首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exotic woody weed plants are a very serious threat to seed dispersed by ungulate in the tropical forest of Asia. The ungulates in Point Calimere Wildlife Sanctuary (PCWS) are a significant role in native indigenous seed dispersal. The exotic woody weed tree Prosopis juliflora prevalence distributed in the PCWS and they might potentially alter the native medicinal plant species. In the present investigation, we have assessed the seed dispersal by ungulates in PCWS from January to March 2017. Four different ungulate species were selected to understand their seed dispersal rate of different plant species in selected sanctuary. This investigation was planned to confirm the seed dispersal by ungulates of blackbuck, spotted deer, wild boar and feral horse. Among the four different ungulates tested, the maximum numbers of pellets collected from blackbuck and no seed found in their pellets. The low quantities of pellets were collected from wild boar and this study has recorded medium-sized ungulates which dispersed variety of plant. However, the dispersal of the seed of medicinal plants were not considerably high and relatively moderate percentage of seeds dispersal occurred in medium-sized ungulates like wild boar and spotted deer. P. juliflora had 100% seed germination rate were observed from the faecal samples of wild boar and feral horse. The control seed achieved maximum seedling rate than the ungulates seeds.  相似文献   

2.
1. Many invertebrates inhabiting insular aquatic habitats rely on external agents or vectors to disperse. Besides water connections and wind, waterfowl and amphibians are known to mediate passive dispersal of freshwater invertebrates. However, the possibility of dispersal by terrestrial mammals has been largely overlooked. 2. We investigated the potential of both external and internal zoochorous dispersal of aquatic invertebrates by the wild boar (Sus scrofa) in Mediterranean wetlands in the Camargue (France). As wild boar frequently visit wetlands for feeding and wallowing purposes, we hypothesized that they may be important passive dispersal vectors of aquatic invertebrates at a local scale. Dried mud was collected from selected ‘rubbing trees’ used by boars to dispose of parasites. Additionally, faecal pellets were collected from different locations in the wetland area. 3. Seventeen freshwater invertebrate taxa including rotifers, cladocerans, copepods and ostracods hatched from sediment obtained from ‘rubbing trees’, while invertebrates hatching from dried faeces (10 taxa) were mainly rotifers. Dispersing invertebrates were collected up to 318 m from a nearest potential dispersal source. Both abundance and richness of invertebrates significantly decreased with dispersal distance. 4. Our results demonstrate that large mammals such as wild boar can act as dispersal vectors of aquatic invertebrates at a local scale in the wetland area of the Camargue and suggest that external transport may be quantitatively more important than internal transport. As wallowing (mud bathing) is common in many terrestrial mammals, this mode of dispersal may be quite widespread.  相似文献   

3.
Non‐native mammals that are disturbance agents can promote non‐native plant invasions, but to date there is scant evidence on the mechanisms behind this pattern. We used wild boar (Sus scrofa) as a model species to evaluate the role of non‐native mammals in promoting plant invasion by identifying the degree to which soil disturbance and endozoochorous seed dispersal drive plant invasions. To test if soil disturbance promotes plant invasion, we conducted an exclosure experiment in which we recorded emergence, establishment and biomass of seedlings of seven non‐native plant species planted in no‐rooting, boar‐rooting and artificial rooting patches in Patagonia, Argentina. To examine the role of boar in dispersing seeds we germinated viable seeds from 181 boar droppings and compared this collection to the soil seed bank by collecting a soil sample adjacent to each dropping. We found that both establishment and biomass of non‐native seedlings in boar‐rooting patches were double those in no‐rooting patches. Values in artificial rooting patches were intermediate between those in boar‐rooting and no‐rooting treatments. By contrast, we found that the proportion of non‐native seedlings in the soil samples was double that in the droppings, and over 80% of the germinated seeds were native species in both samples. Lastly, an effect size test showed that soil disturbance by wild boar rather than endozoochorous dispersal facilitates plant invasions. These results have implications for both the native and introduced ranges of wild boar, where rooting disturbance may facilitate community composition shifts.  相似文献   

4.
Seed dispersal by Japanese monkeys (Macaca fuscata yakui) via cheek-pouch was studied in a warm temperate evergreen forest on Yakushima Island. Plant list was compiled based on a study during 1986–1995, of which troops of monkeys have been habituated without artificial feeding. We followed the well-habituated monkeys in 1993 and 1994 to observe the feeding behavior and their treatments of fruits and seeds, and collected seeds dispersed by monkeys to record the distance carried from the mother trees. We checked the difference of germination ratio between seeds dispersed via cheek-pouch and seeds taken from mother trees by sowing experiments. Seeds and acorns of 22 species were observed to be dispersed via cheek-pouch of monkeys. Among them, three species with acorns were never dispersed via feces, and 15 species with drupes were seldom dispersed via feces. Plant species of which seeds are dispersed only via cheek-pouch had larger seeds than those of dispersed both via cheek-pouch and via feces, and typically had only one or two seeds in a fruit. As for one of cheek-pouch dispersal species,Persea thunbergii, the mean distance when seeds were carried from the mother trees via cheek-pouch was 19.7 m, and the maximum distance was as long as 105 m although more than 80% of seeds were dispersed within 30 m from mother trees. And 82% of seeds dispersed via cheek-pouch germinated. The easy separation of seeds from other parts of the fruit seems to facilitate cheek-pouch dispersal more than dispersal via feces. Cheek-pouch dispersal by monkeys has possibly enhanced the natural selection for larger seeds which bring forth larger seedlings with high shade-tolerance. In conclusion, cheek-pouch dispersal by monkeys is quite an important mode for trees in the mature stand in a warm temperate evergreen forest on Yakushima Island.  相似文献   

5.
Aim To enhance our understanding of the evolutionary interactions between seed‐dispersal syndromes, life‐forms, seed size, and habitat characteristics by studying their association with the regional‐scale distributions of subtropical rain‐forest plants in the context of climatic gradients. Location South‐east Queensland, subtropical eastern Australia (152° E, 26° S). Methods We classified 250 rain‐forest sites into six floristic site‐groups based on their woody plant composition. The resulting classification was strongly associated with variation in rainfall. The distribution of species across the floristic site‐groups was used to assign 568 species to seven habitat classes (one class for ‘widespread’ species, with all other species classified according to the site‐group within which they were most frequent). Species were also classified for three other categorical life‐history factors: three dispersal syndromes based on diaspore morphology (fleshy, wind‐assisted, and unadorned); four life‐forms (trees, shrubs and small trees, tall climbers, and short and shrubby climbers); and four seed‐diameter classes (< 3 mm, ≥ 3 and < 4.5 mm, ≥ 4.5 and < 7 mm, and ≥ 7 mm). We used a basic comparative approach augmented by simple phylogenetically constrained comparisons to assess association between dispersal syndrome, seed size, life‐form, and habitat class. Results Across the rain forests of south‐east Queensland, the proportion of species with fleshy diaspores or of large stature increases with rainfall. High‐rainfall sites also have larger average seed sizes, but the difference in average seed size between high‐ and low‐rainfall sites is small compared with variation within sites. Among species, those with fleshy fruit tend to have larger seeds and to favour high‐rainfall sites. Very few small trees produce diaspores adapted for wind‐assisted dispersal. On average, species with unadorned diaspores have smaller seeds than those with fleshy diaspores. However, within sites, species with unadorned and fleshy diaspores have similar average seed sizes, and some species with unadorned diaspores from high‐rainfall habitats have extremely large seeds. Main conclusions Commonly observed associations between fleshy fruit, larger plants, larger seeds, and productive habitats are apparent within the rain‐forest flora of south‐east Queensland. However, these associations are generally weak and involve complex interactions. For example, the strong tendency for species with fleshy fruit to have larger seeds than those with unadorned diaspores concealed a significant group of species from wetter forests that produce extremely large seeds and unadorned diaspores. The most widespread species in this study tend to be large plants (particularly robust lianes) and to produce fleshy fruit, but they tend not to have relatively large seeds. The association between large seeds, large plants, fleshy fruit and productive habitats is discussed as part of an evolutionary strategy favouring fitness in populations close to carrying capacity. We review some problems with focusing on establishment chances per seed as the driver towards association between large seeds, large plants and productive rain‐forest habitats (the difficult‐establishment hypothesis). Instead we suggest that production of large, short‐lived seeds by long‐lived plants in temporally stable, closed habitats may reflect the limited evolutionary potential for strategies enhancing colonization (e.g. producing large numbers of dormant seeds), thus allowing the establishment benefits of large seeds greater selective influence (the slow‐replacement hypothesis). The association of fleshy fruit with large seeds probably reflects the difficulty of dispersing large seeds by other means (the difficult‐dispersal hypothesis).  相似文献   

6.
Seed dispersal is a crucial process for the dynamics and maintenance of plant populations. Free-ranging animals are effective dispersal vectors because they can move between similar habitats and transport seeds into favourable environments. Dung samples from two species of common free-ranging mammals—deer and wild boar—were used to study endozoochorous dispersal of seeds in a military training area in western Bohemia. The area was abandoned after WWII, and the military training area was established in 1953. The vegetation consists of shrublands and dry grasslands. Data on the local species pool of grassland herbs and forbs were collected to compare the characteristics of dispersed versus non-dispersed plants. Deer and wild boar dispersed 84 plant species; however, species composition of seedlings emerging from dung samples showed significant differences between dispersal vectors and notable change across the growing season. 80% of all seedlings extracted from the dung samples belonged to stinging nettle, Urtica dioica. From trait analyses, seeds of endozoochorous plants had a higher longevity index in the soil seed bank than non-endozoochorous plants and more often possessed a mucilaginous surface. Our results show that deer and boar are successful, though not substitutable dispersers.  相似文献   

7.
We evaluated the role of wild large mammals as dispersers of fleshy-fruited woody plants in woodland pastures of the Cantabrian range (N Spain). By searching for seeds in mammal scats across four localities, we addressed how extensive seed dispersal was in relation to the fleshy-fruited plant community, and applied a network approach to identify the relative role of mammal species in the seed dispersal process. We also tested the response of mammalian dispersers to forest availability at increasing spatial scales. Five carnivores and three ungulates dispersed seeds of eight fleshy-fruited trees and shrubs. Mammalian seed dispersal did not mirror community-wide fruit availability, as abundant fruiting trees were scarce whereas thorny shrubs were over-represented among dispersed species. The dispersal network was dominated by bramble (Rubus ulmifolius/fruticosus), the remaining plants being rarer and showing more restricted disperser coteries. Fox (Vulpes vulpes), badger (Meles meles), and wild boar (Sus scrofa) dispersed mostly bramble, whereas martens (Martes sp.) dispersed mostly wild rose (Rosa sp.). Ungulates occasionally dispersed holly (Ilex aquifolium) and hawthorn (Crataegus monogyna). The empirical network reflected a skewed distribution of interactions and some functional complementarity (as judged from the low levels of connectance and nestedness), but also some degree of specialization. Mammals overused uncovered microsites for seed deposition, and increased their disperser activity in those landscape sectors devoid of forest. Combined with previous findings on avian seed dispersal, this study suggest a strong functional complementarity coming from the low overlap in the main plant types that mammals and birds disperse – thorny shrubs and trees, respectively – and the differential patterns of seed deposition, with mammals mostly dispersing into deforested areas, and birds into forest-rich landscapes.  相似文献   

8.
Mellitochory, seed dispersal by bees, has been implicated in long-distance dispersal of the tropical rain forest tree, Corymbia torelliana (Myrtaceae). We examined natural and introduced populations of C. torelliana for 4 years to determine the species of bees that disperse seeds, and the extent and distance of seed dispersal. The mechanism of seed dispersal by bees was also investigated, including fruit traits that promote dispersal, foraging behaviour of bees at fruits, and the fate of seeds. The fruit structure of C. torelliana , with seed presented in a resin reward, is a unique trait that promotes seed dispersal by bees and often results in long-distance dispersal. We discovered that a guild of four species of stingless bees, Trigona carbonaria, T. clypearis, T. sapiens , and T. hockingsi, dispersed seeds of C. torelliana in its natural range. More than half of the nests found within 250 m of fruiting trees had evidence of seed transport. Seeds were transported minimum distances of 20–220 m by bees. Approximately 88% of seeds were dispersed by gravity but almost all fruits retained one or two seeds embedded in resin for bee dispersal. Bee foraging for resin peaked immediately after fruit opening and corresponded to a peak of seed dispersal at the hive. There were strong correlations between numbers of seeds brought in and taken out of each hive by bees ( r =  0.753–0.992, P  < 0.05), and germination rates were 95 ± 5%. These results showed that bee-transported seeds were effectively dispersed outside of the hive soon after release from fruits. Seed dispersal by bees is a non-standard dispersal mechanism for C. torelliana, as most seeds are dispersed by gravity before bees can enter fruits. However, many C. torelliana seeds are dispersed by bees, since seeds are retained in almost all fruits, and all of these are dispersed by bees.  相似文献   

9.
Abstract Araucaria Forest expansion over grassland takes place under wet climate conditions and low disturbance and it is hypothesized that isolated trees established on grassland facilitate the establishment of forest woody species beneath their canopies. Forest with Araucaria angustifolia is a particular type of Brazilian Atlantic Forest and the main forest type on the highland plateau in south Brazil, often forming mosaics with natural Campos grassland. The objectives of this paper were to evaluate the role of isolated shrubs and trees as colonization sites for seedlings of Araucaria Forest woody species on grassland, to determine which species function as preferential nurse plants in the process and the importance of vertebrate diaspore dispersal on the structure of seedling communities beneath nurse plants. The study was conducted in São Francisco de Paula, Rio Grande do Sul State, where we sampled isolated shrubs and trees in natural grassland near Araucaria Forest edges. Seedlings were counted and identified, and seedling diaspore dispersal syndromes, size and colour were registered. We detected 11 woody species with a potential role in nucleating grassland colonization by forest species. Beneath the canopies of nurse plants more forest species seedlings were found compared with open field grassland and the seedlings had diaspores mostly dispersed by vertebrates. Also, more seedlings were found under the canopy of A. angustifolia than beneath other nurse plant species. We conclude that A. angustifolia trees established on grassland act as nurse plants, by attracting disperser birds that promote colonization of the site by other forest species seedlings, and that under low level of grassland disturbance, conservation of frugivorous vertebrate assemblages may increase forest expansion over natural grassland and also facilitate the regeneration of degraded forest areas.  相似文献   

10.
11.
Pizo  Marco A.  Oliveira  Paulo S. 《Plant Ecology》2001,157(1):37-52
Ants are often attracted to diaspores not adapted for dispersal by ants. These diaspores may occasionally benefit from this interaction. We selected six nonmyrmecochorous plant species (Virola oleifera, Eugenia stictosepala, Cabralea canjerana, Citharexylum myrianthum, Alchornea glandulosa and Hyeronima alchorneoides) whose diaspores differ in size and lipid content, and investigated how these features affect the outcome of ant-diaspore interactions on the floor of a lowland Atlantic forest of Southeast Brazil. A total of 23 ant species were seen interacting with diaspores on the forest floor. Ants were generally rapid at discovering and cleaning the diaspore pulp or aril. Recruitment rate and ant attendance were higher for lipid-rich diaspores than for lipid-poor ones. Removal rate and displacement distance were higher for small diaspores. The large ponerine ant Pachycondyla striata, one of the most frequent attendants to lipid-rich arillate diaspores, transported the latter into their nests and discarded clean intact seeds on refuse piles outside the nest. Germination tests with cleaned and uncleaned diaspores revealed that the removal of pulp or aril may increase germination success in Virola oleifera, Cabralea canjerana, Citharexylum myrianthum and Alchornea glandulosa. Gas chromatography analyses revealed a close similarity in the fatty acid composition of the arils of the lipid-rich diaspores and the elaiosome of a typical myrmecochorous seed (Ricinus communis), corroborating the suggestion that some arils and elaiosomes are chemically similar. Although ant-derived benefits to diaspores – secondary dispersal and/or increased germination – varied among the six plant species studied, the results enhanced the role of ant-diaspore interactions in the post-dispersal fates of nonmyrmecochorous seeds in tropical forests. The size and the lipid-content of the diaspores were shown to be major determinants of the outcome of such interactions.  相似文献   

12.
Throughout the tropics, mammalian seed dispersers are being driven to local extinction by intense hunting pressure, generating concern not only about the loss of these species, but also about the consequences for the plants they disperse. We compared two rain forest sites in Cameroon—one with heavy hunting pressure and one protected from hunting—to appraise the loss of mammalian seed dispersers and to assess the impact of this loss on seed removal and seed dispersal of Antrocaryon klaineanum (Anacardiaceae), a mammal-dispersed tree. Surveys of arboreal frugivores indicate that three of the five monkey species, as well as chimpanzee and gorilla, have been extirpated from the hunted forest. Diaspore counts underneath A. klaineanum adults (six trees per site) indicate that seed removal is severely reduced in the hunted forest. Finally, genetic maternity exclusion analysis (using 3–7 nuclear microsatellite loci) of maternally inherited endocarp tissue from diaspores collected under the canopies of 12 fruiting "mother" trees (six trees per site) revealed that seed dispersal in the hunted forest is also greatly reduced. In the hunted forest with reduced mammal dispersal agents, only 1 of the 53 assayed endocarps (2%) did not match the mother and was determined to be from a dispersed diaspore. By contrast, in the protected forest, 20 of the 48 assayed endocarps (42%) were from dispersed diaspores. This study provides strong evidence that loss of dispersal agents can lead to reduced seed removal and loss of seed dispersal, disrupting the seed dispersal cycle.  相似文献   

13.
Zoochory is the most common mode of seed dispersal for the majority of plant species in the tropics. Based on the assumption of tight plant-animal interactions several hypotheses have been developed to investigate the origin of life history traits of plant diaspores and their dispersers, such as species-specific co-evolution, the low/high investment model (low investment in single fruits but massive fruiting to attract many different frugivores versus high investment in single fruits and fruit production for extended periods to provide food for few frugivores), and the evolution of syndromes which represent plant adaptations to disperser groups (e.g. birds, mammals, mixed). To test these hypotheses the dispersal strategies of 34 tree species were determined in the littoral forest of Sainte Luce (SE-Madagascar) with the help of fruit traps and tree watches. The impact of fruit consumers on the seeds was determined based on detailed behavioral observations. Phenological, morphological and biochemical fruit traits from tree species were measured to look for co-variation with different types of dispersal. No indication for species-specific co-evolution could be found nor any support for the low/high investment model. However dispersal syndromes could be distinguished as diaspores dispersed by birds, mammals or both groups (mixed) differ in the size of their fruits and seeds, fruit shape, and seed number, but not in biochemical traits. Five large-seeded tree species seem to depend critically on the largest lemur, Eulemur fulvus collaris, for seed dispersal. However, this does not represent a case of tight species-specific co-evolution. Rather it seems to be the consequence of the extinction of the larger frugivorous birds and lemurs which might also have fed on these large fruits. Nevertheless these interactions are of crucial importance to conserve the integrity of the forest.  相似文献   

14.
The role of the Orii’s flying-fox (Pteropus dasymallus inopinatus) as a pollinator and a seed disperser on Okinawa-jima Island was investigated by direct observations and radio-tracking from October 2001 until January 2006. We found that Orii’s flying-fox potentially pollinated seven native plant species. Its feeding behavior and plant morphological traits suggested that this species is an important pollinator of Schima wallichii liukiuensis and Mucuna macrocarpa. The flying-fox also dispersed the seeds of 20 native plant species. The seeds of all plants eaten by the flying-fox were usually dropped beneath the parent tree, although large fruits of four plant species were occasionally brought to the feeding roosts in the mouth, with the maximum dispersal distance—for Terminalia catappa—estimated to be 126 m. Small seeds of 11 species (mostly Ficus species) were dispersed around other trees, during the subsequent feeding session, through the digestive tracts, with the mean dispersal distance for ingested seeds estimated at 150 ± 230.3 m (±SD); the maximum dispersal distance was 1833 m. A comparison of the seed dispersal of available fruits according to the size of flying-foxes and other frugivores suggested that the seed dispersal of eight plant species producing large fruits mostly depended on Orii’s flying-fox. On Okinawa-jima Island, the Orii’s flying-fox plays an important role as a pollinator of two native plants and as a long-distance seed disperser of Ficus species, and it functions as a limited agent of seed dispersal for plants producing large fruits on Okinawa-jima Island.  相似文献   

15.
An analysis of the flowering plant flora of a lowland moist forest in central French Guiana reveals 298 species with adaptations for wind dispersal. This represents 16.2% of the flowering plant flora and 9.8% of the class Magnoliopsida (dicotyledons). The most diverse wind-dispersed families are the Orchidaceae in the Liliopsida (monocotyledons) with 135 species and the Bignoniaceae in the Magnoliopsida with 37 species. The wind-dispersed species of central French Guiana have evolved either small, dust-like seeds, fruits or seeds with various kinds of wings, fruits or seeds with tufts of hairs, or expanded wing- or parachute-like persistent calyces. Most wind-dispersed species, among the liliopsids, are epiphytes and, among the magnoliopsids, trees or lianas. In central French Guiana, collections of these species with mature diaspores have been gathered most often in October and March, the months with peak wind velocities. In contrast, collections from June and July, when wind velocities are at a minimum, are rare.  相似文献   

16.
For many plant species in eastern North America, short observed seed dispersal distances (ranging up to a few tens of meters) fail to explain rapid rates of invasion and migration. This discrepancy points to a substantial gap in our knowledge of the mechanisms by which seeds are dispersed long distances. We investigated the potential for white-tailed deer (Odocoileus virginianus Zimm.), the dominant large herbivore in much of eastern North America, to disperse seeds via endozoochory. This is the first comprehensive study of seed dispersal by white-tailed deer, despite a vast body of research on other aspects of their ecology. More than 70 plant species germinated from deer feces collected over a 1-year period in central New York State, USA. Viable seeds included native and alien herbs, shrubs, and trees, including several invasive introduced species, from the full range of habitat types in the local flora. A mean of >30 seeds germinated per fecal pellet group, and seeds were dispersed during all months of the year. A wide variety of presumed dispersal modes were represented (endo- and exozoochory, wind, ballistic, ant, and unassisted). The majority were species with small-seeded fruits having no obvious adaptations for dispersal, underscoring the difficulty of inferring dispersal ability from diaspore morphology. Due to their broad diet, wide-ranging movements, and relatively long gut retention times, white-tailed deer have tremendous potential for effecting long-distance seed dispersal via ingestion and defecation. We conclude that white-tailed deer represent a significant and previously unappreciated vector of seed dispersal across the North American landscape, probably contributing an important long-distance component to the seed shadows of hundreds of plant species, and providing a mechanism to help explain rapid rates of plant migration.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

17.
It is well known that the recovery of abandoned tropical pastures to secondary rainforest benefits from the arrival of seeds from adjacent rainforest patches. Less is known, however, about how the structural attributes of adjacent rainforest (e.g. tree density, canopy cover and tree height) impact seed rain patterns into abandoned pastures. Between 2011 and 2013, we used seed traps and ground seed surveys to track the richness and abundance of rainforest seeds entering abandoned pastures in Australia's wet tropics. We also tested how seed rain diversity is related to the distance from forest, the proportion of forest cover in the landscape and several structural attributes of adjacent forest patches, specifically average tree height, canopy cover, tree species richness and density. Almost no seeds were captured in elevated pasture seed traps, even near forest remnants. Abundant forest seeds were found in ground surveys but only within 10 m of forest edges. In ground surveys, seeds from wind‐dispersed species were more abundant, but less species rich, than animal‐dispersed species. A survey of pasture seedling recruits suggested that some forest seeds must be dispersing more than 10 m into pasture at very low frequencies, but only a few species are establishing there. Recruits were predominantly animal‐dispersed not wind‐dispersed species. In addition to distance from forest and the proportion of forest within a 100‐ to 200‐m radius of sampling sites, the richness and density of adjacent forest trees were the most important factors for explaining the probability of seed occurrence in abandoned pastures. Results suggest that without some restoration assistance, the recovery of abandoned pastures into secondary rainforest in Australia's tropical rainforests will likely be limited, at least in part, by a very low rate of seed dispersal away from forest edges and by the diversity and density of trees in adjacent remnant forests.  相似文献   

18.
Abstract. Plants possessing generalized dispersal syndromes are likely to be more invasive than those relying on specialist dispersal agents. To address this issue on a local and regional scale, avian seed dispersal of the invasive alien Chinese tallow tree (Sapium sebiferum (L.) Roxb.) was assessed in forests and spoil areas of South Carolina and along forest edges in Louisiana during the 1997–99 fruiting seasons. Tallow trees in these floristically distinct habitats had a few common and many casual visitors, and considerable species overlap among habitats was found. However, bird species differed in the importance of dispersing and dropping seeds among habitats. Important dispersal agents common to forests and spoil areas of South Carolina included Northern Flicker, American Robin and Red‐winged Blackbird, whereas Red‐bellied Woodpecker and European Starling were important in the former and latter habitat, respectively. In Louisiana, Red‐bellied Woodpecker, American Robin, Northern Cardinal and Eastern Bluebird dispersed many seeds. Nearly all species foraging on seeds were winter residents. Estimated numbers of seeds dispersed and dropped were higher in spoil areas of South Carolina than in Louisiana because of higher numbers of individuals per visit, higher seed consumption and seed dropping rates, and longer foraging durations. Within South Carolina, more seeds were dispersed and dropped in spoil areas than in forests because of higher numbers of birds per visit. These findings show that among habitats, tallow tree attracts diverse but variable coteries of dispersal agents that are qualitatively similar in seed usage patterns. We suggest that its generalized dispersal syndrome contributes to effective seed dispersal by many bird species throughout its range. Effects of differential avian use among locales may include changes in local bird communities, and differing tallow tree demographics and invasion patterns.  相似文献   

19.
At an elephant camp in central Myanmar (Burma), we interviewed mahouts and veterinarians to describe the diet of Asian elephants (Elephas maximus) in a mixed-deciduous forest. Elephants showed a broad dietary breadth (103 plant species from 42 families); consumed mostly browse (94% of plant species); and were very selective about plant parts [e.g., many trees were eaten exclusively for their bark (22%) or fruits (14%)]. The fruits from 29 plant species were recorded to be eaten by elephants. Several of these were found as fruit remains, seeds, or seedlings in elephant dung, suggesting a role of Asian elephants in seed dispersal. Work elephants and their mahouts prove to be a rich source of information to understand wild elephant ecology.  相似文献   

20.
Passos L  Oliveira PS 《Oecologia》2004,139(3):376-382
This study examines the dispersal system of Guapira opposita in a tropical sandy rainforest in southeast Brazil. Guapira trees produce small fruits with a high protein content (28.4%) and low lipid content (0.3%), and the plant is primarily dispersed by birds. Mature fruits of G. opposita can fall spontaneously with the pulp intact, or be dropped by birds with bits of pulp attached. In either case, ground-dwelling ants rapidly remove the fruits to their nest (93% after 12 h). The ponerine ants Odontomachus chelifer and Pachycondyla striata are the main seed vectors among the ants, and together account for 56% (20 of 36) of the ant-fruit interactions recorded on the forest floor. Individual workers of O. chelifer and P. striata transport single fruits to their nests. Bits of pulp are fed to larvae and worker nestmates, and intact seeds are discarded outside the nest. Germination success in Guapira is higher for cleaned seeds (pulp removed) than for seeds coated by pulp. Guapira seedlings and juveniles are more frequent close to Odontomachus nests than at sites without such nests. Soil samples from Odontomachus nests had greater penetrability, and higher concentrations of P, K, and Ca than random soil samples. Field experiments suggest that the association between G. opposita seedlings and O. chelifer nests can potentially render the plant some protection against herbivores. Results indicate that fruit displacement by ponerine ants play an important role in the biology of G. opposita seeds and seedlings in the sandy forest, and illustrate the complex nature of the dispersal ecology of tropical tree species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号