首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Base excision repair (BER) and mismatch repair (MMR) pathways play an important role in modulating cis-Diamminedichloroplatinum (II) (cisplatin) cytotoxicity. In this article, we identified a novel mechanistic role of both BER and MMR pathways in mediating cellular responses to cisplatin treatment. Cells defective in BER or MMR display a cisplatin-resistant phenotype. Targeting both BER and MMR pathways resulted in no additional resistance to cisplatin, suggesting that BER and MMR play epistatic roles in mediating cisplatin cytotoxicity. Using a DNA Polymerase β (Polβ) variant deficient in polymerase activity (D256A), we demonstrate that MMR acts downstream of BER and is dependent on the polymerase activity of Polβ in mediating cisplatin cytotoxicity. MSH2 preferentially binds a cisplatin interstrand cross-link (ICL) DNA substrate containing a mismatch compared with a cisplatin ICL substrate without a mismatch, suggesting a novel mutagenic role of Polβ in activating MMR in response to cisplatin. Collectively, these results provide the first mechanistic model for BER and MMR functioning within the same pathway to mediate cisplatin sensitivity via non-productive ICL processing. In this model, MMR participation in non-productive cisplatin ICL processing is downstream of BER processing and dependent on Polβ misincorporation at cisplatin ICL sites, which results in persistent cisplatin ICLs and sensitivity to cisplatin.  相似文献   

2.
Targeting DNA-damaging agents to specific DNA sites by using sequence-specific DNA ligands has been successful in directing genomic modifications. The understanding of repair processing of such targeted damage and the influence of the adjacent complex is largely unknown. In this way, directed interstrand cross-links (ICLs) have already been generated by psoralen targeting. The mechanisms responsible for ICL removal are far from being understood in mammalian cells, with the proposed involvement of both mutagenic and recombinogenic pathways. Here, a unique ICL was introduced at a selected site by photoactivation of a psoralen moiety with the use of psoralen conjugates of triplex-forming oligonucleotides. The processing of psoralen ICL was evaluated in vitro and in cells for two types of cross-linked substrates, either containing a psoralen ICL alone or with an adjacent triple-stranded structure. We show that the presence of a neighbouring triplex structure interferes with different stages of psoralen ICL processing: (i) the ICL-induced DNA repair synthesis in HeLa cell extracts is inhibited by the triplex structure, as measured by the efficiency of ‘true’ and futile repair synthesis, stopping at the ICL site; (ii) in HeLa cells, the ICL removal via a nucleotide excision repair (NER) pathway is delayed in the presence of a neighbouring triplex; and (iii) the binding to ICL of recombinant xeroderma pigmentosum A protein, which is involved in pre-incision recruitment of NER factors is impaired by the presence of the third DNA strand. These data characterize triplex-induced modulation of ICL repair pathways at specific steps, which might have implications for the controlled induction of targeted genomic modifications and for the associated cellular responses.  相似文献   

3.
DNA interstrand crosslinks (ICLs) present formidable blocks to DNA metabolic processes and must be repaired for cell survival. ICLs are induced in DNA by intercalating compounds such as the widely used therapeutic agent psoralen. In bacteria, both nucleotide excision repair (NER) and homologous recombination are required for the repair of ICLs. The processing of ICLs in mammalian cells is not clearly understood. However, it is known that processing can occur by NER, which for psoralen ICLs can be an error-generating process conducive to mutagenesis. We show here that another repair pathway, mismatch repair (MMR), is also involved in eliminating psoralen ICLs in human cells. MMR deficiency renders cells hypersensitive to psoralen ICLs without diminishing their mutagenic potential, suggesting that MMR does not contribute to error-generating repair, and that MMR may represent a relatively error-free mechanism for processing these lesions in human cells. Thus, enhancement of MMR relative to NER may reduce the mutagenesis caused by DNA ICLs in humans.  相似文献   

4.
The tumour suppressor SLX4 plays multiple roles in the maintenance of genome stability, acting as a scaffold for structure-specific endonucleases and other DNA repair proteins. It directly interacts with the mismatch repair (MMR) protein MSH2 but the significance of this interaction remained unknown until recent findings showing that MutSβ (MSH2-MSH3) stimulates in vitro the SLX4-dependent Holliday junction resolvase activity. Here, we characterize the mode of interaction between SLX4 and MSH2, which relies on an MSH2-interacting peptide (SHIP box) that drives interaction of SLX4 with both MutSβ and MutSα (MSH2-MSH6). While we show that this MSH2 binding domain is dispensable for the well-established role of SLX4 in interstrand crosslink repair, we find that it mediates inhibition of MutSα-dependent MMR by SLX4, unravelling an unanticipated function of SLX4.  相似文献   

5.
6.
Wu Q  Vasquez KM 《PLoS genetics》2008,4(9):e1000189
DNA interstrand crosslinks (ICLs) are among the most toxic types of damage to a cell. For this reason, many ICL-inducing agents are effective therapeutic agents. For example, cisplatin and nitrogen mustards are used for treating cancer and psoralen plus UVA (PUVA) is useful for treating psoriasis. However, repair mechanisms for ICLs in the human genome are not clearly defined. Previously, we have shown that MSH2, the common subunit of the human MutSα and MutSβ mismatch recognition complexes, plays a role in the error-free repair of psoralen ICLs. We hypothesized that MLH1, the common subunit of human MutL complexes, is also involved in the cellular response to psoralen ICLs. Surprisingly, we instead found that MLH1-deficient human cells are more resistant to psoralen ICLs, in contrast to the sensitivity to these lesions displayed by MSH2-deficient cells. Apoptosis was not as efficiently induced by psoralen ICLs in MLH1-deficient cells as in MLH1-proficient cells as determined by caspase-3/7 activity and binding of annexin V. Strikingly, CHK2 phosphorylation was undetectable in MLH1-deficient cells, and phosphorylation of CHK1 was reduced after PUVA treatment, indicating that MLH1 is involved in signaling psoralen ICL-induced checkpoint activation. Psoralen ICLs can result in mutations near the crosslinked sites; however, MLH1 function was not required for the mutagenic repair of these lesions, and so its signaling function appears to have a role in maintaining genomic stability following exposure to ICL-induced DNA damage. Distinguishing the genetic status of MMR-deficient tumors as MSH2-deficient or MLH1-deficient is thus potentially important in predicting the efficacy of treatment with psoralen and perhaps with other ICL-inducing agents.  相似文献   

7.
DNA mismatch repair (MMR) relies on MutS and MutL ATPases for mismatch recognition and strand-specific nuclease recruitment to remove mispaired bases in daughter strands. However, whether the MutS–MutL complex coordinates MMR by ATP-dependent sliding on DNA or protein–protein interactions between the mismatch and strand discrimination signal is ambiguous. Using functional MMR assays and systems preventing proteins from sliding, we show that sliding of human MutSα is required not for MMR initiation, but for final mismatch removal. MutSα recruits MutLα to form a mismatch-bound complex, which initiates MMR by nicking the daughter strand 5′ to the mismatch. Exonuclease 1 (Exo1) is then recruited to the nick and conducts 5′ → 3′ excision. ATP-dependent MutSα dissociation from the mismatch is necessary for Exo1 to remove the mispaired base when the excision reaches the mismatch. Therefore, our study has resolved a long-standing puzzle, and provided new insights into the mechanism of MMR initiation and mispair removal.Subject terms: Molecular biology  相似文献   

8.
Mismatch repair (MMR) is involved in the removal of mispaired bases from DNA and thus plays an important role in the maintenance of genomic stability and the prevention of mutations and cancer. Moreover, MMR triggers genotoxicity and apoptosis upon processing of DNA lesions such as O6-methylguanine. Whereas the enzymology of MMR has been elucidated in great detail, only limited data are available concerning its regulation. Here we show that the major mismatch-binding proteins MSH2 and MSH6, forming the MutSα complex, are phosphorylated in vitro by protein kinase C and casein kinase II, but not by protein kinase A. Phosphorylation of MSH2 and MSH6 was also found within the cell, with MSH6 being more extensively phosphorylated than MSH2. Lack of MSH2 and MSH6 phosphorylation in vivo due to phosphate depletion, kinase inhibition (by H7 and quercetin) and treatment with phosphatases (CIP, SAP and λ-PPase) significantly reduced mismatch-binding activity of MutSα. It also prevented methylation-induced nuclear translocation of the repair complex, indicating that nuclear translocation of MutSα upon mutagen treatment is dependent on protein phosphorylation. The finding that MSH2 and MSH6 are subject to phosphorylation resulting in increased mismatch binding by MutSα indicates a novel type of post-translational regulation of MMR which might be involved in the response of cells to genotoxic stress.  相似文献   

9.
Wu J  Zhu BB  Yu J  Zhu H  Qiu L  Kindy MS  Gu L  Seidel A  Li GM 《Nucleic acids research》2003,31(22):6428-6434
Benzo[c]phenanthrene dihydrodiol epoxide (B[c] PhDE) is well known as an important environmental chemical carcinogen that preferentially modifies DNA in adenine residues. However, the molecular mechanism by which B[c]PhDE induces tumorigenesis is not fully understood. In this report, we demonstrate that DNA mismatch repair (MMR), a genome maintenance system, plays an important role in B[c]PhDE-induced carcinogensis by promoting apoptosis in cells treated with B[c]PhDE. We show that purified human MMR recognition proteins, MutSα and MutSβ, specifically recognized B[c]PhDE-DNA adducts. Cell lines proficient in MMR exhibited several-fold more sensitivity to killing than cell lines defective in either MutSα or MutLα by B[c]PhDE; the nature of this sensitivity was shown to be due to increased apoptosis. Additionally, wild-type mice exposed to B[c]PhDE had intestinal crypt cells that underwent apoptosis significantly more often than intestinal crypt cells found in B[c]PhDE-treated Msh2–/– or Mlh1–/– mice. These findings, combined with previous studies, suggest that the MMR system may serve as a general sensor for chemical-caused DNA damage to prevent damaged cells from mutagenesis and carcinogenesis by promoting apoptosis.  相似文献   

10.
Many effective agents used in cancer chemotherapy cause DNA interstrand crosslinks (ICLs), which covalently link both strands of the double helix together resulting in cytotoxicity. ICLs are thought to be processed by proteins from a variety of DNA repair pathways; however, a clear understanding of ICL recognition and repair processing in human cells is lacking. Previously, we found that the high mobility group box 1 (HMGB1) protein bound to triplex-directed psoralen ICLs (TFO-ICLs) in vitro, cooperatively with NER damage recognition proteins, promoted removal of UVC-induced lesions and facilitated error-free repair of TFO-ICLs in mouse fibroblasts. Here, we demonstrate that HMGB1 recognizes TFO-ICLs in human cells, and its depletion increases ICL-induced mutagenesis in human cells without altering the mutation spectra. In contrast, HMGB1 depletion in XPA-deficient human cells significantly altered the ICL-induced mutation spectrum from predominantly T→A to T→G transversions. Moreover, the recruitment of XPA and HMGB1 to the ICLs is co-dependent. Finally, we show that HMGB1 specifically introduces negative supercoils in ICL-containing plasmids in HeLa cell extracts. Taken together, our data suggest that in human cells, HMGB1 functions in association with XPA on ICLs and facilitates the formation of a favorable architectural environment for ICL repair processing.  相似文献   

11.
Telomere integrity is critical for telomere function and genomic stability. We previously demonstrated that non-erythroid α-spectrin (αIISp) is present in mammalian cell nuclei where it is important in repair of DNA interstrand cross-links (ICLs) and chromosome stability. We now demonstrate that αIISp is also important for telomere maintenance after ICL damage. It localizes to telomeres in S phase after ICL damage where it has enhanced association with TRF1 and TRF2 and is required for recruitment of the ICL repair protein, XPF, to damage-induced foci at telomeres. In telomerase-positive normal cells depleted of αIISp by siRNA or in Fanconi anemia, complementation group A (FA-A) cells, where αIISp levels are 35–40% of normal, ICL damage results in failure of XPF to localize to telomeres, markedly increased telomere dysfunction-induced foci, followed by catastrophic loss of telomeres. Restoration of αIISp levels to normal in FA-A cells corrects these deficiencies. Our studies demonstrate that αIISp is critical for repair of DNA ICLs at telomeres, likely by facilitating the recruitment of repair proteins similar, but not identical, to its proposed role in repair of DNA ICLs in genomic DNA and that this function in turn is critical for telomere maintenance after DNA ICL damage.  相似文献   

12.
Several proteins in the BRCA‐Fanconi anemia (FA) pathway, such as FANCJ, BRCA1, and FANCD2, interact with mismatch repair (MMR) pathway factors, but the significance of this link remains unknown. Unlike the BRCA‐FA pathway, the MMR pathway is not essential for cells to survive toxic DNA interstrand crosslinks (ICLs), although MMR proteins bind ICLs and other DNA structures that form at stalled replication forks. We hypothesized that MMR proteins corrupt ICL repair in cells that lack crosstalk between BRCA‐FA and MMR pathways. Here, we show that ICL sensitivity of cells lacking the interaction between FANCJ and the MMR protein MLH1 is suppressed by depletion of the upstream mismatch recognition factor MSH2. MSH2 depletion suppresses an aberrant DNA damage response, restores cell cycle progression, and promotes ICL resistance through a Rad18‐dependent mechanism. MSH2 depletion also suppresses ICL sensitivity in cells deficient for BRCA1 or FANCD2, but not FANCA. Rescue by Msh2 loss was confirmed in Fancd2‐null primary mouse cells. Thus, we propose that regulation of MSH2‐dependent DNA damage response underlies the importance of interactions between BRCA‐FA and MMR pathways.  相似文献   

13.
Human high mobility group box (HMGB) 1 and -2 proteins are highly conserved and abundant chromosomal proteins that regulate chromatin structure and DNA metabolism. HMGB proteins bind preferentially to DNA that is bent or underwound and to DNA damaged by agents such as cisplatin, UVC radiation, and benzo[a]pyrenediol epoxide (BPDE). Binding of HMGB1 to DNA adducts is thought to inhibit nucleotide excision repair (NER), leading to cell death, but the biological roles of these proteins remain obscure. We have used psoralen-modified triplex-forming oligonucleotides (TFOs) to direct a psoralen-DNA interstrand cross-link (ICL) to a specific site to determine the effect of HMGB proteins on recognition of these lesions. Our results reveal that human HMGB1 (but not HMGB2) binds with high affinity and specificity to psoralen ICLs, and interacts with the essential NER protein, replication protein A (RPA), at these lesions. RPA, shown previously to bind tightly to these lesions, also binds in the presence of HMGB1, without displacing HMGB1. A discrete ternary complex is formed, containing HMGB1, RPA, and psoralen-damaged DNA. Thus, HMGB1 has the ability to recognize ICLs, can cooperate with RPA in doing so, and likely modulates their repair by the NER machinery. The abundance of HMGB1 suggests that it may play an important role in determining the sensitivity of cells to DNA damage under physiological, experimental, and therapeutic conditions.  相似文献   

14.
DNA interstrand crosslinks (ICLs) are cytotoxic lesions that threaten genome integrity. The Fanconi anemia (FA) pathway orchestrates ICL repair during DNA replication, with ubiquitylated FANCI‐FANCD2 (ID2) marking the activation step that triggers incisions on DNA to unhook the ICL. Restoration of intact DNA requires the coordinated actions of polymerase ζ (Polζ)‐mediated translesion synthesis (TLS) and homologous recombination (HR). While the proteins mediating FA pathway activation have been well characterized, the effectors regulating repair pathway choice to promote error‐free ICL resolution remain poorly defined. Here, we uncover an indispensable role of SCAI in ensuring error‐free ICL repair upon activation of the FA pathway. We show that SCAI forms a complex with Polζ and localizes to ICLs during DNA replication. SCAI‐deficient cells are exquisitely sensitive to ICL‐inducing drugs and display major hallmarks of FA gene inactivation. In the absence of SCAI, HR‐mediated ICL repair is defective, and breaks are instead re‐ligated by polymerase θ‐dependent microhomology‐mediated end‐joining, generating deletions spanning the ICL site and radial chromosomes. Our work establishes SCAI as an integral FA pathway component, acting at the interface between TLS and HR to promote error‐free ICL repair.  相似文献   

15.
Wang H  Hays JB 《Nucleic acids research》2007,35(20):6727-6739
Eukaryotic mismatch-repair (MMR) proteins MutSα and MutLα couple recognition of base mismatches to strand-specific excision, initiated in vivo at growing 3′ ends and 5′ Okazaki-fragment ends or, in human nuclear extracts, at nicks in exogenous circular substrates. We addressed five biochemical questions relevant to coupling models. Excision remained fully efficient at DNA:MutSα ratios of nearly 1 to 1 at various mismatch-nick distances, suggesting a requirement for only one MutSα molecule per substrate. As the mismatch-nick DNA contour distance D in exogenous substrates increased from 0.26 to 0.98 kbp, initiation of excision in extracts decreased as D−0.43 rather than the D−1 to D−2 predicted by some translocation or diffusion models. Virtually all excision was along the shorter (3′–5′) nick-mismatch, even when the other (5′–3′) path was less than twice as long. These observations argue against stochastically directed translocating/diffusing recognition complexes. The failure of mismatched DNA in trans to provoke excision of separate nicked homoduplexes argues against one-stage (concerted) triggering of excision initiation by recognition complexes acting through space. However, proteins associated with gapped DNA did appear to compete in trans with those in cis to mismatch-associated proteins. Thus, as in Escherichia coli, eukaryotic MMR may involve distinct initial-activation and excision-path-commitment stages.  相似文献   

16.
Werner syndrome (WS) is a severe recessive disorder characterized by premature aging, cancer predisposition and genomic instability. The gene mutated in WS encodes a bi-functional enzyme called WRN that acts as a RecQ-type DNA helicase and a 3′-5′ exonuclease, but its exact role in DNA metabolism is poorly understood. Here we show that WRN physically interacts with the MSH2/MSH6 (MutSα), MSH2/MSH3 (MutSβ) and MLH1/PMS2 (MutLα) heterodimers that are involved in the initiation of mismatch repair (MMR) and the rejection of homeologous recombination. MutSα and MutSβ can strongly stimulate the helicase activity of WRN specifically on forked DNA structures with a 3′-single-stranded arm. The stimulatory effect of MutSα on WRN-mediated unwinding is enhanced by a G/T mismatch in the DNA duplex ahead of the fork. The MutLα protein known to bind to the MutS α–heteroduplex complexes has no effect on WRN-mediated DNA unwinding stimulated by MutSα, nor does it affect DNA unwinding by WRN alone. Our data are consistent with results of genetic experiments in yeast suggesting that MMR factors act in conjunction with a RecQ-type helicase to reject recombination between divergent sequences.  相似文献   

17.
18.
MutLα, a heterodimer of MLH1 and PMS2, plays a central role in human DNA mismatch repair. It interacts ATP-dependently with the mismatch detector MutSα and assembles and controls further repair enzymes. We tested if the interaction of MutLα with DNA-bound MutSα is impaired by cancer-associated mutations in MLH1, and identified one mutation (Ala128Pro) which abolished interaction as well as mismatch repair activity. Further examinations revealed three more residues whose mutation interfered with interaction. Homology modelling of MLH1 showed that all residues clustered in a small accessible surface patch, suggesting that the major interaction interface of MutLα for MutSα is located on the edge of an extensive β-sheet that backs the MLH1 ATP binding pocket. Bioinformatic analysis confirmed that this patch corresponds to a conserved potential protein–protein interaction interface which is present in both human MLH1 and its E.coli homologue MutL. MutL could be site-specifically crosslinked to MutS from this patch, confirming that the bacterial MutL–MutS complex is established by the corresponding interface in MutL. This is the first study that identifies the conserved major MutLα–MutSα interaction interface in MLH1 and demonstrates that mutations in this interface can affect interaction and mismatch repair, and thereby can also contribute to cancer development.  相似文献   

19.
DNA interstrand crosslinks (ICLs) represent a severe form of damage that blocks DNA metabolic processes and can lead to cell death or carcinogenesis. The repair of DNA ICLs in mammals is not well characterized. We have reported previously that a key protein complex of nucleotide excision repair (NER), XPA-RPA, recognizes DNA ICLs. We now report the use of triplex technology to direct a site-specific psoralen ICL to a target DNA substrate to determine whether the human global genome NER damage recognition complex, XPC-hHR23B, recognizes this lesion. Our results demonstrate that XPC-hHR23B recognizes psoralen ICLs, which have a structure fundamentally different from other lesions that XPC-hHR23B is known to bind, with high affinity and specificity. XPC-hHR23B and XPA-RPA protein complexes were also observed to bind psoralen ICLs simultaneously, demonstrating not only that psoralen ICLs are recognized by XPC-hHR23B alone, but also that XPA-RPA may interact cooperatively with XPC-hHR23B on damaged DNA, forming a multimeric complex. Since XPC-hHR23B and XPA-RPA participate in the recognition and verification of DNA damage, these results support the hypothesis that interplay between components of the global genome repair sub-pathway of NER is critical for the recognition of psoralen DNA ICLs in the mammalian genome.  相似文献   

20.
The repair of psoralen interstrand cross-links in the yeast Saccharomyces cerevisiae involves the DNA repair groups nucleotide excision repair (NER), homologous recombination (HR), and post-replication repair (PRR). In repair-proficient yeast cells cross-links induce double-strand breaks, in an NER-dependent process; the double-strand breaks are then repaired by HR. An alternate error-prone repair pathway generates mutations at cross-link sites. We have characterized the repair of plasmid molecules carrying a single psoralen cross-link, psoralen monoadduct, or double-strand break in yeast cells with deficiencies in NER, HR, or PRR genes, measuring the repair efficiencies and the levels of gene conversions, crossing over, and mutations. Strains with deficiencies in the NER genes RAD1, RAD3, RAD4, and RAD10 had low levels of cross-link-induced recombination but higher mutation frequencies than repair-proficient cells. Deletion of the HR genes RAD51, RAD52, RAD54, RAD55, and RAD57 also decreased induced recombination and increased mutation frequencies above those of NER-deficient yeast. Strains lacking the PRR genes RAD5, RAD6, and RAD18 did not have any cross-link-induced mutations but showed increased levels of recombination; rad5 and rad6 cells also had altered patterns of cross-link-induced gene conversion in comparison with repair-proficient yeast. Our observations suggest that psoralen cross-links can be repaired by three pathways: an error-free recombinational pathway requiring NER and HR and two PRR-dependent error-prone pathways, one NER-dependent and one NER-independent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号