首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human eosinophilic leukocytes respond to a variety of stimuli by liberating an inhibitor of histamine release. The active principle(s) in this eosinophil-derived inhibitor (EDI) was found to be a mixture of acidic lipids of similar physiocochemical behavior and biologic activity to prostaglandins E1 and E2. Indomethacin, an inhibitor or prostaglandin synthesis, specifically blocked the immune release of EDI. The results indicate that stimulation of human eosinophilic leukocytes results in synthesis and release of prostaglandins E1 and E2 from these cells. These findings strongly support the hypothesis that the eosinophil assumes a modulatory role in the allergic inflammatory reaction. The ways by which, under specific antigenic (allergenic) stimulation, human eosinophils could modulate the events asssociated with the allergic response, through the released prostaglandins, are discussed.  相似文献   

2.
The secretory leukocyte protease inhibitor (SLPI) is a low-molecular-weight inhibitor of proteases, such as elastase and cathepsin G which are released from leukocytes during phagocytosis. The purpose of this study was to determine whether or not SLPI is able to inhibit IgE-mediated histamine release. Nasal mucosa from 11 test subjects without atopic disposition was used for this in vitro study. We found that SLPI inhibited histamine release in a dose-dependent way but was without influence on the spontaneous release.  相似文献   

3.
Antibodies against receptor molecules for IgE on rat basophilic leukemic (RBL) cells were prepared by immunization of a rabbit with immune precipitates composed of IgE-receptor complexes and anti-IgE. Antibodies against cell surface components were specifically purified by using RBL cells and rendered specific for mast cells by appropriate absorption. The major antibodies in the final preparation (anti-RBL) were directed against receptor molecules. It was found that the F(ab')2 fragments of anti-RBL induced histamine release from rat mast cells and caused immediate skin reactions in normal rats. These reactions by anti-RBL or its F(ab')2 fragments were inhibited if the receptors on mast cells had been saturated with IgE. The Fab' fragments of anti-RBL could bind with receptors on RBL cells and blocked passive sensitization of mast cells with IgE antibodies, but failed to induce skin reactions and histamine release from normal mast cells. Sensitization of normal rat skin with the Fab' fragment followed by an i.v. injection of anti-rabbit IgG induced skin reactions. The results indicated that bridging of receptor molecules by divalent anti-receptor antibody triggered mast cells for histamine release.  相似文献   

4.
Human neutrophil-derived histamine-releasing activity (HRA-N) was partially purified and found to contain a heat-stable 1400 to 2300-Da fraction which caused human basophils and rat basophil leukemia cells (RBL) to degranulate. The capacity of HRA-N to activate basophils was not related to the gender or atopic status of the basophil donor, but was related to anti-IgE responsiveness. Several lines of evidence suggest that HRA-N and anti-IgE induce histamine release through distinctly different mechanisms: 1) the time course of HRA-N- and anti-IgE-induced RBL histamine release are different; 2) HRA-N causes histamine release from RBL with and without surface-bound IgE; 3) lactic acid stripping of IgE from human basophils reduces anti-IgE-induced histamine release, but has no consistent effect on HRA-N-induced histamine release; and 4) passive sensitization of lactic acid-stripped basophils with IgE restores anti-IgE-induced histamine release but not HRA-N-induced histamine release. Several histamine-releasing factors (HRF) were compared with HRA-N. Human nasal HRF (HRF-NW, crude and partially purified fractions of 15 to 30, 3.5 to 9, and less than 3.5 kDa), like HRA-N, caused equal histamine release from both native and IgE-sensitized RBL. However, only the 15- to 30-kDa fraction caused histamine release from human basophils in the doses tested. Mononuclear cell HRF (HRF-M, crude and a partially purified 25 kDa Mr fraction) and platelet HRF (HRF-P, crude preparation) failed to cause histamine release from either native or IgE-sensitized RBL but caused 30 +/- 5.5% and 20 +/- 10% net histamine release from human basophils, respectively. HRA-N and HRF-NW were both stable to boiling. These data, taken together, suggest that the capacity of HRA-N to induce RBL and human basophil histamine release and of HRF-NW to stimulate RBL histamine release is independent of IgE. The data further suggest that HRA-N and HRF-NW can be distinguished by size, and that they both differ from mononuclear cell HRF and platelet HRF. Thus, it appears that inflammatory cells generate a family of distinct HRF.  相似文献   

5.
To understand the immunologic mechanisms underlying the variation in airway response to inhaled Ascaris antigen (AA) in Basenji-Greyhound (BG) dogs having hyperreactive airways, we examined the relationship between leukocyte histamine release, Ascaris-specific serum IgE, changes in pulmonary resistance (RL), and decreases in dynamic compliance (Cdyn). All Ascaris-sensitive BG dogs showing airway responses to AA aerosol challenge exhibited an antigen dose-dependent release of leukocyte histamine, with total leukocyte histamine ranging from 68 to 123 ng/10(7) cells. Airway response to inhaled antigen more closely correlated with antigen dose releasing 50% total leukocyte histamine (RL, r = 0.94); Cdyn, r = 0.82), than with circulating levels of antigen-specific IgE (RL, r = 0.68; Cdyn, r = 0.69). We conclude that the airway response of sensitized BG dogs to AA inhalations is more dependent on factors affecting mediator release from pulmonary sources than circulating specific reaginic antibody.  相似文献   

6.
Elicitation of delayed-type hypersensitivity (DTH) responses by DTH effector T cells requires a prior phase of DTH initiation. This consists of an immediate hypersensitivity-like response mediated by Ag-specific DTH-initiating factors that are analogous to IgE antibodies in that they sensitize tissue mast cells for release of the vasoactive amine serotonin (5-HT). Experiments were conducted to determine whether IgE mAb injected i.v., or 5-HT injected locally, could initiate DTH. It was found that small doses of IgE (1 microgram/mouse), or of 5-HT (50 to 500 ng locally), which mediated small immediate responses, were optimal for DTH initiation. Even lower doses of IgE (10 ng/mouse), or of 5-HT (5 ng locally), which did not mediate macroscopically measurable immediate responses, were capable of DTH initiation. Higher doses of IgE (10 to 100 micrograms/mouse), which mediated large immediate responses, were not able to initiate DTH. A similar dose response for DTH initiation was found with IgG1 mAb, which is another mast cell-sensitizing isotype of Ig. The inability of high doses of IgE or IgG1 to mediate DTH initiation was probably caused by local release of large inhibitory amounts of histamine, because systemic treatment with the histamine-2 receptor antagonist cimetidine allowed high doses of IgE to initiate DTH. Thus, IgE and IgG1 antibodies could initiate DTH via release of small amounts of 5-HT, but simultaneous release of large amounts of histamine were inhibitory, probably via an effect on histamine-2 receptors of recruited T cells. We concluded the following: 1) IgE or IgG1 antibodies can initiate DTH; 2) DTH initiation need not be associated with macroscopically detectable early responses; 3) mast cell release of 5-HT acts positively whereas release of histamine acts negatively in murine DTH; 4) Ag-specific factors are not the only mechanism of DTH initiation.  相似文献   

7.
Basophil releasability implies that, in addition to the surface density of IgE molecules, biochemical events determine the capacity to release chemical mediators in response to activating stimuli. We studied the IgE (anti-IgE)-mediated and non-IgE-mediated (f-met peptide and the Ca2+ ionophore A23187) releasability of human basophils obtained from 14 monozygotic (MZ) (ages 25.7 +/- 13.3 yr; mean +/- SDM) and 13 dizygotic (DZ) twin pairs (ages 20.4 +/- 9.9 yr). A significant intrapair correlation coefficient of the maximal percent of anti-IgE-induced histamine release was found in the MZ, whereas no significant correlation was found in the DZ. The mean intrapair variance of anti-IgE-induced histamine release in MZ (VMZ) and in DZ (VDZ) gave an F value equal to 3.84 (p less than 0.01) and a heritability (H) index of 0.74. Similar findings were obtained with respect to the sensitivity to a standard concentration (10(-1) micrograms/ml) of anti-IgE. No correlation between serum IgE level and anti-IgE-induced histamine release was found in either MZ or DZ. A significant intrapair correlation coefficient of f-met peptide-induced histamine release was found in both the MZ and the DZ. The difference between MZ and DZ was not significant. The VMZ and the VDZ of the f-met peptide-induced histamine release gave an F value of 1.52 (NS) and an H value of 0.34. The intrapair correlation coefficient of A23187-induced release was significant in MZ and not significant in DZ. The mean intrapair variance of A23187-induced histamine release gave an F value of 2.33 (NS) and an H index of 0.57. Similar findings were obtained by using suboptimal (3 X 10(-1) micrograms/ml) concentrations of A23187. There was no correlation between the sensitivity of basophils to release in response to anti-IgE and their response to f-met peptide or A23187, in either the MZ or the DZ. We conclude that the ability of basophils to respond to anti-IgE and A23187 is influenced by genetic factors.  相似文献   

8.
Immune aggregate-induced histamine release and desensitization were studied in mouse mast cells. Maximal histamine release was rapid, occurred at 37 degrees C, and required the addition of alpha-L-phosphatidyl-L-serine and Ca2+. The amount of histamine released varied with the composition of the immune aggregates and was dependent on the antibody concentration. Saturation of mast cell Fc epsilon receptors with rat or mouse IgE had no effect on subsequent immune aggregate-induced release. The incubation of mouse mast cells with immune aggregates in the absence of cations of alpha-L-phosphatidyl-L-serine did not stimulate the release of histamine but resulted in desensitization of the cells for release with the addition of the same or unrelated immune aggregates. Such cells are capable, however, of IgE-mediated histamine release. Mast cells desensitized for IgE-mediated histamine release by incubation with anti-IgE were capable of immune aggregate-induced release. These data suggest that IgE-mediated and immune aggregate-induced triggering of mouse mast cells occurs through separate receptors.  相似文献   

9.
10.
Four mastocytoma cell lines were isolated from four different mouse mastocytoma tumors. The tumors had been induced in mice treated with tetramethylpentadecane (pristane) and infected with Abelson murine leukemia virus. The cell lines have been carried in culture for over a year and can induce tumors when injected into the mouse strain in which the tumor originated. The cells contain histamine, have high affinity IgE receptors and release histamine by IgE, immune complex or ionophore A23187-induced reactions. This histamine release reaction requires Ca2+, is optimal at 37 degrees C, and is blocked by a number of metabolic inhibitors. There is no requirement for phosphatidylserine. Cloned sublines have been obtained which will be useful for Fc epsilon R, Fc gamma R; and histamine release studies.  相似文献   

11.
We have reexamined the ability of anti-human IgG antibodies to induce histamine release from human basophils. A panel of purified murine mAbs with International Union of Immunological Societies-documented specificity for each of the four subclasses of human IgG was used. Of the 24 allergic subjects studied, the basophils of 75% (18/24) released greater than 10% histamine to one or more anti-IgG1-4 mAb, whereas none of the 13 nonatopic donor's basophils released histamine after stimulation with optimal amounts of anti-IgG mAb. The basophils of 85% (11/13) of the nonatopic donors did respond to anti-IgE challenge, as did 92% (22/24) of the atopic donor cells. Histamine release was induced most frequently by anti-IgG3, and 10/18 anti-IgG responder cells released histamine with mAb specific for two or more different subclass specificities. The rank order for induction of histamine release was anti-IgG3 greater than anti-IgG2 greater than IgG1 greater than anti-IgG4. As in our previous study using polyclonal anti-IgG, 100- to 300-micrograms/ml quantities of the anti-IgG mAb were required for maximal histamine release, about 1000-fold higher than those for comparable release with anti-human IgE. Specificity studies using both immunoassays and inhibition studies with IgE myeloma protein indicated that anti-IgG induced histamine release was not caused by cross-reactivity with IgE. Ig receptors were opened by lactic acid treatment so that the cells could be passively sensitized. Neither IgE myeloma nor IgG myeloma (up to 15 mg/ml) proteins could restore the response to anti-IgG mAb. However, sera from individuals with leukocytes that released histamine upon challenge with anti-IgG mAb could passively sensitize acid-treated leukocytes from both anti-IgG responder and nonresponder donors for an anti-IgG response. The only anti-IgG mAb that induced release from these passively sensitized cells were those to which the serum donor was responsive. Sera from non-IgG responders could not restore an anti-IgG response. These data led to the hypothesis that the IgG specific mAb were binding to IgG-IgE complexes that were attached to the basophil through IgE bound to the IgE receptor. This was shown to be correct because passive sensitization to anti-IgG could be blocked by previous exposure of the basophils to IgE. We conclude that anti-IgG-induced release occurs as a result of binding to IgG anti-IgE antibodies and cross-linking of the IgE receptors on basophils.  相似文献   

12.
Wortmannin, a specific inhibitor of myosin light chain kinase (MLCK) blocked IgE mediated histamine release from rat basophilic leukemia cell (RBL-2H3) and human basophils dose-dependently. Its IC50 was 20 nM for RBL-2H3 cells and 30 nM for human basophils. There was complete inhibition at the concentration of 1 microM. Wortmannin inhibited partially the A23187 induced histamine release from RBL-2H3 cells (40% inhibition at 1 microM). This inhibition was not accompanied by any significant effect on cytosolic free calcium concentration [( Ca2+]i). KT5926, another MLCK inhibitor, inhibited histamine release comparably with wortmannin and blocked to some degree the increase of [Ca2+]i in RBL-2H3 cells. Thus, the phosphorylation of myosin seems to be involved in signal transduction through Fc epsilon RI.  相似文献   

13.
Functional characteristics of mast cells in chopped fragments from sinus mucosa, which was dissected from patients with chronic sinusitis, were compared with those from dispersed cells prepared by enzymatic treatment. The results obtained in this study were the following. (1) Both chopped fragments and dispersed cells released histamine in a dose-dependent manner when incubated with anti-IgE. However, higher histamine release was always observed in dispersed cells. (2) Although no differences in the ability to reduce histamine release with salbutamol or forskolin could be observed between chopped fragments and dispersed cells, staurosporin and p-bromophenacyl bromide were more active on dispersed mast cells than chopped fragments. (3) Passive sensitization of dispersed cells with an allergic serum containing IgE to mite could be achieved only after elution of IgE on the cells with lactic acid.  相似文献   

14.
We have studied the effects of permanent oligomers of human IgE produced using the cross-linking reagent, dimethyl suberimidate, on histamine release from human basophils. IgE dimers were found to be sufficient stimuli for both release and desensitization of these cells; monomeric IgE had no effect. Histamine release was augmented by deuterium oxide (D2O) in the medium, but D2O was not an absolute requirement to observe release. Desensitization by the dimeric IgE was specific in that the response to anti-IgE was not affected by preincubation of the leukocytes with the IgE dimer under suboptimal releasing conditions. IgE trimers and higher oligomers of IgE also caused both release and desensitization. IgE trimers were 3- to 4-fold more effective than IgE dimers with regard to the amount required for 50% histamine release. Dilution studies with monomeric IgE suggested that the difference was due to the presence of more "active" dimers in the trimeric IgE fractions. We conclude that dimeric IgE, by juxtaposing 2 receptors on the basophil membrane, is the "unit signal" for both release and desensitization of these cells.  相似文献   

15.
The glucocorticosteroids inhibit the IgE-dependent release of histamine by human basophils with an order of potency that very closely parallels that found in vivo (i.e., triamcinolone acetonide greater than dexamethasone greater than beta-methasone greater than prednisolone greater than hydrocortisone much greater than progesterone approximately tetrahydrocortisone approximately 0). The effect is seen after a 24-hr preincubation with nanomolar to micromolar concentrations of glucocorticoid. In contrast, release of histamine stimulated by the formyl methionine containing peptide f-met-leu-phe, the calcium ionophore A23187, and the tumor-promoting phorbol diester 12-O-tetradecanoylphorbol-13-acetate was not inhibited by 24-hr incubation with the potent glucocorticoid dexamethasone. Dexamethasone inhibited anti-IgE-induced histamine release without altering its rate, suggesting that the glucocorticoids do not inhibit histamine release by elevating the intracellular level of cAMP. Dexamethasone did not consistently alter either the total or occupied basophil IgE Fc receptor number, and therefore the glucocorticoid effect does not appear to be due to the modulation of cell surface Fc epsilon receptor content. These data indicate that steroid hormones inhibit basophil IgE-dependent activation through a specific glucocorticoid receptor. The mechanism by which they do so appears not to involve an elevation of cAMP or a shedding of cell surface Fc epsilon receptors. Further, because the glucocorticoids did not inhibit release initiated by the PLA2-dependent stimuli f-met-leu-phe, A23187 and TPA, the inactivation of IgE-dependent histamine release by glucocorticoids may not be the result of PLA2 inhibition.  相似文献   

16.
Fcgamma receptors were detected on human basophil granulocytes. The mononuclear cell fraction of human peripheral blood was incubated with heat-aggregated human IgG (HGG) followed by 125I-anti-HGG. Autoradiography of the cells showed that the majority of basophil granulocytes gave a significant number of grains. Basophils were not labeled by preincubation of the same cells with monomeric HGG followed by 125I-anti-HGG. However, the binding of aggregated HGG to basophils was inhibited by the presence of a high concentration of monomeric HGG or its Fc fragment but not by the Fab fragment. Evidence was obtained that Fcgamma receptors are distinct from IgE receptors on the same cells: i) Saturation of basophils with IgE did not affect the binding of aggregated HGG to the cells. ii) Preincubation with and the presence of aggregated HGG failed to affect the binding of 125I-IgE to basophils, or to block passive sensitization of the cells with IgE antibodies. iii) The Fcgamma receptors did not co-cap with IgE receptors. Aggregated HGG failed to induce histamine release from basophils even in the presence of D2O. It was also found that the presence of aggregated HGG on basophils did not modulate IgE-mediated histamine release from the cells.  相似文献   

17.
Low-molecular constituents from Viscum album (toxic) release, in irritatively toxic manner, histamine from human leukocytes without destroying the cells (cytotox test). This histamine release is prevented by preincubation with viscum lectins. The viscum lectin blocks the Fc-portion of allergen-specific IgE against anti-IgE [125I]. Lectin also inhibits the allergen-specific histamine release from human leukocytes occurring through IgE; this can be demonstrated on leukocytes from patients with atopic extrinsic asthma. The inhibitory effect of lectin could also be due to a primary membrane effect, in addition to blockage of IgE.  相似文献   

18.
Peptostreptococcus magnus strain 312 (10(6) to 10(8)/ml), which synthesizes a protein capable of binding to kappa L chains of human Ig (protein L), stimulated the release of histamine from human basophils in vitro. P. magnus strain 644, which does not synthesize protein L, did not induce histamine secretion. Soluble protein L (3 x 10(-2) to 3 micrograms/ml) induced histamine release from human basophils. The characteristics of the release reaction were similar to those of rabbit IgG anti-Fc fragment of human IgE (anti-IgE): it was Ca2(+)- and temperature-dependent, optimal release occurring at 37 degrees C in the presence of 1.0 mM extracellular Ca2+. There was an excellent correlation (r = 0.82; p less than 0.001) between the maximal percent histamine release induced by protein L and that induced by anti-IgE, as well as between protein L and protein A from Staphylococcus aureus (r = 0.52; p less than 0.01). Preincubation of basophils with either protein L or anti-IgE resulted in complete cross-desensitization to a subsequent challenge with the heterologous stimulus. IgE purified from myeloma patients PS and PP (lambda-chains) blocked anti-IgE-induced histamine release but failed to block the histamine releasing activity of protein L. In contrast, IgE purified from myeloma patient ADZ (kappa-chains) blocked both anti-IgE- and protein L-induced releases, whereas human polyclonal IgG selectively blocked protein L-induced secretion. Protein L acted as a complete secretagogue, i.e., it activated basophils to release sulfidopeptide leukotriene C4 as well as histamine. Protein L (10(-1) to 3 micrograms/ml) also induced the release of preformed (histamine) and de novo synthesized mediators (leukotriene C4 and/or PGD2) from mast cells isolated from lung parenchyma and skin tissues. Intradermal injections of protein L (0.01 to 10 micrograms/ml) in nonallergic subjects caused a dose-dependent wheal-and-flare reaction. Protein L activates human basophils and mast cells in vitro and in vivo presumably by interacting with kappa L chains of the IgE isotype.  相似文献   

19.
Leukocytes of only one of 11 nonatopic donors could be passively sensitized for histamine release elicited by ragweed extract. A short incubation in an unbuffered isotonic saline at pH 3.9 or in an 0.01 M lactic acid/lactate-buffered isotonic saline at pH 3.9 dissociated from 4 X 10(5) to less than 3 X 10(4) IgE molecules per basophil from washed leukocytes of several in a series of six atopic and 11 nonatopic donors. After such treatment, leukocytes of only one of the 11 nonatopic donors could not be sensitized for histamine release. Basophils of the four ragweed-sensitive donors lost their sensitivity to ragweed after the treatment, but all could be passively resensitized; for three of these donors the level of release approximated their original reactivity. Leukocytes of the two mold-sensitive donors could be passively sensitized to ragweed allergens after but not before treatment. Four plasma samples from histamine release-positive volunteers were used for sensitization of treated leukocytes of each cell donor; three were consistently effective and one was consistently ineffective. The positive plasmas had concentrations of antigen E-specific IgE of over 100 ng/ml, which accounted for 17 to 23% of the total IgE; the inactive one had less than 5 ng/ml of specific IgE. For each cell donor, all three samples of active plasma mediated quite similar histamine release, but there was a spectrum of donor cell reactivity ranging from 23 to 70% release. These results suggest that basophils from each donor, atopic or nonatopic, had a maximal potential for in vitro sensitization, which was only attained if the plasma contained appropriate, but yet to be fully defined, concentrations of specific and total IgE. Several unexpected results were obtained. Treated leukocytes from some individuals were sensitized for mediator release to a greater extent by sixfold diluted than undiluted plasma. In addition, a 4-hr incubation with plasma at 37 degrees C, but not at 25 degrees C or 0 degrees C, was less effective than were shorter incubation periods. Treated leukocytes should be useful in studying kinetic and equilibrium parameters of IgE binding to specific receptors on human basophils. Analogous treatments should also be useful in sensitization and measurement of IgE-receptor interactions of mast cell populations.  相似文献   

20.
Release of histamine from human basophils was induced by activation of complement using zymosan. The histamine-releasing factor resembled C5a on the basis of m.w. (15,000) as well as previous studies showing inactivation by anti-C5. Complement-induced release of histamine was compared with allergic release of histamine which is mediated through appropriate allergens and reaginic IgE. Previously we demonstrated that the former reaction occurred more quickly. Both reactions were inhibited by drugs which increase intracellular concentrations of cAMP3 (theophylline, prostaglandin E1, and histamine) or which mimic the action of cAMP (its dibutyrly derivative). Calcium was required for complement-mediated release of histamine and an increasing response was observed up to physiologic concentrations (2 mM). Magnesium (0 to 1 mM) did not affect the amount of histamine released. Also, glycolysis was probably required for optimal release by complement, since both 2-deoxyglucose and iodoacetamide were inhibitory. When basophils were partly enriched by depletion of neutrophils and eosinophils, the percentage of histamine released by complement was unchanged. Finally, it was shown that activated complement desensitized basophils from responding to a second challenge by the same stimulus. Cross-desensitization was not observed between complement and pollen allergens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号