首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fructose 2,6-bisphosphate, a potent inhibitor of fructose-1,6-bisphosphatases, was found to be an inhibitor of the Escherichia coli enzyme. The substrate saturation curves in the presence of inhibitor were sigmoidal and the inhibition was much stronger at low than at high substrate concentrations. At a substrate concentration of 20 μM, 50% inhibition was observed at 4.8 μM fructose 2,6-bisphosphate. Escherichia coli fructose-1,6-bisphosphatase was inhibited by AMP (Kj = 16 μM) and phosphoenolpyruvate caused release of AMP inhibition. However, neither AMP inhibition nor its release by phosphoenolpyruvate was affected by the presence of fructose 2,6-bisphosphate. The results obtained, together with previous observations, provide further evidence for the fructose 2,6-bisphosphate-fructose-1,6-bisphosphatase active site interaction.  相似文献   

2.
A thiol group present in rabbit liver fructose-1,6-bisphosphatase is capable of reacting rapidly with N-ethylmaleimide (NEM) with a stoichiometry of one per monomer. Either fructose 1,6-bisphosphate or fructose 2,6-bisphosphate at 500 microM protected against the loss of fructose 2,6-bisphosphate inhibition potential when fructose-1,6-bisphosphatase was treated with NEM in the presence of AMP for up to 20 min. Fructose 2,6-bisphosphate proved more effective than fructose 1,6-bisphosphate when fructose-1,6-bisphosphatase was treated with NEM for 90-120 min. The NEM-modified enzyme exhibited a significant loss of catalytic activity. Fructose 2,6-bisphosphate was more effective than the substrate in protecting against the thiol group modification when the ligands are present with the enzyme and NEM. 100 microM fructose 2,6-bisphosphate, a level that should almost saturate the inhibitory binding site of the enzyme under our experimental conditions, affords only partial protection against the loss of activity of the enzyme caused by the NEM modification. In addition, the inhibition pattern for fructose 2,6-bisphosphate of the NEM-derivatized enzyme was found to be linear competitive, identical to the type of inhibition observed with the native enzyme. The KD for the modified enzyme was significantly greater than that of untreated fructose-1,6-bisphosphatase. Examination of space-filling models of the two bisphosphates suggest that they are very similar in conformation. On the basis of these observations, we suggest that fructose 1,6-bisphosphate and fructose 2,6-bisphosphate occupy overlapping sites within the active site domain of fructose-1,6-bisphosphatase. Fructose 2,6-bisphosphate affords better shielding against thiol-NEM modification than fructose 1,6-bisphosphate; however, the difference between the two ligands is quantitative rather than qualitative.  相似文献   

3.
Limited treatment of native pig kidney fructose-1,6-bisphosphatase (50 microM enzyme subunit) with [14C]N-ethylmaleimide (100 microM) at 30 degrees C, pH 7.5, in the presence of AMP (200 microM) results in the modification of 1 reactive cysteine residue/enzyme subunit. The N-ethylmaleimide-modified fructose-1,6-bisphosphatase has a functional catalytic site but is no longer inhibited by fructose 2,6-bisphosphate. The enzyme derivative also exhibits decreased affinity toward Mg2+. The presence of fructose 2,6-bisphosphate during the modification protects the enzyme against the loss of fructose 2,6-bisphosphate inhibition. Moreover, the modified enzyme is inhibited by monovalent cations, as previously reported (Reyes, A., Hubert, E., and Slebe, J.C. (1985) Biochem. Biophys. Res. Commun. 127, 373-379), and does not show inhibition by high substrate concentrations. A comparison of the kinetic properties of native and N-ethylmaleimide-modified fructose-1,6-bisphosphatase reveals differences in some properties but none is so striking as the complete loss of fructose 2,6-bisphosphate sensitivity. The results demonstrate that fructose 2,6-bisphosphate interacts with a specific allosteric site on fructose-1,6-bisphosphatase, and they also indicate that high levels of fructose 1,6-bisphosphate inhibit the enzyme by binding to this fructose 2,6-bisphosphate allosteric site.  相似文献   

4.
Rat and rabbit muscle fructose 1,6-bisphosphatase (D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) are inhibited by fructose 2,6-bisphosphate. In contrast with the liver isozyme, the inhibition of muscle fructose-1,6-bisphosphatase by fructose 2,6-bisphosphate is not synergistic with that of AMP. Activation of fructose-1,6-bisphosphatase by fructose 2,6-bisphosphate has been observed at high concentrations of substrate. An attempt is made to correlate changes in concentrations of hexose monophosphate, fructose 1,6-bisphosphate and fructose 2,6-bisphosphate with changes in fluxes through 6-phosphofructokinase and fructose-1,6-bisphosphatase in isolated epitrochlearis muscle challenged with insulin and adrenaline.  相似文献   

5.
Lysine 274 is conserved in all known fructose-1,6-bisphosphatase sequences. It has been implicated in substrate binding and/or catalysis on the basis of reactivity with pyridoxal phosphate as well as by x-ray crystallographic analysis. Lys274 of rat liver fructose-1,6-bisphosphatase was mutated to alanine by the polymerase chain reaction, and the T7-RNA polymerase-transcribed construct containing the mutant sequence was expressed in Escherichia coli. The mutant and wild-type forms of the enzyme were purified to homogeneity, and their specific activity, substrate dependence, and inhibition by fructose 2,6-bisphosphate and AMP were compared. While the mutant exhibited no change in maximal velocity, its Km for fructose 1,6-bisphosphate was 20-fold higher than that of the wild-type, and its Ki for fructose 2,6-bisphosphate was increased 1000-fold. Consistent with the unaltered maximal velocity, there were no apparent difference between the secondary structure of the wild-type and mutant enzyme forms, as measured by circular dichroism and ultraviolet difference spectroscopy. The Ki for the allosteric inhibitor AMP was only slightly increased, indicating that Lys274 is not directly involved in AMP inhibition. Fructose 2,6-bisphosphate potentiated AMP inhibition of both forms, but 500-fold higher concentrations of fructose 2,6-bisphosphate were needed to reduce the Ki for AMP for the mutant compared to the wild-type. However, potentiation of AMP inhibition of the Lys274----Ala mutant was evident at fructose 2,6-bisphosphate concentrations (approximately 100 microM) well below those that inhibited the enzyme, which suggests that fructose 2,6-bisphosphate interacts either with the AMP site directly or with other residues involved in the active site-AMP synergy. The results also demonstrate that although Lys274 is an important binding site determinant for sugar bisphosphates, it plays a more significant role in binding fructose 2,6-bisphosphate than fructose 1,6-bisphosphate, probably because it binds the 2-phospho group of the former while other residues bind the 1-phospho group of the substrate. It is concluded that the enzyme utilizes Lys274 to discriminate between its substrate and fructose 2,6-bisphosphate.  相似文献   

6.
6-Phosphofructo-2-kinase was purified from rat liver and hepatoma (HTC) cells. The HTC cell enzyme had kinetic properties different from those of the liver enzyme (more sensitive to inhibition by citrate and not inhibited by sn-glycerol 3-phosphate) and was not a substrate of the cyclic-AMP-dependent protein kinase. Unlike the liver enzyme, which is bifunctional and phosphorylated by fructose 2,6-[2-32P]bisphosphate, the HTC cell enzyme contained no detectable fructose-2,6-bisphosphatase activity and phosphorylation by fructose 2,6-[2-32P]-bisphosphate could not be detected. HTC cell fructose-2,6-bisphosphatase could be separated from 6-phosphofructo-2-kinase activity by purification. Antibodies raised against liver 6-phosphofructo-2-kinase did not precipitate HTC cell fructose-2,6-bisphosphatase whose kinetic properties were completely different from those of the liver enzyme.  相似文献   

7.
Glucagon stimulates gluconeogenesis in part by decreasing the rate of phosphoenolpyruvate disposal by pyruvate kinase. Glucagon, via cyclic AMP (cAMP) and the cAMP-dependent protein kinase, enhances phosphorylation of pyruvate kinase, phosphofructokinase, and fructose-1,6-bisphosphatase. Phosphorylation of pyruvate kinase results in enzyme inhibition and decreased recycling of phosphoenolpyruvate to pyruvate and enhanced glucose synthesis. Although phosphorylation of 6-phosphofructo 1-kinase and fructose-1,6-bisphosphatase is catalyzed in vitro by the cAMP-dependent protein kinase, the role of phosphorylation in regulating the activity of and flux through these enzymes in intact cells is uncertain. Glucagon regulation of these two enzyme activities is brought about primarily by changes in the level of a novel sugar diphosphate, fructose 2,6-bisphosphate. This compound is an activator of phosphofructokinase and an inhibitor of fructose-1,6-bisphosphatase; it also potentiates the effect of AMP on both enzymes. Glucagon addition to isolated liver systems results in a greater than 90% decrease in the level of this compound. This effect explains in large part the effect of glucagon to enhance flux through fructose-1,6-bisphosphatase and to suppress flux through phosphofructokinase. The discovery of fructose 2,6-bisphosphate has greatly furthered our understanding of regulation at the fructose 6-phosphate/fructose 1,6-bisphosphate substrate cycle.  相似文献   

8.
The interaction of AMP and fructose 2,6-bisphosphate with rabbit liver fructose-1,6-bisphosphatase has been investigated by proton nuclear magnetic resonance spectroscopy (1H NMR). The temperature dependence of the line widths of the proton resonances of AMP as a function of fructose-1,6-bisphosphatase concentration indicates that the nucleotide C2 proton is in fast exchange on the NMR time scale while the C8 proton is exchange limit. The exchange rate constant, koff, has been calculated for the adenine C8 proton and is 1900 s-1. Binding of fructose 6-phosphate and inorganic phosphate, or the regulatory inhibitor, fructose 2,6-bisphosphate, results in a decrease in the dissociation rate constant for AMP from fructose-1,6-bisphosphatase, as indicated by the sharpened AMP signals. A temperature dependence experiment indicates that the AMP protons are in slow exchange when AMP dissociates from the ternary complex. The rate constant for dissociation of AMP from the enzyme.AMP.fructose 2,6-bisphosphate complex is 70 s-1, 27-fold lower than that of AMP from the binary complex. These results are sufficient to explain the enhanced binding of AMP in the presence of fructose 2,6-bisphosphate and, therefore, the synergistic inhibition of fructose-1,6-bisphosphatase observed with these two regulatory ligands. Binding of fructose 2,6-bisphosphate to the enzyme results in broadening of the ligand proton signals. The effect of AMP on the binding of fructose 2,6-bisphosphate to the enzyme has also been investigated. An additional line width broadening of all the fructose 2,6-bisphosphate protons has been observed in the presence of AMP. The assignment of these signals to the sugar was accomplished by two-dimensional proton-proton correlated spectra (two-dimensional COSY) NMR. From these data, it is concluded that AMP can also affect fructose 2,6-bisphosphate binding to fructose-1,6-bisphosphatase.  相似文献   

9.
Fructose-1,6-bisphosphatase is one of the regulatory enzymes of gluconeogenesis in kidney cortex. The effect of ribose 1,5-bisphosphate on fructose-1,6-bisphosphatase purified from rat kidney cortex was studied. Rat kidney cortex, fructose-1,6-bisphosphatase exhibited hyperbolic kinetics with regard to its substrate, but the activity was inhibited by ribose 1,5-bisphosphate at nanomolar concentrations. The inhibitory effect of ribose 1,5-bisphosphate on the fructose-1,6-bisphosphatase was enhanced in the presence of AMP, one of the inhibitors of fructose-1,6-bisphosphatase. Fructose-2,6-bisphosphate, which is an inhibitor of fructose-1,6-bisphosphatase, inhibited rat kidney cortex fructose-1,6-bisphosphatase activities at a low concentration of fructose-1,6-bisphosphate but a high concentration of fructose-1,6-bisphosphate relieved fructose-1,6-bisphosphatase from fructose-2,6-bisphosphate-dependent inhibition. On the contrary, fructose-1,6-bisphosphate was not effective for the recovery of fructose-1,6-bisphosphatase from ribose 1,5-bisphosphate-dependent inhibition. These results suggest that ribose 1,5-bisphosphate is a potent inhibitor and is involved in the regulation of fructose-1,6-bisphosphatase in rat kidney cortex.  相似文献   

10.
A purification procedure for rat hepatic fructose-1,6-bisphosphatase, described earlier, has been improved, resulting in an enzyme preparation with a neutral pH optimum and with both phosphorylatable serine residues present. The subunit Mr was 40,000. Phosphorylation in vitro with cyclic AMP-dependent protein kinase resulted in the incorporation of 1.4 mol of phosphate/mol of subunit and led to an almost 2-fold decrease in apparent Km for fructose-1,6-bisphosphate. In contrast to yeast fructose-1,6-bisphosphatase, fructose-2,6-bisphosphate had no effect on the rate of phosphorylation or dephosphorylation of the intact enzyme. The effects of the composition of the assay medium, with regard to buffering substance and Mg2+ concentration, on the apparent Km values of phosphorylated and unphosphorylated enzyme were investigated. The kinetics of phosphorylated and unphosphorylated fructose-1,6-bisphosphatase were studied with special reference to the inhibitory effects of adenine nucleotides and fructose-2,6-bisphosphate. Unphosphorylated fructose-1,6-bisphosphatase was more susceptible to inhibition by both AMP and fructose 2,6-bisphosphate than phosphorylated enzyme, at high and low substrate concentrations. Both ATP and ADP had a similar effect on the two enzyme forms, ADP being the more potent inhibitor. Finally, the combined effect of several inhibitors at physiological concentrations was studied. Under conditions resembling the gluconeogenic state, phosphorylated fructose-1,6-bisphosphatase was found to have twice the activity of the unphosphorylated enzyme.  相似文献   

11.
A highly constrained pseudo-tetrapeptide (OC252-324) further defines a new allosteric binding site located near the center of fructose-1,6-bisphosphatase. In a crystal structure, pairs of inhibitory molecules bind to opposite faces of the enzyme tetramer. Each ligand molecule is in contact with three of four subunits of the tetramer, hydrogen bonding with the side chain of Asp187 and the backbone carbonyl of residue 71, and electrostatically interacting with the backbone carbonyl of residue 51. The ligated complex adopts a quaternary structure between the canonical R- and T-states of fructose-1,6-bisphosphatase, and yet a dynamic loop essential for catalysis (residues 52-72) is in a conformation identical to that of the T-state enzyme. Inhibition by the pseudo-tetrapeptide is cooperative (Hill coefficient of 2), synergistic with both AMP and fructose 2,6-bisphosphate, noncompetitive with respect to Mg2+, and uncompetitive with respect to fructose 1,6-bisphosphate. The ligand dramatically lowers the concentration at which substrate inhibition dominates the kinetics of fructose-1,6-bisphosphatase. Elevated substrate concentrations employed in kinetic screens may have facilitated the discovery of this uncompetitive inhibitor. Moreover, the inhibitor could mimic an unknown natural effector of fructose-1,6-bisphosphatase, as it interacts strongly with a conserved residue of undetermined functional significance.  相似文献   

12.
D.W. Meek  H.G. Nimmo   《FEBS letters》1983,160(1-2):105-109
Rat liver fructose 1,6-bisphosphatase can be protected against partial inactivation by N-ethylmaleimide by low concentrations of fructose 2,6-bisphosphate or high concentrations of fructose 1,6-bisphosphate. The partially inactivated enzyme has a much reduced sensitivity to high substrate inhibition and has lost the sigmoid component of the inhibition by fructose 2,6-bisphosphate; this compound is a simple linear competitive inhibitor of the modified enzyme. The results suggest that fructose 2,6-bisphosphate can bind to the enzyme at two distinct sites, the catalytic site and an allosteric site. High levels of fructose 1,6-bisphosphate probably inhibit by binding to the allosteric site.  相似文献   

13.
Chloroplast fructose-1,6-bisphosphatase hysteresis in response to modifiers was uncovered by carrying out the enzyme assays in two consecutive steps. The activity of chloroplast fructose-1,6-bisphosphatase, assayed at low concentrations of both fructose-1,6-bisphosphatase and Mg2+, was enhanced by preincubating the enzyme with dithiothreitol, thioredoxin f, fructose 1,6-bisphosphate, and Ca2+. In the time-dependent activation process, fructose 1,6-bisphosphate and Ca2+ could be replaced by other sugar biphosphates and Mn2+, respectively. Once activated, chloroplast fructose-1,6-bisphosphatase hydrolyzed fructose 1,6-bisphosphate and sedoheptulose 1,7-bisphosphate in the presence of Mg2+, Mn2+, or Fe2+. The A0.5 for fructose 1,6-bisphosphate (activator) was lowered by reduced thioredoxin f and remained unchanged when Mg2+ was varied during the assay of activity. On the contrary, the S0.5 for fructose 1,6-bisphosphate (substrate) was unaffected by reduced thioredoxin f and depended on the concentration of Mg2+. Ca2+ played a dual role on the activity of chloroplast fructose-1,6-bisphosphatase; it was a component of the concerted activation and an inhibitor in the catalytic step. Provided dithiothreitol was present, the activating effectors were not required to maintain the enzyme in the active form. Considered together these results strongly suggest that the regulation of fructose-1,6-bisphosphatase in chloroplast occurs at two different levels, the activation of the enzyme and the catalysis.  相似文献   

14.
Limited tryptic digestion of pig kidney fructose-1,6-bisphosphatase in the presence of magnesium ions results in the formation of an active enzyme derivative which is no longer inhibited by the allosteric effector AMP. The presence of AMP during incubation of fructose-1,6-bisphosphatase with trypsin protects against the loss of AMP inhibition. By contrast, the presence of the nonhydrolyzable substrate analog fructose 2,6-bisphosphate accelerates the rate of formation of that form of fructose-1,6-bisphosphatase which is insensitive to AMP inhibition. Sodium dodecyl sulfate-polyacrylamide electrophoresis of samples taken during trypsin treatment shows that the loss of AMP inhibition parallels the conversion of the native 36,500 molecular weight fructose-1,6-bisphosphatase subunit into a 34,000 molecular weight species. Automated Edman degradation of trypsin-treated fructose-1,6-bisphosphatase following gel filtration shows a single sequence beginning at Gly-26 in the original enzyme, but no changes in the COOH-terminal region of fructose-1,6-bisphosphatase. Thus, the proteolytic product has been characterized as "des-1-25-fructose-1,6-bisphosphatase." A comparison of the kinetic properties of control enzyme and des-1-25-fructose-1,6-bisphosphatase reveals some differences in properties (pH optimum, Ka for Mg2+, K+ activation, inhibition by fructose 2,6-bisphosphate) between the two enzymes, but none is so striking as the complete loss of AMP sensitivity shown by des-1-25-fructose-1,6-bisphosphatase. The loss of AMP inhibition is due to the loss of AMP-binding capacity, but it is not known at this stage whether residues of the AMP site are present in the 25-amino acid NH2-terminal region or the removal of this region leads to a conformational change that abolishes the function of an AMP site located elsewhere in the molecule.  相似文献   

15.
C Corredor  L Boscá  A Sols 《FEBS letters》1984,167(2):199-202
Fructose 2,6-bisphosphate has been claimed to be both a substrate analogue and an allosteric inhibitor of fructose-1,6-bisphosphatase. The results reported here show that fructose 2,6-bisphosphate can be both an inhibitor and an activator of the enzyme, depending on the substrate concentration. This biphasic behaviour at saturating concentrations of substrate can only be due to an allosteric effect. In addition to the mechanistic implication it is possible that this finding may have physiological meaning.  相似文献   

16.
K N Ekdahl  P Ekman 《FEBS letters》1984,167(2):203-209
Rat liver fructose-1,6-bisphosphatase was partially phosphorylated in vitro and separated into unphosphorylated and fully phosphorylated enzyme. The effects of fructose 2,6-bisphosphate and AMP on these two enzyme forms were examined. Unphosphorylated fructose-1,6-bisphosphatase was more easily inhibited by both effectors. Fructose 2,6-bisphosphate affected both K0.5 and Vmax, while the main effect of AMP was to lower Vmax. Fructose 2,6-bisphosphate and AMP together acted synergistically to decrease the activity of fructose-1,6-bisphosphatase, and since unphosphorylated and phosphorylated enzyme forms are affected differently, this might be a way to amplify the effect of phosphorylation.  相似文献   

17.
Lysine 356 has been implicated by protein modification studies as a fructose-2,6-bisphosphate binding site residue in the 6-phosphofructo-2-kinase domain of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (Kitajima, S., Thomas, H., and Uyeda, K. (1985) J. Biol. Chem. 260, 13995-14002). However, Lys-356 is found in the fructose-2,6-bisphosphatase domain (Bazan, F., Fletterick, R., and Pilkis, S. J. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 9642-9646). In order to ascertain whether Lys-356 is involved in fructose-2,6-bisphosphatase catalysis and/or domain/domain interactions of the bifunctional enzyme, Lys-356 was mutated to Ala, expressed in Escherichia coli, and then purified to homogeneity. Circular dichroism experiments indicated that the secondary structure of the Lys-356-Ala mutant was not significantly different from that of the wild-type enzyme. The Km for fructose 2,6-bisphosphate and the Ki for the noncompetitive inhibitor, fructose 6-phosphate, for the fructose-2,6-bisphosphatase of the Lys-356-Ala mutant were 2700- and 2200-fold higher, respectively, than those of the wild-type enzyme. However, the maximal velocity and the Ki for the competitive product inhibitor, inorganic phosphate, were unchanged compared to the corresponding values of the wild-type enzyme. Furthermore, in contrast to the wild-type enzyme, which exhibits substrate inhibition, there was no inhibition by substrate of the Lys-356-Ala mutant. In the presence of saturating substrate, inorganic phosphate, which acts by relieving fructose-6-phosphate and substrate inhibition, is an activator of the bisphosphatase. The Ka for inorganic phosphate of the Lys-356-Ala mutant was 1300-fold higher than that of the wild-type enzyme. The kinetic properties of the 6-phosphofructo-2-kinase of the Lys-356-Ala mutant were essentially identical with that of the wild-type enzyme. The results demonstrate that: 1) Lys-356 is a critical residue in fructose-2,6-bisphosphatase for binding the 6-phospho group of fructose 6-phosphate/fructose 2,6-bisphosphate; 2) the fructose 6-phosphate binding site is responsible for substrate inhibition; 3) Inorganic phosphate activates fructose-2,6-bisphosphatase by competing with fructose 6-phosphate for the same site; and 4) Lys-356 is not involved in 6-phosphofructo-2-kinase substrate/product binding or catalysis.  相似文献   

18.
6-Phosphofructo-2-kinase and fructose-2,6-bisphosphatase activities were copurified to homogeneity from bovine liver. The purification scheme consisted of polyethylene glycol precipitation, anion-exchange and Blue-Sepharose chromatography, substrate elution from phosphocellulose, and gel filtration. The bifunctional enzyme had an apparent molecular weight of 102,000 and consisted of two subunits (Mr 49,000). The kinase had a Km for ATP of 12 microM and a S0.5 for fructose 6-phosphate of 150 microM while the bisphosphatase had a Km for fructose 2,6-bisphosphate of 7 microM. Both activities were subject to modulation by various effectors. Inorganic phosphate stimulated both activities, while alpha-glycerolphosphate inhibited the kinase and stimulated the bisphosphatase. The pH optimum for the 6-phosphofructo-2-kinase activity was 8.5, while the fructose-2,6-bisphosphatase reaction was maximal at pH 6.5. Incubation of the purified enzyme with [gamma-32P]ATP and the catalytic subunit of the cAMP-dependent protein kinase resulted in 32P incorporation to the extent of 0.7 mol/mol enzyme subunit with concomitant inhibition of the kinase activity and activation of the bisphosphatase activity. The mediation of the bisphosphatase reaction by a phosphoenzyme intermediate was suggested by the isolation of a stable labeled phosphoenzyme when the enzyme was incubated with fructose 2,6-[2-32P]bisphosphate. The pH dependence of hydrolysis of the phospho group suggested that it was linked to the N3 of a histidyl residue. The 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from bovine liver has properties essentially identical to those of the rat liver enzyme, suggesting that hepatic fructose 2,6-bisphosphate metabolism is under the same control in both species.  相似文献   

19.
The effects of cyclic AMP-dependent phosphorylation on the structural properties of rat liver fructose-1,6-bisphosphatase were investigated by uv difference spectroscopy and circular dichroism. The incorporation of 4 mol of phosphate per mole of fructose-1,6-bisphosphatase induces a significant increase in the alpha-helix content of the enzyme without affecting its spectrophotometric properties. The addition of fructose 1,6-bisphosphate or fructose 2,6-bisphosphate also affects the conformation of the enzyme. However, both the phosphorylated and the nonphosphorylated forms exhibit similar ligand-induced conformational changes. These results show that cyclic AMP-dependent phosphorylation of fructose-1,6-bisphosphatase induces a specific conformational change. They also suggest that this modification does not alter the interaction of the enzyme protein with fructose 1,6-bisphosphate and fructose 2,6-bisphosphate.  相似文献   

20.
Fructose-2,6-bisphosphatase (EC 3.1.3.46), which hydrolyzes fructose 2,6-bisphosphate to fructose 6-phosphate and Pi, has been purified to apparent homogeneity from spinach leaves and found to be devoid of fructose-6-phosphate,2-kinase activity. The isolated enzyme is a dimer (76 kDa determined by gel filtration) composed of two 33-kDa subunits. The enzyme is highly specific and displays hyperbolic kinetics with its fructose 2,6-bisphosphate substrate (Km = 32 microM). The products of the reaction, fructose 6-phosphate and Pi, along with AMP and Mg2+ are inhibitors of the enzyme. Nonaqueous cell fractionation revealed that, like the fructose 2,6-bisphosphate substrate, fructose-2,6-bisphosphatase as well as fructose-6-phosphate,2-kinase occur in the cytosol of spinach leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号