首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Kin selection,kin avoidance and correlated strategies   总被引:1,自引:0,他引:1  
Summary Kin selection of correlated strategies is examined for both weak and strong altruism under simple haploid inheritance. While kin assortment enhances the range of evolutionary stability for (strongly altruistic) correlated strategies (defined herein), kin avoidance is possible under a weakly altruistic correlated strategy. When social competition induces role assignments of variable fitness, group mates may prefer association with non-relatives. Even when group life is mandatory, an individual may accept the risk of abandonment (and reproductive death) rather then associate with kin: a competitive superior may behave altruistically by permitting competitively inferior kin to emigrate. Thus, kin selection and social competition are not necessarily mutually supportive processes within groups. I conclude by interpreting dominance as a strongly altruistic correlated strategy in two social hymenopteran contexts.  相似文献   

2.
One of the hallmarks of eusociality is that workers forego their own reproduction to assist their mother in raising siblings. This seemingly altruistic behaviour may benefit workers if gains in indirect fitness from rearing siblings outweigh the loss of direct fitness. If worker presence is advantageous to mothers, however, eusociality may evolve without net benefits to workers. Indirect fitness benefits are often cited as evidence for the importance of inclusive fitness in eusociality, but have rarely been measured in natural populations. We compared inclusive fitness of alternative social strategies in the tropical sweat bee, Megalopta genalis, for which eusociality is optional. Our results show that workers have significantly lower inclusive fitness than females that found their own nests. In mathematical simulations based on M. genalis field data, eusociality cannot evolve with reduced intra-nest relatedness. The simulated distribution of alternative social strategies matched observed distributions of M. genalis social strategies when helping behaviour was simulated as the result of maternal manipulation, but not as worker altruism. Thus, eusociality in M. genalis is best explained through kin selection, but the underlying mechanism is likely maternal manipulation.  相似文献   

3.
The direct-fitness approach to modelling the evolution of social traits is an alternative to the classical inclusive-fitness-based approach. Despite both its utility and popularity, the direct-fitness approach has not yet been extended to include the analysis of dynamic traits, i.e. traits whose level of expression may vary over time. In this article, I apply the direct-fitness approach to cope with the evolution of a dynamic resource-allocation behaviour when this behaviour influences the fitness of relatives. I am able to implement the direct-fitness approach using components (reproductive value, fitness changes and measures of relatedness) found in standard, social-evolutionary models. I illustrate the modified direct-fitness model with an example studied by previous authors, and I show how the direct-fitness perspective can aid the validation of analytical results by means of a genetic algorithm.  相似文献   

4.
Abstract.— Certain arguments concerning the evolution of eusociality form a classic example of the application of the principles of kin selection. These arguments center on the different degrees of relatedness of potential beneficiaries of an individual's efforts, for example a female's higher relatedness to her sisters than to her daughters in a haplodiploid system. This type of reasoning is insufficient to account for the evolution and maintainence of sexual reproduction, because parthenogenic females produce offspring that are more closely related to them than are offspring produced sexually. Among the forces invoked to explain sexual reproduction is deleterious mutation. This factor can be shown to favor eusociality as well, because siblings produced by helping carry fewer deleterious alleles on average than would offspring. The strength of this effect depends on the genomewide deleterious mutation rate, U, and on the selection coefficient, s, associated with deleterious alleles. For small s, the effect depends approximately on the product Us. This phenomenon illustrates that an assumption implicit in some analyses–that the relatedness of an individual to an actor is all that matters to its value to that actor–can fail for the evolution of eusociality as it does for the evolution of sex.  相似文献   

5.
Genomic imprinting is known from flowering plants and mammals but has not been confirmed for the Hymenoptera even though the eusocial Hymenoptera are prime candidates for this peculiar form of gene expression. Here, the kin selection theory of genomic imprinting is reviewed and applied to the eusocial Hymenoptera. The evidence for imprinting in eusocial Hymenoptera with the typical mode of reproduction, involving the sexual production of diploid female offspring, which develop into workers or gynes, and the arrhenotokous parthenogenesis of haploid males, is also reviewed briefly. However, the focus of this review is how atypical modes of reproduction, involving thelytokous parthenogenesis, hybridisation and androgenesis, may also select for imprinting. In particular, naturally occurring hybridisation in several genera of ants may provide useful tests of the role of kin selection in the evolution of imprinting. Hybridisation is expected to disrupt the coadaptation of antagonistically imprinted loci, and thus affect the phenotypes of hybrids. Some of the limited data available on hybrid worker reproduction and on colony sex ratios support predictions about patterns of imprinting derived from kin selection theory.  相似文献   

6.
The evolution of sociality represented a major transition point in biological history. The most advanced societies, such as those displayed by social insects, consist of reproductive and nonreproductive castes. The caste system fundamentally affects the way natural selection operates. Specifically, selection acts directly on reproductive castes, such as queens, but only indirectly through the process of kin selection on nonreproductive castes, such as workers. In this study, we present theoretical analyses to determine the rate of substitution at loci expressed exclusively in the queen or worker castes. We show that the rate of substitution is the same for queen- and worker-selected loci when the queen is singly mated. In contrast, when a queen is multiply mated, queen-selected loci show higher rates of substitution for adaptive alleles and lower rates of substitution for deleterious alleles than worker-selected loci. We compare our theoretical expectations to previously obtained genomic data from the honeybee, Apis mellifera, where queens mate multiply and the fire ant, Solenopsis invicta, where queens mate singly and find that rates of evolution of queen- and worker-selected loci are consistent with our predictions. Overall, our research tests theoretical expectations using empirically obtained genomic data to better understand the evolution of advanced societies.  相似文献   

7.
Colony kin structure and male production in Dolichovespula wasps   总被引:3,自引:0,他引:3  
In annual hymenopteran societies headed by a single outbred queen, paternity (determined by queen mating frequency and sperm use) is the sole variable affecting colony kin structure and is therefore a key predictor of colony reproductive characteristics. Here we investigate paternity and male production in five species of Dolichovespula wasps. Twenty workers from each of 10 colonies of each of five species, 1000 workers in total, were analysed at three DNA microsatellite loci to estimate paternity. To examine the relationship between kin structure and reproductive behaviour, worker ovary activation was assessed by dissection and the maternal origin of adult males was assessed by DNA microsatellites. Effective paternity was low in all species (D. media 1.08, D. maculata 1.0, D. sylvestris 1.15, D. norwegica 1.08 and D. saxonica 1.35), leading to the prediction of queen-worker conflict over male production. In support of this, workers with full-size eggs in their ovaries (four out of five species) and adult males that were workers' sons (all five species) were found in queenright colonies. However, workers were only responsible for a minority of male production (D. media 7.4%, D. maculata 20.9%, D. sylvestris 9.8%, D. norwegica 2.6% and D. saxonica 34.6%) suggesting that the queen maintains considerable reproductive power over the workers. Kin structure and reproductive conflict in Dolichovespula contrast with their sister group Vespula. Dolichovespula is characterized by low paternity, worker reproduction, and queen-worker conflict and Vespula by high paternity, effective worker policing and absence of worker reproduction. The trend revealed by this comparison is as predicted by kin selection theory suggesting that colony kin structure has been pivotal in the evolution of the yellowjacket wasps.  相似文献   

8.
Kin and levels-of-selection models are common approaches for modelling social evolution. Indirect genetic effect (IGE) models represent a different approach, specifying social effects on trait values rather than fitness. We investigate the joint effect of relatedness, multilevel selection and IGEs on response to selection. We present a measure for the degree of multilevel selection, which is the natural partner of relatedness in expressions for response. Response depends on both relatedness and the degree of multilevel selection, rather than only one or the other factor. Moreover, response is symmetric in relatedness and the degree of multilevel selection, indicating that both factors have exactly the same effect. Without IGEs, the key parameter is the product of relatedness and the degree of multilevel selection. With IGEs, however, multilevel selection without relatedness can explain evolution of social traits. Thus, next to relatedness and multilevel selection, IGEs are a key element in the genetical theory of social evolution.  相似文献   

9.
Abstract Hamilton's rule provides the foundation for understanding the genetic evolution of social behavior, showing that altruism is favored by increased relatedness and increased productivity of altruists. But how likely is it that a new altruistic mutation will satisfy Hamilton's rule by increasing the reproductive efficiency of the group? Altruism per se does not improve efficiency, and hence we would not expect a typical altruistic mutation to increase the mean productivity of the population. We examined the conditions under which a mutation causing reproductive altruism can spread when it does not increase productivity. We considered a population divided into temporary groups of genetically similar individuals (typically family groups). We show that the spread of altruism requires a pleiotropic link between altruism and enhanced productivity in diploid organisms, but not in haplodiploid organisms such as Hymenoptera. This result provides a novel biological understanding of the barrier to the spread of reproductive altruism in diploids. In haplodiploid organisms, altruism within families that lowers productivity may spread, provided daughters sacrifice their own reproduction to raise full‐sisters. We verified our results using three single‐locus genetic models that explore a range of the possible reproductive costs of helping. The advantage of female‐to‐female altruism in haplodiploids is a well‐known prediction of Hamilton's rule, but its importance in relaxing the linkage between altruism and efficiency has not been explored. We discuss the possible role of such unproductive altruism in the origins of sociality. We also note that each model predicts a large region of parameter space were polymorphism between altruism and selfishness is maintained, a pattern independent of dominance.  相似文献   

10.
All evidence currently available indicates that obligatory sterile eusocial castes only arose via the association of lifetime monogamous parents and offspring. This is consistent with Hamilton''s rule (brs > roc), but implies that relatedness cancels out of the equation because average relatedness to siblings (rs) and offspring (ro) are both predictably 0.5. This equality implies that any infinitesimally small benefit of helping at the maternal nest (b), relative to the cost in personal reproduction (c) that persists throughout the lifespan of entire cohorts of helpers suffices to establish permanent eusociality, so that group benefits can increase gradually during, but mostly after the transition. The monogamy window can be conceptualized as a singularity comparable with the single zygote commitment of gametes in eukaryotes. The increase of colony size in ants, bees, wasps and termites is thus analogous to the evolution of multicellularity. Focusing on lifetime monogamy as a universal precondition for the evolution of obligate eusociality simplifies the theory and may help to resolve controversies about levels of selection and targets of adaptation. The monogamy window underlines that cooperative breeding and eusociality are different domains of social evolution, characterized by different sectors of parameter space for Hamilton''s rule.  相似文献   

11.
12.
Summary I consider a general model of a fluctuating environment in which the environmental state each year is drawn at random from some given distribution. Each year organisms must choose what action to perform before the environmental state for that year is known. There is no interaction with kin. In this scenario, natural selection will tend to produce organisms which maximize their geometric mean fitness. In this paper I introduce the idea of the profile of a strategy. This function quantifies how the strategy peforms for each environmental state. I show that there is a unique profile such that a strategy is optimal if and only if it has this profile. I then give a characterization of the optimal profile which generalizes previous work by others in this area. The characterization of the optimal profile has a game theoretical interpretation. Motivated by this I introduce a game in which individuals play the field in a constant environment. This game may be interpreted as a cooperative game between kin. The key result of this paper shows that a strategy maximizes geometric mean fitness in the original fluctuating environment problem if and only if it is an evolutionarily stable strategy of the deterministic environment game. It is well known that an optimal strategy in a fluctuating environment may be mixed, involving adaptive coin-flipping. Others have previously noted that this may result in some individuals sacrificing individual reproductive success for the good of the genotype. My analysis shows that one may regain the concept of individual optimization if the quantity maximized is suitably defined. Under an optimal strategy every action taken maximizes the expected number of offspring produced, where this expectation is not calculated using the true distribution of environmental states, but a distribution modified to take account of the actions of kin.  相似文献   

13.
In evolutionary terms, life is about reproduction. Yet, in some species, individuals forgo their own reproduction to support the reproductive efforts of others. Social insect colonies for example, can contain up to a million workers that actively cooperate in tasks such as foraging, brood care and nest defence, but do not produce offspring. In such societies the division of labour is pronounced, and reproduction is restricted to just one or a few individuals, most notably the queen(s). This extreme eusocial organisation exists in only a few mammals, crustaceans and insects, but strikingly, it evolved independently up to nine times in the order Hymenoptera (including ants, bees and wasps). Transitions from a solitary lifestyle to an organised society can occur through natural selection when helpers obtain a fitness benefit from cooperating with kin, owing to the indirect transmission of genes through siblings. However, this process, called kin selection, is vulnerable to parasitism and opportunistic behaviours from unrelated individuals. An ability to distinguish kin from non-kin, and to respond accordingly, could therefore critically facilitate the evolution of eusociality and the maintenance of non-reproductive workers. The question of how the hymenopteran brain has adapted to support this function is therefore a fundamental issue in evolutionary neuroethology. Early neuroanatomical investigations proposed that social Hymenoptera have expanded integrative brain areas due to selection for increased cognitive capabilities in the context of processing social information. Later studies challenged this assumption and instead pointed to an intimate link between higher social organisation and the existence of developed sensory structures involved in recognition and communication. In particular, chemical signalling of social identity, known to be mediated through cuticular hydrocarbons (CHCs), may have evolved hand in hand with a specialised chemosensory system in Hymenoptera. Here, we compile the current knowledge on this recognition system, from emitted identity signals, to the molecular and neuronal basis of chemical detection, with particular emphasis on its evolutionary history. Finally, we ask whether the evolution of social behaviour in Hymenoptera could have driven the expansion of their complex olfactory system, or whether the early origin and conservation of an olfactory subsystem dedicated to social recognition could explain the abundance of eusocial species in this insect order. Answering this question will require further comparative studies to provide a comprehensive view on lineage-specific adaptations in the olfactory pathway of Hymenoptera.  相似文献   

14.
15.
16.
It is difficult to imagine how warning colours evolve in unpalatable prey. Firstly, novel warningly coloured variants gain no protection from their colours, since predators have not previously encountered and learnt their colour patterns. This leads to a frequency-dependent disadvantage of a rare variant within a species. Secondly, novel warningly coloured variants may be more conspicuous than non-aposematic prey.
Nevertheless, it is obvious that many palatable butterflies have bright colours used in intraspecific communication and in duping predators. Other palatable butterflies are already warningly coloured. Should such butterflies evolve unpalatability, perhaps because of a host-plant shift, these bright colours would be preadapted to a warning role. Warning colours could then continue to evolve by enhancement of memorable characteristics of these patterns, or by mimicry.
Even within lineages of warningly coloured, unpalatable butterflies, colour patterns have continued to evolve rapidly. This diversity of warning colour patterns could have evolved in a number of ways, including individual and kin selection, and by the shifting balance. Evidence for these mechanisms is discussed, as are the similarities between the evolution of warning colours and more general evolutionary processes, including sexual selection and speciation.  相似文献   

17.
Plant studies that have investigated the fitness consequences of growing with siblings have found conflicting evidence that can support different theoretical frameworks. Depending on whether siblings or strangers have higher fitness in competition, kin selection, niche partitioning and competitive ability have been invoked. Here, we bring together these processes in a conceptual synthesis and argue that they can be co-occurring. We propose that these processes can be reconciled and argue for a trait-based approach of measuring natural selection instead of the fitness-based approach to the study of sibling competition. This review will improve the understanding of how plants interact socially under competitive situations, and provide a framework for future studies.  相似文献   

18.
S W Alemu  P Berg  L Janss  P Bijma 《Heredity》2014,112(2):197-206
Social interactions among individuals are widespread, both in natural and domestic populations. As a result, trait values of individuals may be affected by genes in other individuals, a phenomenon known as indirect genetic effects (IGEs). IGEs can be estimated using linear mixed models. The traditional IGE model assumes that an individual interacts equally with all its partners, whether kin or strangers. There is abundant evidence, however, that individuals behave differently towards kin as compared with strangers, which agrees with predictions from kin-selection theory. With a mix of kin and strangers, therefore, IGEs estimated from a traditional model may be incorrect, and selection based on those estimates will be suboptimal. Here we investigate whether genetic parameters for IGEs are statistically identifiable in group-structured populations when IGEs differ between kin and strangers, and develop models to estimate such parameters. First, we extend the definition of total breeding value and total heritable variance to cases where IGEs depend on relatedness. Next, we show that the full set of genetic parameters is not identifiable when IGEs differ between kin and strangers. Subsequently, we present a reduced model that yields estimates of the total heritable effects on kin, on non-kin and on all social partners of an individual, as well as the total heritable variance for response to selection. Finally we discuss the consequences of analysing data in which IGEs depend on relatedness using a traditional IGE model, and investigate group structures that may allow estimation of the full set of genetic parameters when IGEs depend on kin.  相似文献   

19.
Kin selection theory is a kind of causal analysis. The initial form of kin selection ascribed cause to costs, benefits and genetic relatedness. The theory then slowly developed a deeper and more sophisticated approach to partitioning the causes of social evolution. Controversy followed because causal analysis inevitably attracts opposing views. It is always possible to separate total effects into different component causes. Alternative causal schemes emphasize different aspects of a problem, reflecting the distinct goals, interests and biases of different perspectives. For example, group selection is a particular causal scheme with certain advantages and significant limitations. Ultimately, to use kin selection theory to analyse natural patterns and to understand the history of debates over different approaches, one must follow the underlying history of causal analysis. This article describes the history of kin selection theory, with emphasis on how the causal perspective improved through the study of key patterns of natural history, such as dispersal and sex ratio, and through a unified approach to demographic and social processes. Independent historical developments in the multivariate analysis of quantitative traits merged with the causal analysis of social evolution by kin selection.  相似文献   

20.
Pluralism is the coexistence of equivalent theoretical frameworks, either because they are historically entrenched or because they achieve separate insights by viewing the same process in different ways. A recent article by West et al. [Journal of Evolutionary Biology (2007) vol. 20, 415-432] attempts to classify the many equivalent frameworks that have been developed to study the evolution of social behaviour. This article addresses shortcomings in the West et al.'s article, especially with respect to multilevel selection, in a common effort to maximize the benefits of pluralism while minimizing the semantic costs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号