Transformed Escherichia coli expressed a functional soybean AAT isozyme, which comigrated with the soybean AAT5 isozyme during agarose gel electrophoresis. Differential sucrose gradient sedimentation of soybean extracts indicated that AAT5 specifically cofractionated with chloroplasts. Antibodies raised against the pEXAT17-encoded AAT protein specifically reacted with the AAT5 isozyme of soybean and not with any of the other isozymes, indicating that the soybean cDNA clone, pSAT17, encodes the chloroplast isozyme, AAT5. 相似文献
3.
Gregory J. Wadsworth Joan S. Gebhardt Benjamin F. Matthews 《Plant molecular biology》1995,27(6):1085-1095
A soybean leaf cDNA clone, pSAT2, was isolated by hybridization to a carrot aspartate aminotransferase (EC 2.6.1.1.; AAT) cDNA clone at low stringency. pSAT2 contained an open reading frame encoding a 47640 Da protein. The protein encoded by pSAT2 showed significant sequence similarity to AAT proteins from both plants and animals. It was most similar to two Panicum mitochondrial AATs, 81.5% and 82.0% identity. Alignment of the pSAT2-encoded protein with other mature AAT enzymes revealed a 25 amino acid N-terminal extension with characteristics of a mitochondrial transit peptide. A plasmid, pEXAT2, was constructed to encode the mature pSAT2 protein lacking the putative mitochondrial transit peptide. Escherichia coli containing the plasmid expressed a functional AAT isozyme which comigrated with the soybean AAT4 isozyme during agarose gel electrophoresis. Equilibrium sucrose gradient sedimentation of soybean extracts demonstrated that AAT4 specifically cofractionated with mitochondria. Antibodies raised against the pEXAT2-encoded AAT protein reacted with AAT4 of soybean and not with other AAT isozymes detected in soybean tissues, providing further evidence that clone pSAT2 encodes the soybean mitochondrial isozyme AAT4. 相似文献
4.
Gebhardt Joan S. Wadsworth Gregory J. Matthews Benjamin F. 《Plant molecular biology》1998,37(1):99-108
A soybean cDNA clone, pSAT1, which encodes both the cytosolic and glyoxysomal isozymes of aspartate aminotransferase (AAT; EC 2.6.1.1) was isolated. Genomic Southern blots and analysis of genomic clones indicated pSAT1 was encoded by a single copy gene. pSAT1 contained an open reading frame with ca. 90% amino acid identity to alfalfa and lupin cytosolic AAT and two in-frame start codons, designated ATG1 and ATG2. Alignment of this protein with other plant cytosolic AAT isozymes revealed a 37 amino acid N-terminal extension with characteristics of a peroxisomal targeting signal, designated PTS2, including the modified consensus sequence RL-X5-HF. The second start codon ATG2 aligned with previously reported start codons for plant cytosolic AAT cDNAs. Plasmids constructed to express the open reading frame initiated by each of the putative start codons produced proteins with AAT activity in Escherichia coli. Immune serum raised against the pSAT1-encoded protein reacted with three soybean AAT isozymes, AAT1 (glyoxysomal), AAT2 (cytosolic), and AAT3 (subcellular location unknown). We propose the glyoxysomal isozyme AAT1 is produced by translational initiation from ATG1 and the cytosolic isozyme AAT2 is produced by translational initiation from ATG2. N-terminal sequencing of purified AAT1 revealed complete identity with the pSAT1-encoded protein and was consistent with the processing of the PTS2. Analysis of cytosolic AAT genomic sequences from several other plant species revealed conservation of the two in-frame start codons and the PTS2 sequence, suggesting that these other species may utilize a single gene to generate both cytosolic and glyoxysomal or peroxisomal forms of AAT. 相似文献
5.
6.
Isolation and expression in Escherichia coli of a cDNA clone encoding human beta-glucuronidase 总被引:9,自引:0,他引:9
K S Guise R G Korneluk J Waye A M Lamhonwah F Quan R Palmer R E Ganschow W S Sly R A Gravel 《Gene》1985,34(1):105-110
Mucopolysaccharidosis type VII is a lysosomal storage disease resulting from a deficiency of beta-glucuronidase (BG) activity. To facilitate the investigation of mutation in the disease and provide molecular diagnostic tools for affected families, we have isolated human BG cDNA clones. The SV40-transformed human fibroblast cDNA library of Okayama and Berg [Mol. Cell. Biol. 3 (1982) 280-289] was screened with a fragment of a murine BG cDNA clone (pGUS-1). The 17 human cDNA clones (pHUG) isolated were identical by restriction mapping, varying only in length. The pHUG clones show 80% DNA sequence homology with pGUS-1 in a 198-bp PvuII-SstI restriction fragment. Both pGUS-1 and the pHUG clones contained an open reading frame (ORF) throughout the sequenced region with a predicted amino acid sequence homology of 73%. Expression in Escherichia coli of a 1150-bp fragment of pHUG-1 subcloned in pUC9 resulted in an isopropyl-thio-beta-galactoside (IPTG)-inducible 35-kDal fusion protein which was specifically immunoprecipitated by goat anti-human BG immunoglobulin G (IgG). This evidence provides direct confirmation that the pHUG cDNA clones correspond to human BG. 相似文献
7.
The Drosophila melanogaster L27a gene encodes a ribosomal protein which is a member of the L15 family of ribosomal proteins. D.m. L27a is closely related to the mammalian protein that has been found differentially expressed in lung cancer tissues and therefore could be involved in the control of cell proliferation such as the ribosomal protein S6. Our work elucidates the role of DIP1 which is a novel protein that we found in Drosophila. We performed a two-hybrid system assay and identified the L27a protein as an interactor of DIP1. The interaction was then validated by in vitro binding assays. DIP1, similar to other nuclear proteins in eukaryotes, is localized to the nuclear periphery and chromatin domain in all nuclei, but disappears at the metaphase. It is possible that in D.m. L27a protein, via interaction with DIP1, could be involved in protein synthesis as well as in cell cycle regulation. 相似文献
8.
Summary Nitrate reductase (NR) assays revealed a bi-specific NAD(P)H-NR (EC 1.6.6.2.) to be the only nitrate-reducing enzyme in leaves
of hydroponically grown birches. To obtain the primary structure of the NAD(P)H-NR, leaf poly(A)+ mRNA was used to construct a cDNA library in the lambda gt11 phage. Recombinant clones were screened with heterologous gene
probes encoding NADH-NR from tobacco and squash. A 3.0 kb cDNA was isolated which hybridized to a 3.2 kb mRNA whose level
was significantly higher in plants grown on nitrate than in those grown on ammonia. The nucleotide sequence of the cDNA comprises
a reading frame encoding a protein of 898 amino acids which reveals 67%–77% identity with NADH-nitrate reductase sequences
from higher plants. To identify conserved and variable regions of the multicentre electron-transfer protein a graphical evaluation
of identities found in NR sequence alignments was carried out. Thirteen well-conserved sections exceeding a size of 10 amino
acids were found in higher plant nitrate reductases. Sequence comparisons with related redox proteins indicate that about
half of the conserved NR regions are involved in cofactor binding. The most striking difference in the birch NAD(P)H-NR sequence
in comparison to NADH-NR sequences was found at the putative pyridine nucleotide binding site. Southern analysis indicates
that the bi-specific NR is encoded by a single copy gene in birch.
These sequence data appeared in the EMBL/GenBank/DDBJ nucleotide sequence data bases under the accession number X54097 相似文献
9.
Y Shirasu H Yoshida T Mikayama S Matsuki J Tanaka H Ikenaga 《Journal of biochemistry》1986,99(6):1707-1712
We have cloned a DNA that is complementary to the messenger RNA that encodes porcine pancreatic elastase 1 from pancreas using rat pancreatic elastase 1 cDNA as a probe. This complementary DNA contains the entire protein coding region of 798 nucleotides which encodes an elastase of 266 amino acids, and 22 and 136 nucleotides of the 5' and 3'-untranslated sequences. When this deduced amino acid sequence was compared with known amino acid sequences, a carboxy-terminal 240 amino acids long peptide was found to be identical with a mature form of porcine pancreatic elastase 1, except for two amino acids. The porcine enzyme contains the same number of amino acid residues as the rat enzyme, and their amino acid sequences are 85% homologous. Taking the above findings together, we conclude that the cloned cDNA encodes a mature enzyme of 240 amino acids including a leader and activation peptide of 26 amino acids. We expressed the cloned porcine pancreatic elastase 1 cDNA in E. coli as a lac-fused protein. The resulting fused protein showed enzymatic activity and immunoreactivity toward anti-elastase serum. 相似文献
10.
Y Horio T Tanaka M Taketoshi F Nagashima S Tanase Y Morino H Wada 《Journal of biochemistry》1988,103(5):797-804
cDNA clones for rat cytosolic aspartate aminotransferase (cAspAT, L-aspartate:2-oxoglutarate aminotransferase) [EC 2.6.1.1] were isolated from a rat cDNA library, and the primary structure of the gene for cAspAT was deduced from its cDNA sequence. Rat cAspAT consists of 412 amino acids and its molecular weight is 46,295. The deduced amino acid sequence of rat cAspAT was compared with the sequences of AspATs from other species. The degree of sequence identities of rat/mouse cAspAT, rat/pig cAspAT, rat/chicken cAspAT, rat/pig mAspAT, and rat/Escherichia coli AspAT were 97.1, 89.6, 81.7, 48.1, and 41.2%, respectively. A coding region of rat cAspAT cDNA was inserted into E. coli expression vector pUC9, and enzymatically active cAspAT was expressed as a beta-galactosidase-cAspAT hybrid protein. This hybrid protein represented about 18% of the soluble proteins in E. coli and its kinetic properties were comparable with those of cAspAT preparations purified from rat liver. 相似文献
11.
Purification and characterization of aspartate aminotransferase isoenzymes from carrot suspension cultures 总被引:2,自引:1,他引:2 下载免费PDF全文
Three aspartate aminotransferase isoenzymes were identified from extracts of carrot (Daucus carota L.) cell suspension cultures. These isoenzymes were separated by DEAE chromatography and were analyzed on native gradient polyacrylamide gels. The relative molecular weights of the isoenzymes were 111,000 ± 5000, 105,000 ± 5000, and 94,000 ± 4000 daltons; they were designated forms I, II, and III, respectively. Form I, the predominant form, has been purified to apparent homogeneity (>300-fold) using immunoaffinity chromatography with rabbit anti-pig AAT antibodies. Form I has a subunit size of 43,000 Mr, as determined on sodium dodecyl sulfate polyacrylamide gel electrophoresis. Isoelectric focusing (IEF)-PAGE has resolved three bands at a pl of approximately 5.2. Form I may be composed of subunits of similar molecular weight and different charges, and the three bands with AAT activity on the IEF-PAGE gel are a combination of hetero- and homodimers. Form I has a broad pH optimum of 7.5 to 10.0. Km values of 23.6, 2.8, 0.05, and 0.22 millimolar were obtained for glutamate, aspartate, oxaloacetate, and α-ketoglutarate, respectively. The mode of action is a ping-pong-bi-bi mechanism. 相似文献
12.
13.
A cDNA clone encoding Brassica calmodulin 总被引:2,自引:0,他引:2
A 834 bp cDNA encoding calmodulin (CaM) has been isolated from Brassica juncea. On Northern analysis this cDNA hybridises this cDNA to mRNAs of about 0.9 kb in leaf, silique and peduncle. Genomic Southern analysis indicates the presence of a CaM multigene family in Brassica juncea. Comparison of the predicted amino acid sequence of Brassica CaM with that of Arabidopsis CaM ACaM-2 and ACaM-3 showed 100% homology, which is not unusual, since both plants belong to the family Cruciferae. In situ hybridisation studies on Brassica seedlings using a digoxigenin-labelled RNA probe showed that high levels of CaM mRNA were detected in the leaf primordia and the shoot apical meristem, and to a lesser degree, in the zone of root elongation of the root tip. The occurrence of a higher rate of cell division and growth in these regions than its surrounding tissue may possibly be related to higher levels of CaM mRNA. 相似文献
14.
15.
《The International journal of biochemistry》1993,25(10):1505-1509
- 1.1. Complementary DNA encoding cytosolic aspartate aminotransferase was isolated from an adult bovine heart library.
- 2.2. The amino add sequence deduced for the protein (412 amino acids) is extremely similar (> 94% identity) to that of porcine cytosolic aspartate aminotransferase but interesting differences were noticed comparing the position of cysteine residues.
16.
17.
18.
M Taniguchi H Sawaki H Sasakawa T Hase T Sugiyama 《European journal of biochemistry》1992,204(2):611-620
The cytosolic and mitochondrial isozymes of aspartate aminotransferase (AspAT) function in the C4 dicarboxylate cycle of photosynthesis. We constructed a cDNA library from leaf tissues of Panicum miliaceum, an NAD-malic-enzyme-type C4 plant and screened the library for AspAT isozymes. A full-length cDNA clone for cytosolic AspAT was isolated. This clone contains an open reading frame that encodes 409 amino acids. We also isolated two cDNA clones for different precursors of mitochondrial AspAT. Comparing these two sequences in the coding regions, we found 12 amino acid substitutions out of 28 base substitutions. The encoded amino acid sequences predict that mitochondrial AspAT are synthesized as precursor proteins of 428 amino acid residues, which each consist of a mature enzyme of 400 amino acid residues and a 28-amino-acid presequence. This prediction coincides with the observation that the in vitro translation product of the mRNA for mitochondrial AspAT was substantially larger than the mature form. A comparison of the amino acid sequences of the AspAT isozymes from P. miliaceum with the published sequences for the enzymes from various animals and microorganisms reveals that functionally and/or structurally important residues are almost entirely conserved in all AspAT species. 相似文献
19.
20.
Rapid purification and thermostability of the cytoplasmic aspartate aminotransferase from carrot suspension cultures 下载免费PDF全文
Several isoenzymic forms of aspartate aminotransferase (AAT) have been identified in protein extracts from carrot (Daucus carota) cell suspension cultures. The cellular location of the major form (form I) of AAT in carrot suspension cultures was determined by heat inactivation, subcellular fractionation, and amino acid sequence analysis. In mammalian systems, there are two forms of AAT, a heat-stable cytoplasmic form and a heat-labile form in the mitochondria. The thermostability of three isoenzymes of carrot AAT was examined, and the results showed that form I was more thermostable than forms II or III. Organelles were separated in sucrose gradients by isopynic centrifugation. Activity for form I was identified in the soluble fractions and not in fractions containing peroxisomes, proplastids, or mitochondria. Form I was purified to homogeneity and endoproteolytically cleaved, and the peptide fragments were separated by reverse phase chromatography. Analysis of the sequence data from two of the polypeptides showed that the amino acid identity of form I is more conserved to the animal cytoplasmic AAT than to animal mitochondrial AAT sequences. These data strongly suggest that form I of AAT from carrot is the cytoplasmic isoenzyme. Additionally, a rapid purification scheme for form I of AAT from carrot is presented using selective heat denaturation and anion-exchange chromatography. 相似文献