首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxygen-sensing neurons in the central nervous system.   总被引:9,自引:0,他引:9  
This mini-review summarizes the present knowledge regarding central oxygen-chemosensitive sites with special emphasis on their function in regulating changes in cardiovascular and respiratory responses. These oxygen-chemosensitive sites are distributed throughout the brain stem from the thalamus to the medulla and may form an oxygen-chemosensitive network. The ultimate effect on respiratory or sympathetic activity presumably depends on the specific neural projections from each of these brain stem oxygen-sensitive regions as well as on the developmental age of the animal. Little is known regarding the cellular mechanisms involved in the chemotransduction process of the central oxygen sensors. The limited information available suggests some conservation of mechanisms used by other oxygen-sensing systems, e.g., carotid body glomus cells and pulmonary vascular smooth muscle cells. However, major gaps exist in our understanding of the specific ion channels and oxygen sensors required for transducing central hypoxia by these central oxygen-sensitive neurons. Adaptation of these central oxygen-sensitive neurons during chronic or intermittent hypoxia likely contributes to responses in both physiological conditions (ascent to high altitude, hypoxic conditioning) and clinical conditions (heart failure, chronic obstructive pulmonary disease, obstructive sleep apnea syndrome, hypoventilation syndromes). This review underscores the lack of knowledge about central oxygen chemosensors and highlights real opportunities for future research.  相似文献   

2.
Reduced mitochondrial oxidative phosphorylation, via activation of adenylate kinase and the resulting exponential rise in the cellular AMP/ATP ratio, appears to be a critical factor underlying O? sensing in many chemoreceptive tissues in mammals. The elevated AMP/ATP ratio, in turn, activates key enzymes that are involved in physiologic adjustments that tend to balance ATP supply and demand. An example is the conversion of AMP to adenosine via 5'-nucleotidase and the resulting activation of adenosine A(?A) receptors, which are involved in acute oxygen sensing by both carotid bodies and the brain. In fetal sheep, A(?A) receptors associated with carotid bodies trigger hypoxic cardiovascular chemoreflexes, while central A(?A) receptors mediate hypoxic inhibition of breathing and rapid eye movements. A(?A) receptors are also involved in hypoxic regulation of fetal endocrine systems, metabolism, and vascular tone. In developing lambs, A(?A) receptors play virtually no role in O? sensing by the carotid bodies, but brain A(?A) receptors remain critically involved in the roll-off ventilatory response to hypoxia. In adult mammals, A(?A) receptors have been implicated in O? sensing by carotid glomus cells, while central A(?A) receptors likely blunt hypoxic hyperventilation. In conclusion, A(?A) receptors are crucially involved in the transduction mechanisms of O? sensing in fetal carotid bodies and brains. Postnatally, central A(?A) receptors remain key mediators of hypoxic respiratory depression, but they are less critical for O? sensing in carotid chemoreceptors, particularly in developing lambs.  相似文献   

3.
This review includes results of own studies and literature data on the topical problem of neurobiology and medicine: discovery of the mechanisms of increased brain resistance to extreme exposures. The emphasis is made on the molecular-cellular and hormonal mechanisms of hypoxic preconditioning-induced brain tolerance to injurious hypoxia, psychoemotional and traumatic stress. A role of basic hormonal and intracellular cascade pro-adaptive processes mediating the neuroprotective action of hypoxic preconditioning is reviewed. A dynamics of the mechanisms of development of induced susceptible brain areas (hippocampus, neocortex) tolerance which includes phases of induction, transformation and expression, is presented. New data on preconditioning-induced cross-tolerance providing increased brain resistance not only to hypoxia but also to other stresses are reported. For the first time neuroprotective effects of hypoxic postconditioning are described.  相似文献   

4.
Changes of adenosine and its A(1) receptor in hypoxic preconditioning.   总被引:14,自引:0,他引:14  
Effects of hypoxic preconditioning on adenosine (ADO) and its A(1) receptor were studied in Kunming mice. The ADO content and its metabolites in the brain were measured by a specific enzymatic method; a radioligand binding method was used to study the ADO A(1) receptor. The ADO content of the hippocampus in group C (exposure to 4 runs of hypoxia) was markedly higher than that in group A (control, without exposure to hypoxia and B (exposure to 1 run of hypoxia), showing that the ADO content could be cumulatively increased in the hippocampus, which was more sensitive to ischemia and hypoxia, during acute and repeated exposure to hypoxia. A(1) receptor density in group C was significantly lower than in group A and no difference was seen between groups B and C; A(1) receptor affinity in the hippocampus, pons and medula oblongata in group C was significantly higher than in group A, implying that during hypoxic preconditioning there might be some mechanisms preventing A(1) receptor density from decreasing further and making A(1) receptor affinity increase in some brain regions. These results indicate that cumulatively increased ADO in the hippocampus via A(1) receptor may play a neuroprotective role in the CNS as an inhibitory neuromodulator and thus contribute to the formation and development of acute hypoxic adaptation or tolerance.  相似文献   

5.
6.
Cerebral microvessel endothelial cells that form the blood-brain barrier (BBB) have tight junctions (TJ) that are critical for maintaining brain homeostasis and low permeability. Both integral (claudin-1 and occludin) and membrane-associated zonula occluden-1 and -2 (ZO-1 and ZO-2) proteins combine to form these TJ complexes that are anchored to the cytoskeletal architecture (actin). Disruptions of the BBB have been attributed to hypoxic conditions that occur with ischemic stroke, pathologies of decreased perfusion, and high-altitude exposure. The effects of hypoxia and posthypoxic reoxygenation in cerebral microvasculature and corresponding cellular mechanisms involved in disrupting the BBB remain unclear. This study examined hypoxia and posthypoxic reoxygenation effects on paracellular permeability and changes in actin and TJ proteins using primary bovine brain microvessel endothelial cells (BBMEC). Hypoxia induced a 2.6-fold increase in [(14)C]sucrose, a marker of paracellular permeability. This effect was significantly reduced (~58%) with posthypoxic reoxygenation. After hypoxia and posthypoxic reoxygenation, actin expression was increased (1.4- and 2.3-fold, respectively). Whereas little change was observed in TJ protein expression immediately after hypoxia, a twofold increase in expression was seen with posthypoxic reoxygenation. Furthermore, immunofluorescence studies showed alterations in occludin, ZO-1, and ZO-2 protein localization during hypoxia and posthypoxic reoxygenation that correlate with the observed changes in BBMEC permeability. The results of this study show hypoxia-induced changes in paracellular permeability may be due to perturbation of TJ complexes and that posthypoxic reoxygenation reverses these effects.  相似文献   

7.
8.
Adult intact conscious or anesthetized cats have been exposed to either hypoxia or low concentrations of CO in air. In addition, the ventilatory response to CO2 was studied in air, hypoxic hypoxia, and CO hypoxia. The results show that 1) in conscious cats, low concentrations of CO (0.15%) induce a slight decrease in ventilation and higher concentrations of CO (0.20%) induce first a small decrease in ventilation and then a characteristic tachypnea similar to the hypoxic tachypnea described in carotid-denervated cats; 2) in anesthetized cats, CO hypoxia induces only mild changes in ventilation; and 3) the ventilatory response to CO2 is increased in CO hypoxia in both conscious and anesthetized animals but differs from the increase observed during hypoxia. It is concluded that the initial decrease in ventilation may be caused by some brain stem depression of the respiratory centers with CO hypoxia, whereas the tachypnea originates probably at some suprapontine level. Conversely, the possible central acidosis may account for the potentiation of the ventilatory response to CO2 observed in either conscious or anesthetized animals.  相似文献   

9.
To maintain normal cellular and physiological function, sufficient oxygen is required. Recently, evidence has suggested that hypoxia, either pathological or environmental, may influence bone health. It appears that bone cells are distinctly responsive to hypoxic stimuli; for better or worse, this is still yet to be elucidated. Hypoxia has been shown to offer potentially therapeutic effects for bone by inducing an osteogenic–angiogenic response, although, others have noted excessive osteoclastic bone resorption instead. Much evidence suggests that the hypoxic‐inducible pathway is integral in mediating the changes in bone metabolism. Furthermore, many factors associated with hypoxia including changes in energy metabolism, acid–base balance and the increased generation of reactive oxygen species, are known to influence bone metabolism. This review aims to examine some of the putative mechanisms responsible for hypoxic‐induced alterations of bone metabolism, with regard to osteoclasts and osteoblasts, both positive and negative.  相似文献   

10.
Numerous studies have demonstrated the critical role of angiogenesis for successful osteogenesis during endochondral ossification and fracture repair. Vascular endothelial growth factor (VEGF), a potent endothelial cell-specific cytokine, has been shown to be mitogenic and chemotactic for endothelial cells in vitro and angiogenic in many in vivo models. Based on previous work that (1) VEGF is up-regulated during membranous fracture healing, (2) the fracture site contains a hypoxic gradient, (3) VEGF is up-regulated in a variety of cells in response to hypoxia, and (4) VEGF is expressed by isolated osteoblasts in vitro stimulated by other fracture cytokines, the hypothesis that hypoxia may regulate the expression of VEGF by osteoblasts was formulated. This hypothesis was tested in a series of in vitro studies in which VEGF mRNA and protein expression was assessed after exposure of osteoblast-like cells to hypoxic stimuli. In addition, the effects of a hypoxic microenvironment on osteoblast proliferation and differentiation in vitro was analyzed. These results demonstrate that hypoxia does, indeed, regulate expression of VEGF in osteoblast-like cells in a dose-dependent fashion. In addition, it is demonstrated that hypoxia results in decreased cellular proliferation, decreased expression of proliferating cell nuclear antigen, and increased alkaline phosphatase (a marker of osteoblast differentiation). Taken together, these data suggest that osteoblasts, through the expression of VEGF, may be in part responsible for angiogenesis and the resultant increased blood flow to fractured bone segments. In addition, these data provide evidence that osteoblasts have oxygen-sensing mechanisms and that decreased oxygen tension can regulate gene expression, cellular proliferation, and cellular differentiation.  相似文献   

11.
The purpose of this review is to describe the relationship between the dopamine and amino acid neurotransmitter systems and cortical oxygen pressure during different levels of cerebral hypoxia using newborn piglets as an animal model, adding new data from our laboratory. The extracellular dopamine increases as the oxygen pressure in the cortex decreases. The relationship between oxygen pressure and dopamine levels is the same whether the hypoxia is induced by reduced FiO2 (high-flow hypoxia) or by hypocapnia-induced cerebral vasoconstriction (low-flow hypoxia). Thus it appears that, particularly in mild hypoxia, the extracellular level of dopamine depends primarily on the oxygen concentration in the tissue with minimal influence of parameters such as blood flow and pH. There is no "oxygen reserve" in the brain of newborn piglets and the extracellular levels of dopamine in the striatum increase almost linearly with decrease in oxygen pressure, with even small decreases in oxygen pressure resulting in increased dopamine levels. In contrast, the changes in extracellular concentrations of the excitatory amino acids glutamate and aspartate are variable and transient. In a majority of 2- to 5 day-old piglets even very low oxygen pressures in the brain did not result in significant alterations in the extracellular levels of glutamate and aspartate. These changes in the dopaminergic system may contribute directly and indirectly to the neuronal damage that occurs during hypoxic/ischemic insult and reoxygenation in newborn brain, particularly in the striatum. A variety of mechanisms are discussed by which dopamine, in particular extracellular dopamine, can increase cellular toxicity.  相似文献   

12.
13.
The effects of acute hypoxic hypoxia elicited by N2 inhalation on the driving and timing components of the breathing pattern were studied in 18 adult anaesthetized cats. Two phases could be distinguished in the ventilatory response to acute hypoxia. During the first phase, mean inspiratory flow (VT/TI) increased exponentially up to 240% of the initial value. During the second phase, VT/TI gradually decreased, reaching the control values in the last preapnoeic breaths during the first exposure and remained higher than normal with earlier respiratory arrest in three repeated N2 inhalations. No significant changes could be observed in the timing component of breathing pattern (TI/TT) in the course of the first hypoxic exposure, and the changes in TI/TT did not exceed 7% in repeated attacks. This suggests that the shortening of both inspiratory and expiratory durations increased the breathing frequency up to 130% of its resting value. Moreover, tachypnoea was preserved until respiratory arrest. Accordingly, it is concluded that the decrease in ventilation with the appearance of apnoea during the second phase of N2 inhalation in anaesthetized cats is not due to a failure of respiratory timing, but to a depression of the driving mechanisms which are responsible for this phenomenon.  相似文献   

14.
Oxygen is a vital requirement for multi-cellular organisms to generate energy and cells have developed multiple compensatory mechanisms to adapt to stressful hypoxic conditions. Such adaptive mechanisms are intricately interconnected with other signaling pathways that regulate cellular functions such as cell growth. However, our understanding of the overall system governing the cellular response to the availability of oxygen remains limited. To identify new genes involved in the response to hypoxic stress, we have performed a genome-wide gene knockdown analysis in human lung carcinoma PC8 cells using an shRNA library carried by a lentiviral vector. The knockdown analysis was performed under both normoxic and hypoxic conditions to identify shRNA sequences enriched or lost in the resulting selected cell populations. Consequently, we identified 56 candidate genes that might contribute to the cellular response to hypoxia. Subsequent individual knockdown of each gene demonstrated that 13 of these have a significant effect upon oxygen-sensitive cell growth. The identification of BCL2L1, which encodes a Bcl-2 family protein that plays a role in cell survival by preventing apoptosis, validates the successful design of our screen. The other selected genes have not previously been directly implicated in the cellular response to hypoxia. Interestingly, hypoxia did not directly enhance the expression of any of the identified genes, suggesting that we have identified a new class of genes that have been missed by conventional gene expression analyses to identify hypoxia response genes. Thus, our genetic screening method using a genome-wide shRNA library and the newly-identified genes represent useful tools to analyze the cellular systems that respond to hypoxic stress.  相似文献   

15.
Our previous studies using oxygen microelectrodes showed that the thymus is grossly hypoxic under normal physiological conditions. We now have investigated how oxygen tension affects the thymus at the cellular and molecular level. Adducts of the hypoxia marker drug pimonidazole accumulated in foci within the cortex and medulla and at the corticomedullary junction, consistent with the presence of widespread cellular hypoxia in the normal thymus. Hypoxia-associated pimonidazole accumulation was decreased but not abrogated by oxygen administration. Genes previously reported to be induced by hypoxia were expressed at baseline levels in the normal thymus, indicating that physiological adaptation to hypoxia occurred. Despite changes in thymus size and cellularity, thymic PO(2) did not change with age. Combined assays for hypoxia and cell death showed that hypoxia achieved using either hypoxic gas mixtures or high-density culture in normoxia decreased spontaneous thymocyte apoptosis in vitro. Taken together, these data suggest that regulatory mechanisms exist to maintain thymic cellular hypoxia in vivo and that oxygen tension may regulate thymocyte survival both in vitro and in vivo.  相似文献   

16.
Our previous study showed that pretreatment with 5-hydroxymethyl-2-furfural (5-HMF) led to protection against hypoxic injury via a p-ERK-mediated pathway in vitro. Whether the protection of 5-HMF against hypoxia is effective in vivo is unknown. The present study is aimed to verify the role of 5-HMF in acute hypobaric hypoxia using Kunming mice as an in vivo model and further investigate the underlying mechanisms. Mice pretreated with or without 5-HMF for 1 h were exposed to acute hypobaric hypoxic condition for 6 h and then the survival time, the survival rate, the permeability of blood–brain barrier (BBB), the histological analysis in hippocampus and cortex, and the phosphorylation level of mitogen-activated protein kinases (ERK, JNK, and p38) were investigated. The results showed that 5-HMF significantly increased the survival time and the survival rate of mice. Accordingly, pretreatment with 5-HMF markedly attenuated acute hypobaric hypoxia-induced permeability of BBB (P < 0.01). In addition, the cellular damage extent of the hippocampus and the cortex induced by hypoxia for 6 h was also attenuated by pretreatment with 5-HMF, especially in the hippocampus CA1 region. Furthermore, the activation of ERK rather than JNK and p38 was involved in the protection of 5-HMF against acute hypobaric hypoxia. In summary, 5-HMF enhanced the survival capability of mice and decreased acute hypoxic damage to the brain, which may be associated with the effects on BBB and p-ERK.  相似文献   

17.
The effects of body position on ventilatory responses to chemical stimuli have rarely been studied in experimental animals, despite evidence that position may be a factor in respiratory results. The purpose of this study was to test whether body position could affect acute ventilatory responses to 4-min periods of moderate hypercapnia (5% CO(2) in O(2)) and poikilocapnic hypoxia (15% O(2) in N(2)) in the urethane-anaesthetised mouse. Respiratory measurements were conducted with mice in the prone and supine positions with a whole-body, single-chamber plethysmograph. During hypoxia, the time course of minute ventilation (V (E)) was similar in the two positions, but the breathing pattern was different. After the response peak, V (E) depended on respiratory frequency (f) and tidal volume (V(T)) in the prone position but mainly on V(T) in the supine position. In the supine position, f declined below the baseline values toward the end of hypoxic exposure. During hypercapnia, there were no ventilatory differences between the prone and supine positions. Brief hypoxic exposure elicited f depression in the supine position in the anaesthetised mouse. The depressive effect on f suggests that the supine position may not be optimal for sustaining ventilation, particularly during hypoxia.  相似文献   

18.
The existence of hypoxia-induced reactive oxygen species (ROS) production remains controversial. However, numerous observations with a variety of methods and in many cells and tissue types are supportive of this idea. Skeletal muscle appears to behave much like heart in that in the early stages of hypoxia there is a transient elevation in ROS, whereas in chronic exposure to very severe hypoxia there is evidence of ongoing oxidative stress. Important remaining questions that are addressed in this review include the following. Are there levels of PO2 in skeletal muscle, typical of physiological or mildly pathophysiological conditions, that are low enough to induce significant ROS production? Does the ROS associated with muscle contractile activity reflect imbalances in oxygen uptake and demand that drive the cell to a more reduced state? What are the possible molecular mechanisms by which ROS may be elevated in hypoxic skeletal muscle? Is the production of ROS in hypoxia of physiological significance, both with respect to cell signaling pathways promoting cell function and with respect to damaging effects of long-term exposure? Discussion of these and other topics leads to general conclusions that hypoxia-induced ROS may be a normal physiological response to imbalance in oxygen supply and demand or environmental stress and may play a yet undefined role in normal response mechanisms to these stimuli. However, in chronic and extreme hypoxic exposure, muscles may fail to maintain a normal redox homeostasis, resulting in cell injury or dysfunction.  相似文献   

19.
Exposure to mild hypoxia elicits a characteristic cerebrovascular response in mammals, including humans. Initially, cerebral blood flow (CBF) increases as much as twofold. The blood flow increase is blunted somewhat by a decreasing arterial Pco2 as a result of the hypoxia-induced hyperventilatory response. After a few days, CBF begins to fall back toward baseline levels as the blood oxygen-carrying capacity is increasing due to increasing hemoglobin concentration and packed red cell volume as a result of erythropoietin upregulation. By the end of 2 wk of hypoxic exposure, brain capillary density has increased with resultant decreased intercapillary distances. The relative time courses of these changes suggest that they are adjusted by different control signals and mechanisms. The CBF response appears linked to the blood oxygen-carrying capacity, whereas the hypoxia-induced brain angiogenesis appears to be in response to tissue hypoxia.  相似文献   

20.
This mini-review summarizes the physiological adaptations to and pathophysiological consequences of intermittent hypoxia with special emphasis given to the pathophysiology associated with obstructive sleep apnea. Intermittent hypoxia is an effective stimulus for evoking the respiratory, cardiovascular, and metabolic adaptations normally associated with continuous chronic hypoxia. These adaptations are thought by some to be beneficial in that they may provide protection against disease as well as improve exercise performance in athletes. The long-term consequences of chronic intermittent hypoxia may have detrimental effects, including hypertension, cerebral and coronary vascular problems, developmental and neurocognitive deficits, and neurodegeneration due to the cumulative effects of persistent bouts of hypoxia. Emphasis is placed on reviewing the available data on intermittent hypoxia, making extensions from applicable information from acute and chronic hypoxia studies, and pointing out major gaps in information linking the genomic and cellular responses to intermittent hypoxia with physiological or pathophysiological responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号