首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Condensed tannins are major flavonoid end products that affect the nutritional quality of many legume seeds. They chelate minerals and interact with proteins, thus reducing their bioavailability. Tannins also contribute to seed coat color and pigment distribution or intensity. The objective of this study was to analyze the relationship between quantitative trait loci (QTL) for seed tannin concentration in common bean and Mendelian genes for seed coat color and pattern. Three populations of recombinant inbred lines, derived from crosses between the Andean and Mesoamerican genepools were used for QTL identification and for mapping STS markers associated with seed color loci. Seed coat condensed tannins were determined with a butanol–HCl method and a total of 12 QTL were identified on separate linkage groups (LGs) in each of the populations with individual QTL explaining from 10 to 64% of the phenotypic variation for this trait. Loci on linkage groups B3 and B10 were associated with the Mendelian genes Z and Bip for partly colored seed coat pattern, while a QTL on linkage group B7 was associated with the P gene which is the primary locus for the control of color expression in beans. In conclusion, this study found that the inheritance of tannin concentration fits an oligogenic model and identifies novel putative alleles at seed coat color and pattern genes that control tannin accumulation. The results will be important for the genetic improvement of nutritionally enhanced or biofortified beans that have health promoting effects from higher polyphenolics or better iron bioavailability.  相似文献   

2.
Seed coat color inheritance in Brassica napus was studied in F1, F2, F3 and backcross progenies from crosses of five black seeded varieties/lines to three pure breeding yellow seeded lines. Maternal inheritance was observed for seed coat color in B. napus, but a pollen effect was also found when yellow seeded lines were used as the female parent. Seed coat color segregated from black to dark brown, light brown, dark yellow, light yellow, and yellow. Seed coat color was found to be controlled by three genes, the first two genes were responsible for black/brown seed coat color and the third gene was responsible for dark/light yellow seed coat color in B. napus. All three seed coat color alleles were dominant over yellow color alleles at all three loci. Sequence related amplified polymorphism (SRAP) was used for the development of molecular markers co-segregating with the seed coat color genes. A SRAP marker (SA12BG18388) tightly linked to one of the black/brown seed coat color genes was identified in the F2 and backcross populations. This marker was found to be anchored on linkage group A9/N9 of the A-genome of B. napus. This SRAP marker was converted into sequence-characterized amplification region (SCAR) markers using chromosome-walking technology. A second SRAP marker (SA7BG29245), very close to another black/brown seed coat color gene, was identified from a high density genetic map developed in our laboratory using primer walking from an anchoring marker. The marker was located on linkage group C3/N13 of the C-genome of B. napus. This marker also co-segregated with the black/brown seed coat color gene in B. rapa. Based on the sequence information of the flanking sequences, 24 single nucleotide polymorphisms (SNPs) were identified between the yellow seeded and black/brown seeded lines. SNP detection and genotyping clearly differentiated the black/brown seeded plants from dark/light/yellow-seeded plants and also differentiated between homozygous (Y2Y2) and heterozygous (Y2y2) black/brown seeded plants. A total of 768 SRAP primer pair combinations were screened in dark/light yellow seed coat color plants and a close marker (DC1GA27197) linked to the dark/light yellow seed coat color gene was developed. These three markers linked to the three different yellow seed coat color genes in B. napus can be used to screen for yellow seeded lines in canola/rapeseed breeding programs.  相似文献   

3.

Key message

A QTL for non-darkening seed coat from ‘Wit-rood boontje’ was mapped in pinto bean population on chromosome Pv10, comprising 40 candidate genes.

Abstract

The seed coat colour darkens with age in some market classes of dry beans (Phaseolus vulgaris), including pinto bean. Beans with darkened seed coats are discounted in the market place, since they are believed to be associated with lower nutritional quality, increased cooking time, and decreased palatability. The objective of this research was to map a non-darkening gene from a cranberry-like bean ‘Wit-rood boontje’ using a recombinant inbred line population, derived from a cross between ’Wit-rood boontje’ and a slow-darkening pinto bean (1533-15). The population was characterized for seed phenotype and genotyped with an Illumina BeadChip. A genetic linkage map was constructed with 1327 informative SNP markers plus an STS marker (OL4S500) and an SSR marker (Pvsd-0028), previously associated with the J gene and Sd gene, respectively, as well as non-darkening and slow-darkening phenotypes. The linkage map spanned 1253.2 cM over 11 chromosomes. A major QTL for the non-darkening trait was flanked by SNP 715646341 and SNP 715646348 on chromosome Pv10. The region, which spanned 13.2 cM, explained 48% of the phenotypic variation for seed coat darkening. Forty candidate genes were identified in the QTL interval. This information can be used to develop a gene-based marker to facilitate breeding non-darkening pinto beans and may lead to a better understanding of the molecular mechanism for the postharvest darkening phenomenon in pinto bean.
  相似文献   

4.
Bean dwarf mosaic virus (BDMV) is a single-stranded DNA virus (genus: Begomovirus, family: Geminiviridae) that infects common bean (Phaseolus vulgaris L.) and causes stunted plant growth, and mosaic and mottle symptoms in leaves. BDMV shows differential pathogenicity in common bean, infecting germplasm of the Andean gene pool (e.g., the snap bean cultivar Topcrop), but not that of the Middle American gene pool (e.g., the pinto bean cultivar Othello). Resistance to BDMV in Othello is associated with development of a hypersensitive response (HR) in vascular (phloem) tissues. In this study, Middle American germplasm representing the four recognized races (i.e., Durango, Guatemala, Jalisco, and Mesoamerica) and the parents of Othello were inoculated with BDMV and a BDMV-green fluorescent protein (GFP) reporter. All genotypes showed partial or complete resistance to BDMV and BDMV-GFP, indicating the widespread distribution of resistance in the Middle American gene pool. A number of BDMV-resistant germplasm did not show the HR, indicating it is not correlated with resistance. In the F1, F2, and F3 of reciprocal crosses between Othello and Topcrop, a single dominant allele, Bdm, conferred BDMV resistance.Communicated by J. Dvorak  相似文献   

5.
The brown planthopper (BPH) is one of the most destructive insect pests of rice in Thailand. We performed a cluster analysis that revealed the existence of four groups corresponding to the variation of virulence against BPH resistance genes in 45 BPH populations collected in Thailand. Rice cultivars Rathu Heenati and PTB33, which carry Bph3, showed a broad-spectrum resistance against all BPH populations used in this study. The resistant gene Bph3 has been extensively studied and used in rice breeding programs against BPH; however, the chromosomal location of Bph3 in the rice genome has not yet been determined. In this study, a simple sequence repeat (SSR) analysis was performed to identify and localize the Bph3 gene derived from cvs. Rathu Heenati and PTB33. For mapping of the Bph3 locus, we developed two backcross populations, BC1F2 and BC3F2, from crosses of PTB33 × RD6 and Rathu Heenati × KDML105, respectively, and evaluated these for BPH resistance. Thirty-six polymorphic SSR markers on chromosomes 4, 6 and 10 were used to survey 15 resistant (R) and 15 susceptible (S) individuals from the backcross populations. One SSR marker, RM190, on chromosome 6 was associated with resistance and susceptibility in both backcross populations. Additional SSR markers surrounding the RM190 locus were also examined to define the location of Bph3. Based on the linkage analysis of 208 BC1F2 and 333 BC3F2 individuals, we were able to map the Bph3 locus between two flanking SSR markers, RM589 and RM588, on the short arm of chromosome 6 within 0.9 and 1.4 cM, respectively. This study confirms both the location of Bph3 and the allelic relationship between Bph3 and bph4 on chromosome 6 that have been previously reported. The tightly linked SSR markers will facilitate marker-assisted gene pyramiding and provide the basis for map-based cloning of the resistant gene.  相似文献   

6.
Smelts of the genus Osmerus, O. eperlanus and O. mordax dentes, inhabiting the basins of the Atlantic, Arctic, and Pacific oceans were investigated using RFLP analysis of the mitochondrial DNA segments A8/A6/COIII/ND3 and ND3/ND4, and sequencing of the cytb and COI genes (mtDNA), and intron 1 of the rpS7 gene (nDNA). A total of 14 samples from the populations from most part of the Russian range were examined. The mean values of haplotype and nucleotide diversity constituted 0.5997 ± 0.11264 and 0.003201 for O. m. dentex, and 0.3086 ± 0.09892 and 0.000431 for O. eperlanus, respectively. The high level of interspecific diversity (12.94%) along with the low level of intraspercific diversity (0.049% for O. m. dentex, and 0.001% for O. eperlanus was observed. The dendrograms (UPGMA, NJ, MP, and BA) constructed using the data of RFLP analysis of mtDNA, along with the sequencing data of mitochondrial and nuclear genes were congruent. The representatives of O. eperlanus and O. m. dentex formed steady clusters in accordance with their species affiliation, albeit without subdivision into local populations depending on their geographic locality.  相似文献   

7.
We developed five polymerase chain reaction‐based markers that detect variation in the mitochondrial genome of the Pacific lamprey, Entosphenus tridentatus, across most of its range. Two gene fragments (ND2 and ND5) were amplified and digested with three and two restriction enzymes, respectively, detecting sequence variation at 18 sites (ND2 = 13; ND5 = 5) and yielding 29 composite haplotypes among 1246 lampreys. These sequence‐based markers will be useful in a range of phylogeographical and population genetic studies.  相似文献   

8.
There has been very little effort to understand genetic divergence between wild and hatchery populations of masu salmon (Oncorhynchus masou). In this study, we used mitochondrial (mt) NADH dehydrogenase subunit 5 gene (ND5) and six polymorphic nuclear microsatellite DNA loci to compare the genetic variability in three hatchery broodstocks of masu salmon with the variability in eight putative wild masu populations sampled in five rivers including one known source river for the hatchery broodstocks. Both ND5 and microsatellites showed no significant genetic divergence (based on FST estimates) between four annual collections from the source river population, suggesting no change in genetic diversity over this time period. The FST estimates, an analysis of molecular variance (AMOVA), and a neighbor-joining tree using both DNA markers suggested significant differentiation between the three hatchery and all eight putative wild populations. We conclude that genetic diversity of hatchery populations are low relative to putative wild populations of masu salmon, and we discuss the implications for conservation and fisheries management in Hokkaido.  相似文献   

9.
Faba beans are inexpensive, nutrient-dense sources of plant protein, but anti-nutritional factors such as condensed tannins reduce the biological value of their protein. Two recessive genes, zt-1 and zt-2, control the absence of tannins in faba bean seeds and also determine a white flower character on the plant. However, crosses between them produce coloured F1 plants with tannins that contaminate the crop. Therefore, it is important to identify the gene present in all tannin-free cultivars and gene bank accessions to enable breeders to choose appropriate genitors for their crosses. The aim of this study was the identification of markers linked to zt-1, one of the genes governing free tannin content in faba bean. A segregating F2 population derived from the cross between the coloured flower and high tannin content genotype Vf6 and a zt-1 line was developed and characterized phenotypically. Bulked Segregant Analysis (BSA) was used to identify Random Amplified Polymorphic DNA (RAPD) markers linked to the zt-1 gene. Four RAPD loci (OPC5551, OPG15600, OPG111171 and OPAF20776) showed polymorphism between the contrasting bulks. The markers were sequenced to develop specific Sequence Characterised Amplified Regions (SCARs). Amplification of SCC5551 produced a single product which was only observed in the white flowered and zero tannin content genotypes, whereas SCAR SCG111171only produced a band in F2 plants with coloured flower and high tannin content. SCARs SCC5551 and SCG111171 were tested for their applicability for routine screening in 37 faba bean genotypes differing in flower colour and tannin content. SCC5551, allowed the prediction of the zt-1 genotypes with a 95% of accuracy, underscoring the potential of this SCAR marker as a cost-effective tool for MAS in large faba bean breeding populations.  相似文献   

10.
Laboratory crosses were carried out among three genetically differentiated Los Angeles populations (all located within approximately 15 km) and one San Diego population (approximately 150 km away) of the intertidal copepod Tigriopus californicus. Despite high levels of allozyme differentiation, all crosses produced viable F1 progeny. Most F1 progeny had shorter developmental times and reduced variance in developmental times compared to the parental populations. Only one pair of populations failed to produce viable F2 progeny; when the central Los Angeles population (AB) was crossed to the San Diego (SD) population, most larvae died during the late naupliar stages. Developmental times in the F2 generation of the other Los Angeles × San Diego crosses were typically 40% longer than developmental times of the parental populations. Among the Los Angeles populations, only one cross (and not its reciprocal) showed a similarly large increase in developmental time. Variance in F2 developmental times was greater than the parental variance in 5 of 10 crosses. These results are discussed with regard to the evolution of coadapted gene complexes and population differentiation in T. californicus.  相似文献   

11.
We present a phylogenetic and morphological study of the grassland earless dragon, Tympanocryptis pinguicolla, an endangered habitat specialist that occurs in a few isolated populations in eastern Australia. Tympanocryptis pinguicolla occurred historically in Victoria in south-eastern Australia, but has not been seen since 1990, and current populations are known in New South Wales and Canberra in south-eastern Australia. Recently, new populations identified as T. pinguicolla were discovered on the Darling Downs, Queensland. Translocation of individuals between these populations has been suggested as a conservation management strategy to maintain genetic diversity. To address this issue, we undertook a phylogenetic study of all major populations of T. pinguicolla using a 1838 bp region of mitochondrial DNA, incorporating ND1, ND2, COI and eight tRNA genes. We incorporated specialized degraded-DNA techniques to amplify DNA from historical museum specimens, as no extant tissue was available for Victorian populations. Our results, which include morphological analysis, provide convincing evidence that populations currently identified as T.␣pinguicolla do not comprise a monophyletic species, as the populations from the Darling Downs are more closely related to T. tetraporophora than to T. pinguicolla. In addition, we find that there is a significant level of haplotype divergence between populations of T. pinguicolla, indicating that these lineages separated at least 1.5 mya. Our results suggest translocation may not be an appropriate management strategy and our findings that Darling Downs populations are not T.␣pinguicolla will significantly influence the conservation management of this species in Queensland.  相似文献   

12.
Monogenic lines, which carried 23 genes for blast resistance were tested and used donors to transfer resistance genes by crossing method. The results under blast nursery revealed that 9 genes from 23 genes were susceptible to highly susceptible under the three locations (Sakha, Gemmeza, and Zarzoura in Egypt); Pia, Pik, Pik-p, Piz-t, Pita, Pi b, Pi, Pi 19 and Pi 20. While, the genes Pii, Pik-s, Pik-h, Pi z, Piz-5, Pi sh, Pi 3, Pi 1, Pi 5, Pi 7, Pi 9, Pi 12, Pikm and Pita-2 were highly resistant at the same locations. Clustering analysis confirmed the results, which divided into two groups; the first one included all the susceptible genes, while the second one included the resistance genes. In the greenhouse test, the reaction pattern of five races produced 100% resistance under artificial inoculation with eight genes showing complete resistance to all isolates. The completely resistant genes: Pii, Pik-s, Piz, Piz-5 (=bi2) (t), Pita (=Pi4) (t), Pita, Pi b and Pi1 as well as clustering analysis confirmed the results. In the F1 crosses, the results showed all the 25 crosses were resistant for leaf blast disease under field conditions. While, the results in F2 population showed seven crosses with segregation ratio of 15 (R):1 (S), two cross gave segregated ratio of 3 R:1 S and one gave 13:3. For the identi- fication of blast resistance genes in the parental lines, the marker K3959, linked to Pik-s gene and the variety IRBLKS-F5 carry this gene, which was from the monogenic line. The results showed that four genotypes; Sakha 105, Sakha 103, Sakha 106 and IRBLKS-F5 were carrying Pik-s gene, while was absent in the Sakha 101, Sakha 104, IRBL5-M, IRBL9-W, IRBLTACP1 and IRBL9-W(R) genotypes. As for Pi 5 gene, the results showed that it was present in Sakha 103 and Sakha 104 varieties and absent in the rest of the genotypes. In addition, Pita-Pita- 2 gene was found in the three Egyptian genotypes (Sakha 105, Sakha 101 and Sakha 104) plus IRBLTACP1 monogenetic. In F2 generation, six populations were used to study the inheritance of blast resistance and specific primers to confirm the ratio and identify the resistance genes. However, the ratios in molecular markers were the same of the ratio under field evaluation in the most population studies. These findings would facilitate in breeding programs for gene pyramiding and gene accumulation to produce durable resistance for blast using those genotypes.  相似文献   

13.
Results from mitochondria (mt) DNA restriction site analyses (RSAs) have revealed that wild populations of Drosophila subobscura are formed by two common (I and II) and some rare, often endemic, low-frequency haplotypes. In the study reported here, we analysed nucleotide diversity in a 942-bp fragment of the mtDNA ND5 gene in 48 D. subobscura individuals captured from three populations that showed haplotypes I, II or the less common ones, as well as in one additional individual belonging to D. guanche that was taken as an outgroup. RSAs and sequencing results were compared. The two approaches yielded similar nucleotide variability parameters, suggesting a consistency in the results obtained from mtDNA dynamics in natural populations of D. subobscura. Patterns of polymorphism at ND5 are most consistent with the hypothesis of population expansion after a bottleneck that may have occurred since the last glaciation or which may occur seasonally after the summer and winter. However, we cannot rule out that selection has a role in maintaining the two major haplotypes at intermediate frequencies in worldwide populations of D. subobscura.  相似文献   

14.
Seasonal changes in fur colour in some mammalian species have long attracted the attention of biologists, especially in species showing population variation in these seasonal changes. Genetic differences among populations that show differences in seasonal changes in coat colour have been poorly studied. Because the Japanese hare (Lepus brachyurus) has two allopatric morphotypes that show remarkably different coat colours in winter, we examined the population genetic structure of the species using partial sequences of the SRY gene and six autosomal genes: three coat colour‐related genes (ASIP, TYR, and MC1R) and three putatively neutral genes (TSHB, APOB, and SPTBN1). The phylogenetic tree of SRY sequences exhibited two distinct lineages that diverged approsimately 1 Mya. Although the two lineages exhibited a clear allopatric distribution, it was not consistent with the distribution of morphotypes. In addition, six nuclear gene sequences failed to reveal genetic differences between morphotypes. Population network trees for 11 expedient populations divided the populations into four groups. Genetic structure analysis revealed an admixture of four genetic clusters in L. brachyurus, two of which showed large genetic differences. Our results suggest ancient vicariance in L. brachyurus, and we detected no genetic differences between the two morphotypes. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 761–776.  相似文献   

15.
We assessed prezygotic (probability of spawning) and postzygotic (hatching success) reproductive isolation among the three ecologically and morphologically similar species in the Fundulus notatus species complex. We employed a multi-generation breeding experiment to test the hypotheses that karyotypic differences, body size differences, or geographic isolation among populations will increase pre or postzygotic reproductive barriers. Overall, prezygotic barriers were strong and postzygotic barriers weak in crosses of non-hybrid heterospecifics (F1 hybrid crosses) while prezygotic barriers were weaker and postzygotic barriers stronger in crosses involving hybrid individuals (F2 hybrid crosses and backcrosses). Prezygotic barriers among the two smaller species (Fundulus notatus and F. euryzonus) broke down rapidly; first generation hybrids spawned (F2 hybrid crosses and backcrosses) as frequently as parental forms in intraspecific crosses. There was no increase in postzygotic barriers among species with cytogenetic differences. There were increased prezygotic, but not postzygotic, barriers among geographically isolated populations of one species. While pure males and females were just as likely to spawn with hybrids, some types of hybrid females suffered from increased sterility, but not inviability, over hybrid males. Female sterility was only seen in hybrids with a Fundulus euryzonus parent, while other female hybrids produced viable eggs.  相似文献   

16.
The level of genetic differentiation of northern Dolly Varden char Salvelinus malma malma from Asia and North America was evaluated using the data on mtDNA variation (regions ND1/ND2, ND5/ND6, and Cytb/D-loop) obtained by means of PCR-RFLP analysis. For S. m. malma, the mean values of haplo-type and nucleotide diversity were 0.5261 ± 0.00388 and 0.001558, respectively. The mean estimate of the population nucleotide divergence constituted 0.055%. It was demonstrated that S. m. malma on the most part of the species range examined (drainages of the Beaufort Sea, Chukotka Sea, Bering Sea, and the Sea of Okhotsk) was characterized by the population genetic structure with the low level of genetic differentiation and divergence. At the same time, populations from the Pacific Ocean Gulf of Alaska demonstrated marked genetic differentiation, supported by the high pairwise G4ST values (from 0.4198 to 0.5211) and nucleotide divergence estimates (mean divergence, 0.129%), from Asian and North American populations. Analysis of molecular variance (AMOVA) showed that most of the mtDNA variation in S. m. malma fell in the intrapopulation component (72.5%). At the same time, the differences between the populations (21.1%) and between the regions (6.4%) made lower contribution to the total variation.  相似文献   

17.
The grassland earless dragon, Tympanocryptis pinguicolla, islisted as endangered throughout its range. A recent taxonomic studybased on both morphological and allozyme data elevatedpinguicolla from a subspecies of T. lineata to fullspecies status, but the allozyme data showed considerabledifferentiation among pinguicolla populations. To investigatethe magnitude and nature of these differences with an independent dataset, we targeted key pinguicolla populations and sequenced anapproximately 900 base pair DNA fragment of the mitochondrial genomethat includes half of the ND4 gene and three tRNA genes. We obtainedsequence data from 21 individuals drawn from the three T.pinguicolla populations, included representatives of two otherTympanocryptis species and used an Amphibolurusspecies as an outgroup. Seven mitochondrial haplotypes were found amongthe 21 T. pinguicolla samples – two in the AustralianCapital Territory (ACT) and five in the Cooma region, Phylogeneticsignal in the data sets was extremely strong and a variety ofphylogenetic analyses of the data all resulted in the same single fullyresolved tree. There are 37 unique differences in the ND4 gene betweenthe ACT and Cooma populations. This translates into genetic differencesof between 5.76% and 6.23% between the two populations. Incomparison to studies on other reptile groups in which the same fragmentof DNA was used, the differences found between the ACT and Coomapopulations are more in line with species-level differences thandifferences within a single species and suggests that these populationsshould be considered separate taxonomic units.  相似文献   

18.
The species status of Oeneis urda (Eversmann) and O. mongolica (Oberthür) has been argued based on morphological characters. Reexamination of their major morphological characters has shown a slight differentiation in the two species. Sequences of three mitochondrial genes (COI, ND6, and ND1) and one nuclear region (internal transcribed spacer 2, ITS2) from two O. urda populations (Yangyang and Mt. Hanla) and one O. mongolica population (Uljin) were performed for phylogenetic and population genetic inferences. Sharing of identical sequences in the ND6 gene and ITS2, minimal sequence divergence in the COI and ND1 genes, and phylogenetically undividable sequence types in all mitochondrial genes and ITS2 suggest genetic continuity between the two species. Nevertheless, significant FST estimates (P < 0.05) were found for the COI gene in comparisons between Yangyang (O. urda) and Uljin (O. mongolica), between Yangyang (O. urda) and Mt. Hanla (O. urda), and between Uljin (O. mongolica) and Mt. Hanla (O. urda) populations. These FST estimates, along with other gene‐based analyses collectively suggest isolation of the two species at some point in the past, but incomplete separation between the two species on the mainland (Yangyang and Uljin) and biogeographically forced isolation of the O. urda population on Mt. Hanla collectively appear to complicate species status of these two species that were once further clearly separated.  相似文献   

19.
In Neurospora crassa, crosses between normal sequence strains and strains bearing some translocations can yield progeny bearing a duplication (Dp) of the translocated chromosome segment. Here, 30 breakpoint junction sequences of 12 Dp-generating translocations were determined. The breakpoints disrupted 13 genes (including predicted genes), and created 10 novel open reading frames. Insertion of sequences from LG III into LG I as translocation T(UK8-18) disrupts the eat-3 gene, which is the ortholog of the Podospora anserine gene ami1. Since ami1-homozygous Podospora crosses were reported to increase the frequency of repeat-induced point mutation (RIP), we performed crosses homozygous for a deficiency in eat-3 to test for a corresponding increase in RIP frequency. However, our results suggested that, unlike in Podospora, the eat-3 gene might be essential for ascus development in Neurospora. Duplication-heterozygous crosses are generally barren in Neurospora; however, by using molecular probes developed in this study, we could identify Dp segregants from two different translocation-heterozygous crosses, and using these we found that the barren phenotype of at least some duplication-heterozygous crosses was incompletely penetrant.  相似文献   

20.
Lake Kronotskoye (the Kronotsky Biosphere State Reserve, south-eastern Kamchatka Peninsula) contains three closely related resident morphotypes charrs, which are considered to be either independent species (white charr Salvelinus albus, longhead charr Salvelinus kronocius, Schmidt’s charr Salvelinus schmidti) or a united lacustrine-riverine charrs, represented by several phenotypes. Salvelinus malma malma is isolated from the lake charr populations by an upstream migration barrier in the Kronotskaya River, which flows out of the lake. We examined the level of genetic variability and divergence of mtDNA both between charrs from Kronotsky Lake and between resident lacustrine charrs and the hypothetical ancestor species S. m. malma. The RFLP-PCR analysis was used to examine six regions (ND1/ND2, ND3/ND4L/ND4, ND5/ND6, COI/COII/A8, A8/A6/COIII/ND3, and Cytb/D-loop), comprising ~80% of the mtDNA. Significantly different levels of diversity were found among the populations of lacustrine charrs. S. albus and S. schmidti had the highest indices of mtDNA diversity among the investigated populations from the different habitats. Heterogeneity tests revealed highly significant differentiation among lake populations and among riverine (Kronotskaya River) and lake (Lake Kronotskoye) populations of charrs, indicating their reproductive isolation. Hierarchical analysis of molecular variance revealed the following regularities of diversity distribution: the high proportion of interpopulation variation (93.25%) and low but statistically significant subdivision between charr populations (6.75%, P < 0.001). Results of the present study suggest that the populations of S. albus, S. kronocius, S. schmidti belong to the S. m. malma phylogenetic group. The divergence value of mtDNA of resident charrs (0.0357–0.0010%) does not exceed the intraspecific variability of S. m. malma. The analysis of the mtDNA haplotypes genealogy of charrs showed that the low values of nucleotide divergence reflect a short period from the beginning of divergence from the ancestral lineages and are due to ancestral polymorphism, as well as to haplotype exchange between the diverged phylogenetic groups as a result of introgressive hybridization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号