首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Membrane and secretory proteins fold in the endoplasmic reticulum (ER), and misfolded proteins may be retained and targeted for ER-associated protein degradation (ERAD). To elucidate the mechanism by which an integral membrane protein in the ER is degraded, we studied the fate of the cystic fibrosis transmembrane conductance regulator (CFTR) in the yeast Saccharomyces cerevisiae. Our data indicate that CFTR resides in the ER and is stabilized in strains defective for proteasome activity or deleted for the ubiquitin-conjugating enzymes Ubc6p and Ubc7p, thus demonstrating that CFTR is a bona fide ERAD substrate in yeast. We also found that heat shock protein 70 (Hsp70), although not required for the degradation of soluble lumenal ERAD substrates, is required to facilitate CFTR turnover. Conversely, calnexin and binding protein (BiP), which are required for the proteolysis of ER lumenal proteins in both yeast and mammals, are dispensable for the degradation of CFTR, suggesting unique mechanisms for the disposal of at least some soluble and integral membrane ERAD substrates in yeast.  相似文献   

2.
During endoplasmic reticulum–associated degradation (ERAD), misfolded lumenal and membrane proteins in the ER are recognized by the transmembrane Hrd1 ubiquitin ligase complex and retrotranslocated to the cytosol for ubiquitination and degradation. Although substrates are believed to be delivered to the proteasome only after the ATPase Cdc48p/p97 acts, there is limited knowledge about how the Hrd1 complex coordinates with Cdc48p/p97 and the proteasome to orchestrate substrate recognition and degradation. Here we provide evidence that inactivation of Cdc48p/p97 stalls retrotranslocation and triggers formation of a complex that contains the 26S proteasome, Cdc48p/p97, ubiquitinated substrates, select components of the Hrd1 complex, and the lumenal recognition factor, Yos9p. We propose that the actions of Cdc48p/p97 and the proteasome are tightly coupled during ERAD. Our data also support a model in which the Hrd1 complex links substrate recognition and degradation on opposite sides of the ER membrane.  相似文献   

3.
The mechanism by which misfolded proteins in the endoplasmic reticulum (ER) are retrotranslocated to the cytosol for proteasomal degradation is still poorly understood. Here, we show that importin β, a well established nucleocytoplasmic transport protein, interacts with components of the retrotranslocation complex and promotes ER-associated degradation (ERAD). Knockdown of importin β specifically inhibited the degradation of misfolded ERAD substrates but did not affect turnover of non-ERAD proteasome substrates. Genetic studies and in vitro reconstitution assays demonstrate that importin β is critically required for ubiquitination of mutant α1-antitrypsin, a luminal ERAD substrate. Furthermore, we show that importin β cooperates with Ran GTPase to promote ubiquitination and proteasomal degradation of mutant α1-antitrypsin. These results establish an unanticipated role for importin β in ER protein quality control.  相似文献   

4.
Proteins that fail to fold or assemble with partner subunits are selectively removed from the endoplasmic reticulum (ER) via the ER-associated degradation (ERAD) pathway. Proteins selected for ERAD are polyubiquitinated and retrotranslocated into the cytosol for degradation by the proteasome. Although it is unclear how proteins are initially identified by the ERAD system in mammalian cells, OS-9 was recently proposed to play a key role in this process. Here we show that OS-9 is upregulated in response to ER stress and is associated both with components of the ERAD machinery and with ERAD substrates. Using RNA interference, we show that OS-9 is required for efficient ubquitination of glycosylated ERAD substrates, suggesting that it helps transfer misfolded proteins to the ubiquitination machinery. We also find that OS-9 binds to a misfolded nonglycosylated protein destined for ERAD, but not to the properly folded wild-type protein. Surprisingly, however, OS-9 is not required for ubiquitination or degradation of this nonglycosylated ERAD substrate. We propose a model in which OS-9 recognises terminally misfolded proteins via polypeptide-based rather than glycan-based signals, but is only required for transferring those bearing N-glycans to the ubiquitination machinery.  相似文献   

5.
A substantial fraction of nascent proteins delivered into the endoplasmic reticulum (ER) never reach their native conformations. Eukaryotes use a series of complementary pathways to efficiently recognize and dispose of these terminally misfolded proteins. In this process, collectively termed ER-associated degradation (ERAD), misfolded proteins are retrotranslocated to the cytosol, polyubiquitinated, and degraded by the proteasome. Although there has been great progress in identifying ERAD components, how these factors accurately identify substrates remains poorly understood. The targeting of misfolded glycoproteins in the ER lumen for ERAD requires the lectin Yos9, which recognizes the glycan species found on terminally misfolded proteins. In a role that remains poorly characterized, Yos9 also binds the protein component of ERAD substrates. Here, we identified a 45-kDa domain of Yos9, consisting of residues 22–421, that is proteolytically stable, highly structured, and able to fully support ERAD in vivo. In vitro binding studies show that Yos9(22–421) exhibits sequence-specific recognition of linear peptides from the ERAD substrate, carboxypeptidase Y G255R (CPY*), and binds a model unfolded peptide ΔEspP and protein Δ131Δ in solution. Binding of Yos9 to these substrates results in their cooperative aggregation. Although the physiological consequences of this substrate-induced aggregation remain to be seen, it has the potential to play a role in the regulation of ERAD.  相似文献   

6.
ER-associated protein degradation (ERAD) is a protein quality control system of ER, which eliminates misfolded proteins by proteasome-dependent degradation and ensures export of only properly folded proteins from ER. Herp, an ER membrane protein upregulated by ER stress, is implicated in regulation of ERAD. In the present study, we show that Herp interacts with members of the ubiquilin family, which function as a shuttle factor to deliver ubiquitinated substrates to the proteasome for degradation. Knockdown of ubiquilin expression by small interfering RNA stabilized the ERAD substrate CD3δ, whereas it did not alter or increased degradation of non-ERAD substrates tested. CD3δ was stabilized by overexpressed Herp mutants which were capable of binding to ubiquilins but were impaired in ER membrane targeting by deletion of the transmembrane domain. Our data suggest that Herp binding to ubiquilin proteins plays an important role in the ERAD pathway and that ubiquilins are specifically involved in degradation of only a subset of ubiquitinated targets, including Herp-dependent ERAD substrates.  相似文献   

7.
To eliminate misfolded proteins that accumulate in the endoplasmic reticulum (ER) the cell mainly relies on ubiquitin-proteasome dependent ER-associated protein degradation (ERAD). Proteolysis of ERAD substrates by the proteasome requires their ubiquitylation and retro-translocation from the ER to the cytoplasm. Here we describe a high molecular mass protein complex associated with the ER membrane, which facilitates ERAD. It contains the ubiquitin domain protein (UDP) HERP, the ubiquitin protein ligase HRD1, as well as the retro-translocation factors p97, Derlin-1 and VIMP. Our data on the structural arrangement of these ERAD proteins suggest that p97 interacts directly with membrane-resident components of the complex including Derlin-1 and HRD1, while HERP binds directly to HRD1. We propose that ubiquitylation, as well as retro-translocation of proteins from the ER are performed by this modular protein complex, which permits the close coordination of these consecutive steps within ERAD.  相似文献   

8.
Endoplasmic Reticulum (ER)-associated degradation (ERAD) discards abnormal proteins synthesized in the ER. Through coordinated actions of ERAD components, misfolded/anomalous proteins are recognized, ubiquitinated, extracted from the ER and ultimately delivered to the proteasome for degradation. It is not well understood how ubiquitination of ERAD substrates is regulated. Here, we present evidence that the deubiquitinating enzyme Ubiquitin-Specific Protease 25 (USP25) is involved in ERAD. Our data support a model where USP25 counteracts ubiquitination of ERAD substrates by the ubiquitin ligase HRD1, rescuing them from degradation by the proteasome.  相似文献   

9.
The endoplasmic reticulum (ER) provides a quality-control system for newly synthesized secretory and membrane proteins. Any improperly folded or incompletely assembled oligomers are retained in the ER, and they are retro-translocated into the cytosol when misfolding persists, where they are destroyed by the proteasome through ubiquitylation. This disposal process is called ER-associated degradation (ERAD). Although much is known about the fate of ERAD substrates near the point of degradation, little information is available about how these proteins are recognized, retained, and targeted for translocation and ubiquitylation machinery. Recent studies indicate that N-linked oligosaccharides attached to nascent proteins function as tags for several processes of a quality-control system, such as individual steps of ER-retention, selection for ERAD substrates, and ubiquitylation. In this review, I describe recent advances in the molecular basis of the ERAD system, particularly those mediated by N-glycan recognition molecules.  相似文献   

10.
Inhibition of p97-dependent protein degradation by Eeyarestatin I   总被引:1,自引:0,他引:1  
Elimination of misfolded proteins from the endoplasmic reticulum (ER) by ER-associated degradation involves substrate retrotranslocation from the ER lumen into the cytosol for degradation by the proteasome. For many substrates, retrotranslocation requires the action of ubiquitinating enzymes, which polyubiquitinate substrates emerging from the ER lumen, and of the p97-Ufd1-Npl4 ATPase complex, which hydrolyzes ATP to dislocate polyubiquitinated substrates into the cytosol. Polypeptides extracted by p97 are eventually transferred to the proteasome for destruction. In mammalian cells, ERAD can be blocked by a chemical inhibitor termed Eeyarestatin I, but the mechanism of EerI action is unclear. Here we report that EerI can associate with a p97 complex to inhibit ERAD. The interaction of EerI with the p97 complex appears to negatively influence a deubiquitinating process that is mediated by p97-associated deubiquitinating enzymes. We further show that ataxin-3, a p97-associated deubiquitinating enzyme previously implicated in ER-associated degradation, is among those affected. Interestingly, p97-associated deubiquitination is also involved in degradation of a soluble substrate. Our analyses establish a role for a novel deubiquitinating process in proteasome-dependent protein turnover.  相似文献   

11.
Inositol 1,4,5-trisphosphate (IP(3)) receptors are endoplasmic reticulum (ER) membrane calcium channels that, upon activation, become substrates for the ER-associated degradation (ERAD) pathway. Although it is clear that IP(3) receptors are polyubiquitinated upon activation and are transferred to the proteasome by a p97-based complex, currently nothing is known about the proteins that initially select activated IP(3) receptors for ERAD. Here, we sought to identify novel proteins that associate with and mediate the ERAD of endogenous activated IP(3) receptors. SPFH2, an uncharacterized SPFH domain-containing protein, rapidly associated with IP(3) receptors in a manner that preceded significant polyubiquitination and the association of p97 and related proteins. SPFH2 was found to be an ER membrane protein largely residing within the ER lumen and in resting and stimulated cells was linked to ERAD pathway components, apparently via endogenous substrates undergoing degradation. Suppression of SPFH2 expression by RNA interference markedly inhibited IP(3) receptor polyubiquitination and degradation and the processing of other ERAD substrates. Overall, these studies identify SPFH2 as a key ERAD pathway component and suggest that it may act as a substrate recognition factor.  相似文献   

12.
The endoplasmic reticulum (ER) harbors a protein quality control system, which monitors protein folding in the ER. Elimination of malfolded proteins is an important function of this protein quality control. Earlier studies with various soluble and transmembrane ER-associated degradation (ERAD) substrates revealed differences in the ER degradation machinery used. To unravel the nature of these differences we generated two type I membrane ERAD substrates carrying malfolded carboxypeptidase yscY (CPY*) as the ER-luminal ERAD recognition motif. Whereas the first, CT* (CPY*-TM), has no cytoplasmic domain, the second, CTG*, has the green fluorescent protein present in the cytosol. Together with CPY*, these three substrates represent topologically diverse malfolded proteins, degraded via ERAD. Our data show that degradation of all three proteins is dependent on the ubiquitin-proteasome system involving the ubiquitin-protein ligase complex Der3/Hrd1p-Hrd3p, the ubiquitin conjugating enzymes Ubc1p and Ubc7p, as well as the AAA-ATPase complex Cdc48-Ufd1-Npl4 and the 26S proteasome. In contrast to soluble CPY*, degradation of the membrane proteins CT* and CTG* does not require the ER proteins Kar2p (BiP) and Der1p. Instead, CTG* degradation requires cytosolic Hsp70, Hsp40, and Hsp104p chaperones.  相似文献   

13.
Secreted proteins are synthesized at the endoplasmic reticulum (ER), and a quality control mechanism in the ER is essential to maintain secretory pathway homeostasis. Newly synthesized soluble and integral membrane secreted proteins fold into their native conformations with the aid of ER molecular chaperones before they are transported to post-ER compartments. However, terminally mis-folded proteins may be retained in the ER and degraded by a process called ER-associated degradation (ERAD). Recent studies using yeast have shown that molecular chaperones both in the ER and in the cytosol play key roles during the ERAD of mis-folded proteins. One important role for chaperones during ERAD is to prevent substrate protein aggregation. Substrate selection is another important role for molecular chaperones during ERAD.  相似文献   

14.
ER-associated degradation (ERAD) of glycoproteins depends on dual recognition of protein misfolding and remodeling of the substrate's N-linked glycans. After recognition, substrates are retrotranslocated to the cytosol for proteasomal degradation. To explore the directionality of this process, we fused a highly stable protein, DHFR, to the N or C terminus of the soluble ERAD substrate CPY* in yeast. Degradation of the C-terminal CPY*-DHFR fusion is markedly slowed and is accompanied by DHFR release in the ER lumen. Thus, folded lumenal domains can impede protein retrotranslocation. The ER lumenal protein Yos9p is required for both release of DHFR and degradation of multiple ERAD substrates. Yos9p forms a complex with substrates and has a sugar binding pocket that is essential for its ERAD function. Nonetheless, substrate recognition persists even when the sugar binding site is mutated or CPY* is unglycosylated. These and other considerations suggest that Yos9p plays a critical role in the bipartite recognition of terminally misfolded glycoproteins.  相似文献   

15.
Aberrant polypeptides in the endoplasmic reticulum (ER) are retro-translocated to the cytoplasm and degraded by the 26S proteasome via ER-associated degradation (ERAD). To begin to resolve the requirements for the retro-translocation and degradation steps during ERAD, a cell-free assay was used to investigate the contributions of specific factors in the yeast cytosol and in ER-derived microsomes during the ERAD of a model, soluble polypeptide. As ERAD was unaffected when cytoplasmic chaperone activity was compromised, we asked whether proteasomes on their own supported both export and degradation in this system. Proficient ERAD was observed if wild-type cytosol was substituted with either purified yeast or mammalian proteasomes. Moreover, addition of only the 19S cap of the proteasome catalyzed ATP-dependent export of the polypeptide substrate, which was degraded upon subsequent addition of the 20S particle.  相似文献   

16.
Antitrypsin deficiency is a primary cause of juvenile liver disease, and it arises from expression of the "Z" variant of the alpha-1 protease inhibitor (A1Pi). Whereas A1Pi is secreted from the liver, A1PiZ is retrotranslocated from the endoplasmic reticulum (ER) and degraded by the proteasome, an event that may offset liver damage. To better define the mechanism of A1PiZ degradation, a yeast expression system was developed previously, and a gene, ADD66, was identified that facilitates A1PiZ turnover. We report here that ADD66 encodes an approximately 30-kDa soluble, cytosolic protein and that the chymotrypsin-like activity of the proteasome is reduced in add66Delta mutants. This reduction in activity may arise from the accumulation of 20S proteasome assembly intermediates or from qualitative differences in assembled proteasomes. Add66p also seems to be a proteasome substrate. Consistent with its role in ER-associated degradation (ERAD), synthetic interactions are observed between the genes encoding Add66p and Ire1p, a transducer of the unfolded protein response, and yeast deleted for both ADD66 and/or IRE1 accumulate polyubiquitinated proteins. These data identify Add66p as a proteasome assembly chaperone (PAC), and they provide the first link between PAC activity and ERAD.  相似文献   

17.
Tsai YC  Weissman AM 《PLoS biology》2011,9(3):e1001038
Proteins are co-translationally inserted into the endoplasmic reticulum (ER) where they undergo maturation. Homeostasis in the ER requires a highly sensitive and selective means of quality control. This occurs through ER-associated degradation (ERAD).This complex ubiquitin-proteasome–mediated process involves ubiquitin conjugating enzymes (E2) and ubiquitin ligases (E3),lumenal and cytosolic chaperones, and other proteins, including the AAA ATPase p97 (VCP; Cdc48 in yeast). Probing of processes involving proteasomal degradation has generally depended on proteasome inhibitors or knockdown of specific E2s or E3s. In this issue of PLoS Biology, Ernst et al. demonstrate the utility of expressing the catalytic domain of a viral deubiquitylating enzyme to probe the ubiquitin system. Convincing evidence is provided that deubiquitylation is integral to dislocation of ERAD substrates from the ER membrane. The implications of this work for understanding ERAD and the potential of expressing deubiquitylating enzyme domains for studying ubiquitin-mediated processes are discussed.  相似文献   

18.
The folding and assembly of proteins in the endoplasmic reticulum (ER) lumen and membrane are monitored by ER quality control. Misfolded or unassembled proteins are retained in the ER and, if they cannot fold or assemble correctly, ultimately undergo ER-associated degradation (ERAD) mediated by the ubiquitin-proteasome system. Whereas luminal and integral membrane ERAD substrates both require the proteasome for their degradation, the ER quality control machinery for these two classes of proteins likely differs because of their distinct topologies. Here we establish the requirements for the ERAD of Ste6p*, a multispanning membrane protein with a cytosolic mutation, and compare them with those for mutant form of carboxypeptidase Y (CPY*), a soluble luminal protein. We show that turnover of Ste6p* is dependent on the ubiquitin-protein isopeptide ligase Doa10p and is largely independent of the ubiquitin-protein isopeptide ligase Hrd1p/Der3p, whereas the opposite is true for CPY*. Furthermore, the cytosolic Hsp70 chaperone Ssa1p and the Hsp40 co-chaperones Ydj1p and Hlj1p are important in ERAD of Ste6p*, whereas the ER luminal chaperone Kar2p is dispensable, again opposite their roles in CPY* turnover. Finally, degradation of Ste6p*, unlike CPY*, does not appear to require the Sec61p translocon pore but, like CPY*, could depend on the Sec61p homologue Ssh1p. The ERAD pathways for Ste6p* and CPY* converge at a post-ubiquitination, pre-proteasome step, as both require the ATPase Cdc48p. Our results demonstrate that ERAD of Ste6p* employs distinct machinery from that of the soluble luminal substrate CPY* and that Ste6p* is a valuable model substrate to dissect the cellular machinery required for the ERAD of multispanning membrane proteins with a cytosolic mutation.  相似文献   

19.
Thirty percent of all cellular proteins are inserted into the endoplasmic reticulum (ER), which spans throughout the cytoplasm. Two well-established stress-induced pathways ensure quality control (QC) at the ER: ER-phagy and ER-associated degradation (ERAD), which shuttle cargo for degradation to the lysosome and proteasome, respectively. In contrast, not much is known about constitutive ER-phagy. We have previously reported that excess of integral-membrane proteins is delivered from the ER to the lysosome via autophagy during normal growth of yeast cells. Whereas endogenously expressed ER resident proteins serve as cargos at a basal level, this level can be induced by overexpression of membrane proteins that are not ER residents. Here, we characterize this pathway as constitutive ER-phagy. Constitutive and stress-induced ER-phagy share the basic macro-autophagy machinery including the conserved Atgs and Ypt1 GTPase. However, induction of stress-induced autophagy is not needed for constitutive ER-phagy to occur. Moreover, the selective receptors needed for starvation-induced ER-phagy, Atg39 and Atg40, are not required for constitutive ER-phagy and neither these receptors nor their cargos are delivered through it to the vacuole. As for ERAD, while constitutive ER-phagy recognizes cargo different from that recognized by ERAD, these two ER-QC pathways can partially substitute for each other. Because accumulation of membrane proteins is associated with disease, and constitutive ER-phagy players are conserved from yeast to mammalian cells, this process could be critical for human health.  相似文献   

20.
Secretory proteins unable to assemble into their native states in the endoplasmic reticulum (ER) are transported back or "retrotranslocated" into the cytosol for ER-associated degradation (ERAD). To examine the roles of different components in ERAD, one fluorescence-labeled ERAD substrate was encapsulated with selected lumenal factors inside mammalian microsomes. After mixing microsomes with fluorescence-quenching agents and selected cytosolic proteins, the rate of substrate efflux was monitored continuously in real time by the decrease in fluorescence intensity as cytosolic quenchers contacted dye-labeled substrates. The retrotranslocation kinetics of nonglycosylated pro-alpha factor were not significantly altered by replacing all lumenal proteins with only protein disulfide isomerase or all cytosolic proteins with only PA700, the 19S regulatory particle of the 26S proteasome. Retrotranslocation was blocked by antibodies against a putative retrotranslocation channel protein, derlin-1, but not Sec61alpha. In addition, pro-alpha factor photocrosslinked derlin-1, but not Sec61alpha. Thus, derlin-1 appears to be involved in pro-alpha factor retrotranslocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号