首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In vivo and in vitro chemotactic methylation in Bacillus subtilis   总被引:3,自引:28,他引:3       下载免费PDF全文
Two doublets of Bacillus subtilis membrane proteins with molecular weights of 69,000 and 71,000 and of 30,000 and 30,800, were labeled by C3H3 transfer in the absence of protein synthesis. In addition, there was intense methylation of several low-molecular-weight substances. Both doublets were missing in a chemotaxis mutant. The equivalent proteins in Escherichia coli and Salmonella typhimurium are believed to be the methyl-accepting chemotaxis proteins. The higher-molecular-weight doublet bands were increased in degree of methylation upon addition of attractant to the bacteria. A methyltransferase from B. subtilis that methylates the wild-type membrane significantly better than the mutant membrane, using S-adenosylmethionine, has been partly purified. The methylated product was alkali labile and is probably a gamma-glutamyl methyl ester, as in E. coli and S. typhimurium. Ca2+ ion inhibited the methyltransferase, with a Ki of about 80 nM. Analysis of the in vitro methylation product showed labeling of the 69,000-dalton methyl-accepting chemotaxis protein and a low-molecular-weight protein, using wild-type membrane. Labeling of the low-molecular-weight protein but not of the 69,000 dalton protein was observed when the mutant membrane was used. The chemotaxis mutant tumbled much longer than the wild type when diluted away from attractant.  相似文献   

2.
The incorporation of 32P into nuclear nonhistone proteins was compared in rat liver in vivo, in liver slices incubated in vitro, and in isolated nuclei incubated with gamma-[32P]ATP. The highest specific activities of nuclear phosphorproteins were obtained by incubating isolated nuclei. However, the Radioactivity profiles of polyacrylamide gel electrophoretograms of these proteins differed from those obtained in vivo or in liver slice experiments. A group of low molecular weight nonhistone proteins exhibited a very high incporation of labelled phosphate. These proteins could be obtained from the interface when the phosphoproteins were isolated by the buffered phenol extraction procedure. Phosphorylated proteins were also obtained from three cytoplasmic fractions (mitochondria, microsomes, and cytosol). The specific activities of these proteins were much lower than of the nuclear phosphoproteins.  相似文献   

3.
D J Goldman  G W Ordal 《Biochemistry》1984,23(12):2600-2606
Bacillus subtilis responds to attractants by demethylating a group of integral membrane proteins referred to as methyl-accepting chemotaxis proteins (MCPs). We have studied the methylation and demethylation of these proteins in an in vitro system, consisting of membrane vesicles, and purified methyltransferase and methylesterase. The chemoattractant aspartate was found to inhibit methylation and stimulate demethylation of MCPs. Escherichia coli radiolabeled membranes in the presence of B. subtilis enzyme do not respond to aspartate by an increase demethylation rate. We also report that B. subtilis MCPs are multiply methylated, demethylation resulting in slower migrating proteins on sodium dodecyl sulfate-polyacrylamide gels.  相似文献   

4.
Arginine methylation is a post-translational modification that regulates protein function. RNA-binding proteins are an important class of cell-function mediators, some of which are methylated on arginine. Early studies of RNA-binding proteins and arginine methylation are briefly introduced, and the enzymes that mediate this post-translational modification are described. We review the most common RNA-binding domains and briefly discuss how they associate with RNAs. We address the following groups of RNA-binding proteins: hnRNP, Sm, Piwi, Vasa, FMRP, and HuD. hnRNPs were the first RNA-binding proteins found to be methylated on arginine. The Sm proteins function in RNA processing and germ cell specification. The Piwi proteins are largely germ cell specific and are also required for germ cell production, as is Vasa. FMRP participates in germ cell formation in Drosophila, but is more widely known for its neuronal function. Similarly, HuD plays a role in nervous system development and function. We review the effects of arginine methylation on the function of each protein, then conclude by addressing remaining questions and future directions of arginine methylation as an important and emerging area of regulation.  相似文献   

5.
A deoxyribonucleoprotein (DNP) complex has been isolated from Escherichia coli cells by chromatography on Sephadex G-200. The DNP complex contains phosphoproteins and the content of phosphorus bound to the DNP protein is 3 times higher than in cytoplasmic proteins not bound to DNA. These results have been confirmed by in vivo (32-P-KH2PO4) and in vitro (32-P-ATP) phosphorylation of E. coli DNA-binding proteins isolated by chromatography on DNA--cellulose.  相似文献   

6.
In vivo and in vitro synthesis of adenovirus type 2 early proteins.   总被引:13,自引:11,他引:2       下载免费PDF全文
The synthesis of adenovirus type 2 (Ad2)-induced early polypeptides was examined in vivo and in vitro by a combination of sodium dodecyl sulfate-polyacrylamide gel electrophoresis alone and specific immunoprecipitation followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Analysis of total [35S]methionine-labeled polypeptides synthesized in vivo at 3 h postinfection allowed us to detect in infected cells at lease 13 distinct polypeptides that are either absent or less conspicuous in extracts from mock-infected cells. These Ad2-induced early polypeptides have molecular weights ranging from 72 x 10(3) to 10.5 x 10(3) and have accordingly been designated as E72K to E10.5K. Nine of the in vivo synthesized early polypeptides can be precipitated specifically from infected cell extracts by antisera with specificity against early adenovirus proteins. In vitro translation of mRNA extracted from mock-infected cells and from Ad2-infected cells was carried out in preincubated Ehrlich ascites cell extracts. All the early Ad2-induced polypeptides identified in the extracts from infected cells labeled in vivo were also detected among the polypeptides immunoprecipitated specifically from the in vitro reaction mixtures programmed by RNA extracted at 4 h postinfection from Ad2-infected cells.  相似文献   

7.
We have used a two step procedure to identify peptides that bind strongly to the Rev-response element (RRE) of HIV. In the first step, RRE-binding peptides were screened from a combinatorial peptide library generated by "randomization" using a small subset of the 20 amino acids. In the second step, one such RRE-binding peptide, RSG-1, was "evolved" into an even stronger RRE-binding peptide using a codon-based mutagenesis procedure. After 2 rounds of evolution, RSG-1.2 bound the RRE with 7-fold higher affinity than wild-type Rev peptide.  相似文献   

8.
The effect of DNA cytosine methylation on promoter activity was assessed using a transient expression system employing pHrasCAT. This 551 bp Ha-ras-1 gene promoter region is enriched with 84 CpG dinucleotides, six functional GC boxes, and is prototypic of many genes possessing CpG islands in their promoter regions. Bacterial modification enzymes HhaI methyl transferase (MTase) and HpaII MTase, alone or in combination with a human placental DNA methyltransferase (HP MTase) that methylates CpG sites in a generalized manner, including asymmetric elements such as GC box CpG's, were used to methylate at different types of sites in the promoter. Methylation of HhaI and HpaII sites reduced CAT expression by approximately 70%-80%, whereas methylation at generalized CpG sites with HP MTase inactivated the promoter by greater than 95%. The inhibition of H-ras promoter activity was not attributable to methylation-induced differences in DNA uptake or stability in the cell, topological form of the plasmid, or methylation effects in non-promoter regions.  相似文献   

9.
In vitro methylation of CpG-rich islands.   总被引:3,自引:0,他引:3       下载免费PDF全文
D Carotti  F Palitti  P Lavia    R Strom 《Nucleic acids research》1989,17(22):9219-9229
CpG islands are distinguishable from the bulk of vertebrate DNA for being unmethylated and CpG-rich. Since CpG doublets are the specific target of eukaryotic DNA methyltransferases, CpG-rich sequences might be expected to be good methyl-accepting substrates in vitro, despite their unmethylated in vivo condition. This was tested using a partially purified DNA-methyltransferase from human placenta and several cloned CpG-rich or CpG-depleted sequences. The efficiency of methylation was found to be proportional to the CpG content for CpG-depleted regions, which are representative of the bulk genome. However, methylation was much less efficient for CpG frequencies higher than 1 in 12 nucleotides, reaching only 60% of the expected level. That suggests that the close CpG spacing typical of CpG-islands somehow inhibits mammalian DNA methyltransferase. The implications of these findings on the in vivo pattern of DNA methylation are discussed.  相似文献   

10.
Members of the 70-kDa family of cellular stress proteins assit in protein folding by preventing inappropriate intra- and intermolecular interactions during normal protein synthesis and transport and when cells are exposed to a variety of environmental stresses. During infection of A31 mouse fibroblasts with polyomavirus, the constitutive form of hsp70, hsc70, coimmunoprecipitated with all three viral capsid proteins (VP1, VP2, and VP3). In addition, the subcellular location of hsc70 changed from cytoplasmic to nuclear late in polyomavirus infection, coincident with the nuclear localization of the viral capsid proteins. VP1 and VP2 expressed in Sf9 insect cells with recombinant baculovirus vectors also coimmunoprecipitated with an hsp70-like protein, and VP1 expressed in Escherichia coli coimmunoprecipitated with the hsp70 homolog DnaK. Capsid proteins expressed by in vitro translation coimmunoprecipitated with the hsc70 protein present in the reticulocyte translation extract. Therefore, the polyomavirus capsid proteins associate with hsc70 during virus infection as well as in recombinant protein expression systems. This association may play a role in preventing the premature assembly of capsids in the cytosol and/or in facilitating the nuclear transport of capsid protein complexes.  相似文献   

11.
Protein arginine methyltransferases (PRMTs) are a family of enzymes that can methylate arginine residues on histones and other proteins. PRMTs play a crucial role in influencing various cellular functions, including cellular development and tumorigenesis. Arginine methylation by PRMTs is found on both nuclear and cytoplasmic proteins. Recently, there is increasing evidence regarding post-translational modifications of non-histone proteins by PRMTs, illustrating the previously unknown importance of PRMTs in the regulation of various cellular functions by post-translational modifications. In this review, we present the recent developments in the regulation of non-histone proteins by PRMTs.  相似文献   

12.
Information has been lacking as to whether mitochondrial DNA of animal cells is methylated. The methylation patterns of mitochondrial and nuclear DNAs of several mammalian cell lines have therefore been compared by four methods: (1) in vivo transfer of the methyl group from [methyl-3H]methionine; (2) in vivo incorporation of [32P]orthophosphate and a combination of (1) and (2); (3) in vivo incorporation of [3H]deoxycytidine; (4) in vitro methylation of DNAs with 3H-labeled S-adenosylmethionine as methyl donor and DNA methylase preparations from L cell nuclei. The cell lines were mouse L cells, BHK21C13, C13B4 (baby hamster kidney cells transformed by the Bryan strain of Rouse sarcoma virus), and PyY (BHK cells transformed by polyoma virus). DNA bases were separated chromatographically, using 5-methylcytosine, 6-methylaminopurine and, in some cases, 7-methylguanine as markers.Mitochondrial DNA was found to be significantly less methylated than nuclear DNA with respect to 5-methylcytosine in all cell types studied and by all methods used. The relative advantages and disadvantages of each method have been discussed. The level of 5-methylcytosine in mitochondrial DNA as compared with that in nuclear DNA was estimated as one-fourth to one-fourteenth in various cell lines. The estimated 5-methylcytosine content per circular mitochondrial DNA molecule (mol. wt 10 × 106) was about 12 methylcytosine residues for L cells and 24, 30 and 36 methylcytosine residues for BHK, B4 and PyY cells, respectively. Relative to cytosine residues, the estimate was one 5-methylcytosine per 500 cytosine residues of mitochondrial DNA and one 5-methylcytosine per 36 cytosine residues of nuclear DNA from L-cells. The values for methylcytosine of mitochondrial DNA are presumed to be maximal. PyY cells as compared with other cells had the highest methylcytosine content of both mitochondrial and nuclear DNA as estimated by method (3). No methylation of nuclear DNA was observed in confluent L cells.Evidence for the presence of DNA methylase activity associated with mitochondrial fractions was obtained. This activity could be distinguished from other cellular DNA methylase activity by differential response to mercaptoethanol. Radioactivity from 3H-labeled S-adenosylmethionine was found only in 5-methyl-cytosine of DNA.  相似文献   

13.
14.
Actin and tropomyosin, purified from both muscle and brain, and α-actinin, purified from muscle, have been labeled in vitro by reductive methylation to specific activities of greater than 105 dpm/μg protein. Actin so modified bound DNase I and polymerized identically to unmodified actin. Furthermore, the spectral properties of actin did not change after labeling. The interactions of labeled tropomyosin and α-actinin with F-actin were nearly identical to those of the unmodified proteins. These modified proteins comigrated with their unmodified counterparts in both SDS-containing polyacrylamide gels and isoelectric focusing gels. The labeled actin was quantitatively extracted from SDS-containing polyacrylamide gels (yield > 98% of radioactivity applied demonstrating that all of the radioactivity was protein bound. The reductive methylation procedure worked well at pH 8.0–8.5 in either pyrophosphate buffer or Bicine buffer using formaldehyde with [3H]-sodium borohydride as the reducing agent. The procedure could also be performed at pH 7.0 in phosphate buffer using [14C]-formaldehyde with sodium cyanoborohydride as the reducing agent. Proteins so labeled are ideal for use in quantitative experiments involving protein-protein interactions.  相似文献   

15.
16.
In Salmonella typhimurium and Escherichia coli, elongation factor Tu (EF-Tu) is methylated as shown by its incorporation of labeled methyl residues from [methyl-3H]methionine. Analysis of the nature of the methyl-containing residues by protein hydrolysis, followed by paper chromatography and high voltage electrophoresis showed that both mono- and dimethyllysine are present. Eighty per cent of the EF-Tu molecules are methylated if methylation occurs at a unique lysine residue. The EF-Tu fraction which is not methylated is still able to accept methyl groups, as shown by methylation of approximately 10% of the EF-Tu after addition of chloramphenicol (D-(-)-threo-2,2-dichloro-N-[beta-hydroxy-alpha-(hydroxymethyl)-o-nitrophenethyl] acetamide) to inhibit further protein synthesis. There is no evidence of turnover of the methyl residues. We attempted to separate the methylated from the nonmethylated form of EF-Tu by isoelectric focusing on polyacrylamide gel, but were unable to do so.  相似文献   

17.
18.
Based on amino acid sequence similarities between the methylated elongation factor EF-Tu from Escherichia coli and the EF-Tu from Euglena gracilis chloroplast, we predicted that the latter could also be methylated in the presence of an appropriate methyltransferase. We found that, as reported for the eubacterial homologous protein, the organellar factor could be methylated in vivo and in vitro to yield monomethyllysine.  相似文献   

19.
D Becker-Ursic  J Davies 《Biochemistry》1976,15(11):2289-2296
From the high salt wash of the ribosomes of the yeast Saccharomyces cerevisiae, three protein kinases have been isolated and separated by DEAE-cellulose chromatography. The three kinases differ in their abilities to phosphorylate substrates such as histones (calf thymus), casein, and S. cerevisiae ribosomes; two of the kinases showed increased activity in the presence of cyclic adenosine 3',5'-monophosphate when histones and 40S ribosomal subunits were used as substrates. The protein kinases catalyzed phosphorylation of certain proteins of the 40S and 60S ribosomal subunits, and 80S ribosomes in vitro. Nine proteins of the 80S ribosome, seven proteins of the 40S subunit, and eleven of the 60S subunit were phosphorylated; different proteins were modified to various extents when different kinases were used. We have identified several proteins of 40S and 60S ribosomal subunits which are not available to the kinases in the 80S particles. Ribosomes isolated from S. cerevisiae cells growing in logarithmic phase of growth were found to contain a number of phosphorylated proteins. Studies by two-dimensional polyacrylamide gel electrophoresis indicated that the ribosomal proteins phosphorylated in vivo correspond with those phosphorylated in vitro. The relationship of in vivo phsophorylation of ribosomes to the growth and physiology of S. cerevisiae is not known.  相似文献   

20.
The view that autosomal gene expression is controlled exclusively by protein trans-acting factors has been challenged recently by the identification of RNA molecules that regulate chromatin. In the majority of cases where RNA molecules are implicated in DNA control, the molecular mechanisms are unknown, in large part because the RNA.protein complexes are uncharacterized. Here, we identify a novel set of RNA-binding proteins that are well known for their function in chromatin regulation. The RNA-interacting proteins are components of the mammalian DNA methylation system. Genomic methylation controls chromatin in the context of transposon silencing, imprinting, and X chromosome dosage compensation. DNA methyltransferases (DNMTs) catalyze methylation of cytosines in CGs. The methyl-CGs are recognized by methyl-DNA-binding domain (MBD) proteins, which recruit histone deacetylases and chromatin remodeling proteins to effect silencing. We show that a subset of the DNMTs and MBD proteins can form RNA.protein complexes. We characterize the MBD protein RNA-binding activity and show that it is distinct from the methyl-CG-binding domain and mediates a high affinity interaction with RNA. The RNA and methyl-CG binding properties of the MBD proteins are mutually exclusive. We speculate that DNMTs and MBD proteins allow RNA molecules to participate in DNA methylation-mediated chromatin control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号