首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Eleven different fluorescent lectin-conjugates were used to reveal the location of carbohydrate residues in frozen sections of the anterior segment of bovine eyes. The lectins were specific for the following five major carbohydrate groups: (1) glucose/mannose group (Concanavalin A (Con A)); (2)N-acetylglucosamine group (wheat germ agglutinin (WGA)); (3) galactose/N-acetylgalactosamine group (Dolichos biflorus agglutinin (DBA),Helix pomatia agglutinin (HPA),Helix aspersa agglutinin (HAA),Psophocarpus tetragonolobus agglutinin (PTA),Griffonia simplicifolia agglutinin-I-B4 (GSA-I-B4),Artocarpus integrifolia agglutinin (JAC), peanut agglutinin (PNA) andRicinus communis agglutinin (RCA-I)); (4)l-fucose group (Ukex europaeus agglutinin (UEA-I)); (5) sialic acid group (wheat germ agglutinin (WGA)). All the studied lectins except UEA-I reacted widely with different structures and the results suggest that there are distinct patterns of expression of carbohydrate residues in the anterior segment of the bovine eye. UEA-I bound only to epithelial structures. Some of the lectins reacted very intensely with apical cell surfaces of conjunctival and corneal epithelia suggesting a different glycosylation at the glycocalyx of the epithelia. Also, the binding patterns of conjunctival and corneal epithelia differed with some of the lectins: PNA and RCA-I did not bind at all, and GSA-I-B4 bound only very weakly to the epithelium of the cornea, whereas they bound to the epithelium of the conjunctiva. In addition, HPA, HAA, PNA and WGA did not bind to the corneal basement membrane, but bound to the conjunctiva and vascular basement membranes. This suggests that corneal basement membrane is somehow different from other basement membranes. Lectins with the same carbohydrate specificity (DBA, HPA, HAA and PTA) reacted with the sections almost identically, but some differences were noticed: DBA did not bind to the basement membrane of the conjunctiva and the sclera and did bind to the basement membrane of the cornea, whereas other lectins with same carbohydrate specificities reacted vice versa. Also, the binding of PTA to the trabecular meshwork was negligible, whereas other lectins with the same carbohydrate specificities reacted with the trabecular meshwork. GSA-I-B4 reacted avidly with the endothelium of blood vessels and did not bind to the stroma, so that it made blood vessels very prominent and it might be used as an endothelial marker. This lectin also reacted avidly with the corneal endothelium. Therefore, GSA-I-B4 appears to be a specific marker in bovine tissues for both blood vessel and corneal endothelium cells.  相似文献   

2.
The distribution of carbohydrate moieties in lancelet (Branchiostoma belcheri) oocytes has been studied at different stages of development, using a peroxidase-labeled lectin incubation technique, the PAS-reaction and Alcian Blue staining. Binding sites of 5 lectins, indicating the presence of different sugar moieties (Wheat germ agglutinin (WGA) for N-acetylglucosamine, Concanavalin A (Con A) for glucose/mannose, Helix pomatia agglutinin (HPA) for N-acetyl-D-galactosamine, Ricinus communis agglutinin (RCA-I) for galactose and Ulex europaeus agglutinin (UEA-I) for fucose), were identified and were shown to undergo considerable variation during oocyte development. In the previtellogenic stage, HPA, RCA-I and UEA-I were not identified on the oocyte surface, but WGA and Con A gave strongly positive reactions at this site. In the cytoplasm, 4 lectins (Con A, HPA, RCA-I and UEA-I) gave a weak or moderate reaction, and Con A was also observed in the perinuclear region. In vitellogenic oocytes, these 4 lectins were found to also bind to the nuclear envelope, karyoplasm and nucleolus, and, with the exception of Con A, could also be found in the nuclei of more mature stages. The cytoplasmic yolk granules and Golgi vesicles of the vitellogenic oocyte, were moderately positive for Con A, HPA, RCA-I and UEA-I, but HPA, RCA-I and UEA-I were only weakly bound at the oocyte surface. In mature oocytes, all 5 lectins bound moderately or strongly to yolk granules and cell surface. HPA, RCA-I and UEA-I bound moderately or strongly to various nuclear compartments. Thus, carbohydrate content varied with the development and maturation of the oocytes, and the PAS results were in agreement with the lectin-binding results. Charged carbohydrate residues were observed in the egg envelope and Golgi bodies.These results suggest that the appearence of Con A-, HPA-, RCA-I- and UEA-I-binding glycoconjugates in the nuclei of developing oocytes show a varying pattern indicating different phases of nuclear activity which correlate with different carbohydrate synthetic activities of the oocyte.  相似文献   

3.
Summary The avidin-biotin-peroxidase complex technique was used with 13 lectins to study the glycoconjugates of normal human renal tissue. The evaluated lectins included Triticum vulgaris (WGA), Concanavalin ensiformis (ConA), Phaseolus vulgaris leukoagglutinin and erythroagglutinin (PHA-L and PHA-E), Lens culinaris (LCA), Pisum sativum (PSA), Dolichos biflorus (DBA), Glycine max (SBA), Bandeiraea simplicifolia I (BSL-I), Ulex europaeus I (UEA-I) and Ricinus communis I (RCA-I). Characteristic and reproducible staining patterns were observed. WGA and ConA stained all tubules; PHA-L, PHA-E, LCA, PSA stained predominantly proximal tubules; DBA, SBA, PNA, SJA and BSL-I stained predominantly distal portions of nephrons. In glomeruli, WGA and PHA-L stained predominantly visceral epithelial cells; ConA stained predominantly basement membranes and UEA-I stained exclusively endothelial cells. UEA-I also stained endothelial cells of other blood vessels and medullary collecting ducts. Sialidase treatment before staining caused marked changes of the binding patterns of several lectins including a focal loss of glomerular and tubular staining by WGA; an acquired staining of endothelium by PNA and SBA; and of glomeruli by PNA, SBA, PHA-E, LCA, PSA and RCA-I. The known saccharide specificities and binding patterns of the lectins employed in this study allowed some conclusions about the nature and the distribution of the sugar residues in the oligosaccharide chains of renal glycoconjugates. The technique used in this report may be applicable to other studies such as evaluation of normal renal maturation, classification of renal cysts and pathogenesis of nephrotic syndrome. The observations herein reported may serve as a reference for these studies.  相似文献   

4.
The present light microscopic lectin, histochemical study suggests for the first time that the vertebrate gonadotropin-like substance in the basal part of the epithelial cells of Hatschek's pit is a sialic acid-containing glycoprotein. The binding intensity of the epithelial cells in Hatschek's pit to 6 lectins (Limulus polyphemus agglutinin (LPA), Wheat germ agglutinin (WGA),Helix pomatia agglutinin (HPA), Concanavalin A (Con A),Ulex europaeus agglutinin I (UEA I) andRicinus communis agglutinin I (RCA I)) indicate that the carbohydrate composition of the gonadotrophic glycoprotein is similar to that of mammals and fish, and that N-acetyl-D-galactosamine, sialic acid, glucosamine, D-mannose and L-fucose are components of the carbohydrate portion.  相似文献   

5.
This study was performed to obtain a better insight into the glycosylation pattern of human CD34+ haematopoietic stem cells and lymphocytes from peripheral blood using an ultrastructural post-embedding technique. Lectins applied were derived from Canavalia ensiformis (Con A), Triticum vulgare (WGA), Lycopersicon esculentum (LEA), Limulus polyphemus (LPA), Ulex europaeus-I (UEA-I), Bauhinia purpurea (BPA), Glycine max (SBA), Helix pomatia (HPA), Arachis hypogaea (PNA) and Erythrina cristagalli (ECA). Our results showed almost identical staining patterns with both CD34+ cells and mature lymphocytes from peripheral blood. Con A displayed a prominent reactivity with the nuclear envelope and a weak staining of the plasma membrane. As demonstrated by an elaborate lectin double-labelling technique, WGA revealed an opposite staining pattern. Following neuraminidase treatment of sections, BPA, PNA and SBA exhibited a prominent staining of the plasma membrane in CD34+ cells and lymphocytes as well. Membrane reactivity with HPA was restricted to the majority of lymphocytes, presumably T-lymphocytes. Infrequently occurring dense cytoplasmic (lysosomal) bodies were reactive with a variety of lectins, and a weak diffuse nuclear labelling was observable with LPA, UEA-I, WGA and Con A. It is tempting to speculate that carbohydrate moieties on plasma membranes may be involved in the complex mechanisms characterizing cell-to-cell interactions (adhesion) and particularly in the so-called phenomenon of homing. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

6.
Summary Taste buds (TB) in the foliate, circumvallate and fungiform papillae of the rabbit tongue were examined with lectin histochemistry by means of light (LM) and electron (EM) microscopy. Biotin- and gold-labeled lectins were used for the detection of carbohydrate residues in TB cells and subcutaneous salivary glands. At the LM level, the lectins of soybean (SBA) and peanut (PNA) react with material of the foliate and circumvallate taste pores only after pretreatment of the section with neuraminidase. This indicates that the terminal trisaccharide sequences are as follows: Sialic acid-Gal-GalNAc in O-glycosylated glycoproteins or Sialic acid-Gal-GlcNAc in N-glycosylated glycoproteins. In fungiform taste buds the lectins of Dolichos biflorus (DBA) and Helix pomatia (HPA), also specific to GalNAc residues, are reactive without preincubation with neuraminidase. Wheat germ agglutinin (WGA), specific to GlcNAc, reacts with TBs of all papillae; and the lectin from Ulex europaeus (UEA I), specific to fucose, binds to individual TB cells. The presence of sialic acid may protect mucus or other glycoproteins in TB cells and inside the taste pore from premature enzymatic degradation. In a post-embedding EM procedure on LR-White-embedded tissue sections, only gold-labeled HPA was found to bind especially on membrane surfaces of the microvilli which protrude into the taste pore; however HPA did not bind to the electron-dense mucus inside the taste pore. The mucus situated in the trough and at the top of the adjacent epithelial cells also is strongly HPA-positive, but is of different origin and composition than that found in the taste pore. These results demonstrate distinct carbohydrate histochemical differences between fungiform and circumvallate/foliate taste buds. The different configuration of galactosyl residues and the occurrence of mannose in circumvallate and foliate TBs leads to the suggestion that the lectin reactivities of TBs are not only due to the presence of mucins, but also to N-linked glycoproteins, possibly with a hormone-like, paraneuronal function. A possible relationship to v. Ebner glands in these papillae is discussed.  相似文献   

7.
Summary The glycoconjugates of hamster epididymis were investigated with conventional and lectin histochemistry. A zone of the caput epididymis, with particular histochemical characteristics, has been differentiated. β-Elimination in combination with lectins was used to establish the presence and distribution of N- and O-linked glycoconjugates. The epithelium, spermatozoa and the intertubular matrix were rich in glycoconjugates. The Golgi apparatus and stereocilia of the principal cells were intensely positive with HPA, PNA and SBA lectins. β-limination indicated that these cells contained abundant O-linked glycoconjugates. Apical and clear cells presented a common lectin affinity; their reactivities towards WGA and UEA-I were very positive. These cells probably contain abundant N-glycoconjugates. The spermatozoa were stained by periodic acid-Schiff (PAS) and by all the lectins (especially in the acrosome), except by those with an affinity for α-l-fucosyl residues; the most intense reaction was found with HPA, WGA, PNA and SBA. Changes in the sperm lectin binding along the ductus were observed: sperm flagellum abruptly acquired WGA and PNA labelling from the posterior caput, and HPA reactivity was negative only in the zone between the caput and the corpus.  相似文献   

8.
Summary The glycoconjugates of the human fundic mucosa were characterized at the ultrastructural level by means of direct (Helix pomatia agglutinin-gold complex) and indirect lectin techniques (Concanavalin A and horseradish peroxidase-gold complex; wheat germ agglutinin and ovomucoid-gold complex). Surface mucous cells and mucous neck cells secreted O-glycoproteins with N-acetylgalactosamine and N-acetylglucosamine residues at the non reducing terminus of the saccharidic chain. The secretory granules of the mucous neck cells showed condensed areas slightly reactive to ConA. The results obtained in the chief cells suggest that these cells secrete N-glycoproteins rich in mannose and/or glucose residues. Transitional cells, presenting both morphological characteristics and lectin binding pattern intermediate to the mucous neck and chief cells have been observed. The surface of the intracellular canaliculi of the parietal cell was labelled by HPA, WGA and ConA. In the neck region of the gastric glands, immature parietal cells containing abundant mucous granules reactive to HPA, WGA and ConA were observed. The present results further corroborate the existence of a common cell precursor for surface mucous, mucous neck and parietal cells. In a further step, mucous neck cells gradually differentiate into chief cells the transitional cells being an intermediate stage.  相似文献   

9.
Several studies have shown the deletion of blood group A or B antigens and the accumulation of H antigens in human breast carcinomas. Other studies have independently demonstrated that the binding sites of lectins such asHelix pomatia agglutinin (HPA) andGriffonia simplicifolia agglutinin I-B4 (GSAI-B4) are highly expressed in these cells. In order to clarify the molecular mechanisms of malignant transformation and metastasis of carcinoma cells, it is important to understand the relationship between such phenotypically distinct events. For this purpose, we examined whether the binding sites of these lectins andUlex europaeus agglutinin I (UEA-I) are expressed concomitantly in the same carcinoma cells and analyzed their backbone structures. The expression of the binding sites of these lectins was observed independently of the blood group (ABO) of the patients and was not affected by the histological type of the carcinomas. Observation of serial sections stained with these lectins revealed that the distribution of HPA binding sites was almost identical to that of GSAI-B4 in most cases. Furthermore, in some cases, UEA-I binding patterns were similar to those of HPA and GSAI-B4 but in other cases, mosaic staining patterns with these lectins were also observed, i.e., some cell clusters were stained with both HPA and GSAI-B4 but not with UEA-I and adjacent cell clusters were stained only with UEA-I. Digestion with endo-β-galactosidase orN-glycosidase F markedly reduced the staining intensity of these lectins. Together with the reduction of staining by these lectins, reactivity withGriffonia simplicifolia agglutinin II appeared in carcinoma cells following endo-β-galactosidase digestion. Among the lectins specific to poly-N-acetyllactosamine,Lycopersicon esculentum agglutinin (LEA) most vividly and consistently stained the cancer cells. Next to LEA, pokeweed mitogen agglutinin was also effective in staining these cells. Carcinoma cells reactive with these lectins corresponded well to those stained with both HPA and GSAI-B4, and in some cases, with UEA-I. These results demonstrate that the binding sites of UEA-I, HPA, and GSAI-B4 are expressed concomitantly in the same carcinoma cells and all carry linear and branched poly-N-acetyllactosamine onN-glycans, suggesting that the synthesis of this complex carbohydrate is one of the most important and basic processes leading to the malignant transformation of cells, invasion, and metastasis of carcinoma cells.  相似文献   

10.
The thumb pad is one of the most common secondary sexual characteristics in frogs. Although it is known that amphibian skin has affinity for several lectins, there is no report regarding lectin‐binding affinity of the thumb pad or its structural components. This study investigated localization and seasonal variation of specific carbohydrate moieties of glycoconjugates in both the epidermal and dermal components of the frog thumb pad at the light microscopic level using lectin histochemistry. The study consisted of four seasonal groups of the frog species, Pelophylax ridibundus (Synonym of Rana ridibunda): active, prehibernating, hibernating and posthibernating. Four horseradish peroxidase conjugated lectins were employed. It was found that dolichos biflorus agglutinin (DBA), wheat germ agglutinin (WGA), and ulex europaeus (UEAI) gave positive reactions in both epidermal layers and breeding glands. These three lectins bound specific secretory cells in the breeding glands, and the distribution of the cells and epithelial lectin reactions exhibited seasonal changes. In addition, UEA‐I and peanut agglutinin (PNA) showed an affinity in granular glands and the granular zone of mixed glands. Generally, epidermal lectin binding showed dense affinity during the posthibernation period. DBA, UEA‐I, and WGA‐specific cells in the mucous gland decreased gradually until the posthibernation period. These findings suggest that differences of lectin binding in the thumb pad may be related to functional activities and, thus, seasonal adaptations. Moreover, the presence of specific lectin‐binding cells in the breeding glands indicated that they consisted of heterogeneous secretory cell composition or that the cells were at different secretory stages. J. Morphol. 275:76–86, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
Summary Cytochemical localization of blood group ABH antigens was examined in secretory cells of human cervical glands by application of a post-embedding lectin-gold as well as immuno-gold labeling procedure using monoclonal antibodies. Blood group specific lectins such as Dolichos biflorus agglutinin (DBA), Helix pomatia agglutinin (HPA), Griffonia simplicifolia agglutinin I-B4 (GSAI-B4) and Ulex europaeus agglutinin-I (UEA-I) reacted with secretory granules but not with other cytoplasmic organellae such as nucleus and cell membrane. The reactivity of secretory granules with these lectins showed strict dependence on the blood group and secretor status of tissue donors. The binding patterns with these lectins were not homogeneous, but exhibited marked cellular and subcellular heterogeneity. Thus, for example, in blood group A individuals, some granules were stained strongly with DBA and others were weakly or not at all with the lectin. Such a heterogenous labeling with the lectin was observed even in the same cells. Similar results were obtained with UEA-I and GSAI-B4 staining in blood group O and B secretor individuals, respectively. Monoclonal antibodies likewise reacted specifically with the granules but they occasionally bound to some nucleus. The labeling pattern of the antibodies with the granules was essentially the same as those of lectins. However, difference was also observed between monoclonal antibody and lectin staining, that is, monoclonal anti-A antibody reacted weakly but consistently with granules from blood group A nonsecretors but DBA (HPA) did not; staining with UEA-I was observed in granules from the secretor individuals of any blood groups whereas monoclonal anti-H antibody reacted with granules from blood group O and some A secretor individuals but not from B and AB secretor individuals; GSAI-B4 reacted uniformly with granules throughout the cells whereas monoclonal anti-B antibody bound to limited number of granules in the same cells. This was confirmed by the double labeling experiments with the lectin and the antibody. These results suggest that the different types of antigens as to the binding ability for monoclonal antibodies and lectins are expressed on different granules in the same cell.  相似文献   

12.
Summary The lectin-binding patterns of the cells involved in amelogenesis and dentinogenesis in developing teeth of rats, were studied. Undifferentiated odontogenic epithelia exhibited very slight staining with almost all of the lectins examined. The lectin-staining affinities of secretory ameloblasts could be divided into two categories: Concanavalin-A (Con-A), Wheat germ agglutinin (WGA) and Soybean agglutinin (SBA) binding occurred from the middle to apical cytoplasm, whereas Ricinus communis agglutinin-I (RCA-I) and Ulex europeus I (UEA-I) binding predominated in the basal regions. The cells of the stratum intermedium exhibited relatively stranges lectin staining, which appeared to be dependent on ameloblastic maturation. The basement membranes in undifferentiated epithelia were markedly positive for lectin binding. Odontoblasts showed moderate Con-A staining on the apical side of the cells, as well as slight-to-moderate reactions with WGA and SBA. Pulp cells and dental papillae showed slight-to-moderate lectin staining, and predentin and dentin were also moderately positive for Con-A and RCA-I binding and slightly so for WGA and SBA. The lectin-binding affinities were enhanced during the formation of enamel and dentin, and appeared to be dependent on the degree of cellular differentiation in ameloblasts and odontoblasts.  相似文献   

13.
The display of carbohydrate structures was measured in promyelocytic HL60 cells and in histiocytic U937 cells induced to differentiate to phagocytic cellsin vitro during three to seven days of cultivation in the presence of dimethylsulfoxide (DMSO). It was assessed by micro-or spectrofluorometric quantification of the binding of fluorescent lectins. Changes in the cell size and the association and uptake of IgG-or complementopsonized yeast cells (Saccharomyces cerevisiae) were used as signs of phagocyte differentiation.The binding of wheat germ agglutinin (WGA), concanavalin A (Con A),Ricinus communis agglutinin-I (RCA-I) andUlex europaeus agglutinin-I (UEA-I) varied due to the presence of DMSO during cultivation, and without DMSO also on the number of days in culture and the type of cell.Abbreviations DMSO dimethylsulfoxide - PMA phorbol 12-myristate 13-acetate - KRG Krebs-Ringer phosphate buffer with glucose - WGA wheat germ agglutinin - Con A concanavalin A - RCA-I Ricinus communis agglutinin-I - UEA-I Ulex europaeus agglutinin-I  相似文献   

14.
The avidin-biotin-peroxidase complex technique was used with 13 lectins to study the glycoconjugates of normal human renal tissue. The evaluated lectins included Triticum vulgaris (WGA), Concanavalin ensiformis (ConA), Phaseolus vulgaris leukoagglutinin and erythroagglutinin (PHA-L and PHA-E), Lens culinaris (LCA), Pisum sativum (PSA), Dolichos biflorus (DBA), Glycine max (SBA), Arachis hypogaea (PNA), Sophora japonica (SJA), Bandeiraea simplicifolia I (BSL-I), Ulex europaeus I (UEA-I) and Ricinus communis I (RCA-I). Characteristic and reproducible staining patterns were observed. WGA and ConA stained all tubules; PHA-L, PHA-E, LCA, PSA stained predominantly proximal tubules; DBA, SBA, PNA, SJA and BSL-I stained predominantly distal portions of nephrons. In glomeruli, WGA and PHA-L stained predominantly visceral epithelial cells; ConA stained predominantly basement membranes and UEA-I stained exclusively endothelial cells. UEA-I also stained endothelial cells of other blood vessels and medullary collecting ducts. Sialidase treatment before staining caused marked changes of the binding patterns of several lectins including a focal loss of glomerular and tubular staining by WGA; an acquired staining of endothelium by PNA and SBA; and of glomeruli by PNA, SBA, PHA-E, LCA, PSA and RCA-I. The known saccharide specificities and binding patterns of the lectins employed in this study allowed some conclusions about the nature and the distribution of the sugar residues in the oligosaccharide chains of renal glycoconjugates. The technique used in this report may be applicable to other studies such as evaluation of normal renal maturation, classification of renal cysts and pathogenesis of nephrotic syndrome. The observations herein reported may serve as a reference for these studies.  相似文献   

15.
The in situ identification of carbohydrate structures in Trichinella spiralis intestinal larvae, adults and L1 muscular larvae was carried out by lectin histochemistry, with emphasis on the O-linked glycans. The absence of reactivity with two lectins-TML and MAL indicated that Trichinella spiralis does not synthesize sialic acid. Reactivity with HPA, VVL-B4, PNA and UEA-I staining suggested that T. spiralis synthesizes and expresses on its cuticle O-linked glycans analogous to Tn-antigen (GalNAc-α-Ser/Thr), T-antigen (Gal-β1,3-GalNAc-α-Ser/Thr) and also structures analogous to A-blood group antigens (GalNAc-α1,3-Gal-β1,3(4)-(Fuc-α1,2-)-R). Expression of the saccharidic moieties is stage-specific. Blood group-A and T-antigen structures were identified on the cuticle of the intestinal and muscular larvae. The Tn-antigen structure was missing in the intestinal larvae. Appropriate ligands for WGA were not identified in the adult individuals. The obtained results may contribute to a better understanding of the glycobiology of this parasitic nematode in relation to occupation of its intracellular niche. The presence of saccharidic structures analogous to some of those expressed on the intestinal epithelial cells may serve as a protective shield on the surface of the parasite.  相似文献   

16.
We performed an investigation at the light microscopical level of the differential distribution of lectin-binding sites among cells of the epidermis and glandular domains of the African clawed frog Xenopus laevis. Using a panel of biotinylated lectins (Con-A. PSA, LCA, UEA-I, DBA, SBA, SJA, RCA-I, BSL-I, WGA, s-WGA, PHA-E and PHA-L) and an avidin–biotin–peroxidase complex (ABC), we have identified specific binding patterns. The results show that expression of saccharide moieties in Xenopus epidermal keratinocytes is related to the stage of cellular differentiation, different cell layers expressing different sugar residues. Moreover, oliogosaccharides with “identical” biochemically defined sugar compositions can be distinguished. The method allowed further characterization of complex glycoconjugates of dermal glands. In view of these results, the ABC technique and the biotinylated lectins employed in the present study are believed to be a reliable method for the precise localization of saccharide residues of glycoconjugates present in ectothermic vertebrates.  相似文献   

17.
18.
Carbohydrate residues were localized in the glandular cells of the epidermis of Lumbricus terrestris by lectin histochemistry. The following biotinylated lectins were used: ConA, PNA, WGA, UEA-I. Each lectin has a specific binding pattern in the epidermal glandular cells. The ConA binding is evident in the orthochromatic mucous cells; PNA in the metachromatic mucous cells; WGA in the neuroendocrine-like cells; UEA-I in the cuticle. The epidermal glandular cells possess specific sites for the different lectins in relation to their functional characteristics. Therefore, these sugar residues indicate different behaviours of the cells in epidermal functions related to ion transport, receptor-secretory processes and defence.  相似文献   

19.
Epidermal, branchial and digestive mucous cells, and the gastric glands of larvae/postlarvae (from hatching until 45 days posthatching) of three fish species (two teleostean and a chondrostean) were investigated using conventional histochemical methods (periodic acid schiff -PAS-, diastase-PAS; alcian blue pH 0.5, 1 and 2.5) in order to distinguish neutral and acidic (carboxylated and sulphated) glycoconjugates, as well as bromophenol blue reaction for identification of proteins. Additionally, the presence and distribution of sugar residues in the oligosaccharide side chains of glycoconjugates were investigated using horseradish peroxidase (HPR)-conjugated lectins (Con A, DBA, WGA and UEA-I). Most mucous cells (digestive, epidermal and branchial) of Siberian sturgeon, Acipenser baeri, sea bream, Sparus aurata and Senegal sole, Solea senegalensis larvae were PAS- and alcian blue- (pH 2.5 and 0.5) positive, with small variations between organs/tissues and species. Bromophenol blue reaction (general proteins) was positive in a minority of the mucous cells, usually in those cells which were PAS-negative. Proteins rich in sulphydryl (-SH) and/or disulphide (-S-S-) groups related with the glycoprotein nature of the glycoconjugates present in mucous cells were also observed. Epidermal, branchial and digestive mucous cells of all studied larvae did not contain glycogen or lipids. Con A lectin staining was negative in all mucous cells types of sea bream and sole, but oesophageal mucous cell of sturgeon were reactive to different lectin reactions, suggesting the presence of mannose -Man- and/or glucose -Glc-, L-fucose -Fuc- ; N-acetyl-D-galactosamine -GalNAc-, as well as N-acetyl-D-glucosamine- GlcNAc - and/or sialic acid -NANA- residues. Digestive mucous cells of all studied larvae were positive to WGA and DBA lectins. Epidermal and branchial mucous cells of sea bream and sole were Con A, DBA and UEA-I unreactive. However, mucous cells of sturgeon larvae were stained with UEA-I lectin. Gastric glands appear very early in sturgeon stomach larvae development (between 5-6 days posthatching) but rather late (around 40 days) during the ontogeny of sole and sea bream larvae. These glands contain neutral glycoproteins with Man and/or Glc, Fuc, GlcNAc- and/or sialic acid and rich in GalNAc- sugar residues, as well as proteins moderately rich in arginine, and others particularly rich in tyrosine and tryptophan.  相似文献   

20.
Summary An indirect gold-labeling method utilizing the lectin from Limax flavus was employed to characterize the subcellular distribution of sialic acid in glycoconjugages of the salamander olfactory mucosa. The highest density of lectin binding sites was in secretory vesicles of sustentacular cells. Significantly lower densities of lectin binding sites were found in secretory granules of acinar cells of both Bowman's and respiratory glands. Lectin binding in acinar cells of Bowman's glands was confined primarily to electron-lucent regions and membranes of secretory granules. In the olfactory mucus, the density of lectin binding sites was greater in the region of mucus closest to the nasal cavity than in that closest to the epithelial surface. At the epithelial surface, the density of lectin binding sites associated with olfactory cilia was 2.4-fold greater than that associated with microvilli of sustentacular cells or non-ciliary plasma membranes of olfactory receptor neurons, and 7.9-fold greater than non-microvillar sustentacular cell plasma membranes. Lectin binding sites were primarily associated with the glycocalyx of olfactory receptor cilia. The cilia on cells in the respiratory epithelium contained few lectin binding sites. Thus, sialylated glycoconjugates secreted by sustentacular cells are preferentially localized in the glycocalyx of the cilia of olfactory receptor neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号