首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To examine the behaviour of the apical circumferential microfilament bundles (CMBs) associated with the zonula adhaerens (ZA)-junctions during mitosis, retinal pigment epithelial cells were labelled for F-actin, and retinas were serially sectioned for TEM. The results show that the ZA-CMB-complex persists throughout all stages of mitosis. At metaphase, the cells round up, but stay joined apically to adjacent cells by ZA-junctions. At telophase, the cleavage furrow forms asymmetrically from the basal end progressively toward the apical end, where the daughter cells remain connected by an intercellular bridge (IB). As the cleavage furrow with the contractile ring (CR) approaches the CMB, the two microfilament (MF) systems are oriented perpendicularly to each other. At the level of the CMB, the MFs of the CR connect the opposite sides of the CMB and bisect it into two CMBs, one for each of the two daughter cells. Subsequently, the CR in the IB splits into two, one on either side of the midbody. The two daughter cells, having acquired a complete CMB of their own, do not become direct neighbours, since adjacent cells, which remain joined to the apical ZA-junction of the dividing cell, are observed in the cleavage furrow, where they meet and form a ZA-junction between themselves, just below the IB. Separation of the daughter cells without losing contact with neighbouring cells at the level of the apical ZA-junction thus maintains the integrity of the epithelial sheet during mitosis.  相似文献   

2.
Microtubule rearrangements during mitosis in multinucleate cells   总被引:1,自引:0,他引:1  
The peroxidase-antiperoxidase (PAP) method for the detection of polymerized tubulin has been used to study the microtubule rearrangements during mitosis in PtK1 and HeLa multinucleate cells obtained by polyethyleneglycol (PEG)-mediated fusion. We demonstrate here that the transition of the microtubular cytoskeleton from interphase to mitosis is an inducible event and independent of the factor(s) responsible for chromatin condensation and nuclear envelope breakdown. However, for the induction of the microtubule rearrangements nuclear envelope breakdown is required. At midprophase, cytoskeletal microtubule rearrangements start for multinucleate PtK1 cells, whereas in HeLa cells such changes are delayed, and a more abrupt transition is observed here. After complete nuclear envelope breakdown (prometaphase) mitotic asters and spindles but no cytoplasmic (interphase) microtubuli can be observed in both systems. Metaphase is characterized by an interaction between the different mitotic poles which show the form of bipolar spindles, but individual separated mitotic poles far removed from the chromatin can also be seen.  相似文献   

3.
Chinese hamster ovary cells can be forced to enter mitosis without prior DNA replication by treatment with hydroxyurea and caffeine. Cells treated in this way assemble a spindle that functions normally except that it does not accomplish anaphase spindle elongation (anaphase B). The chromatin detaches from the unreplicated kinetochores, which fragment, but establish microtubule attachments and migrate to the metaphase plate. Partitioning of the kinetochore fragments ensues on the normal schedule. Typical midbodies and cleavage furrows are established and daughter cells of equal size are produced. These results imply that intact chromosomes are not necessary for correct cleavage furrow placement but that kinetochores might be. Further, it is clear that cleavage furrow placement does not depend on anaphase spindle elongation.  相似文献   

4.
Glial fibrillary acidic protein (GFAP) is a component of glial filaments specific to astroglia. We now report the spatial and temporal distributions of four phosphorylated sites in the GFAP molecule during mitosis of astroglial cells, determined by antibodies which can distinguish phosphorylated epitopes from non-phosphorylated-epitopes. Immunofluorescence microscopy showed that the Ser8 residues in the entire cytoplasmic glial filament system are initially phosphorylated when the cells enter mitosis. In cytokinesis, the phosphoSer8 residues become dephosphorylated, whereas Thr7, Ser13 and Ser34 in glial filaments at the cleavage furrow become the preferred sites of phosphorylation. The cdc2 kinase purified from mitotic cells can phosphorylate GFAP at Ser8 but not at Thr7, Ser13 or Ser34, in vitro. These results suggest that cdc2 kinase acts as a glial filament kinase only at the G2-M phase transition while other glial filament kinases are probably activated at the cleavage furrow before final separation of the daughter cells.  相似文献   

5.
The genetic analysis of mitosis in Aspergillus nidulans   总被引:3,自引:0,他引:3  
We describe here recent work on the molecular genetics of mitosis in the filamentous fungus Aspergillus nidulans. Aspergillus is one of three simple eukaryotes with powerful genetic systems that have been used to analyze mitosis. The modern molecular biological techniques available with this organism have made it possible to use mutations to identify genes and proteins that play an important role in mitosis. Three Aspergillus genes that affect mitosis are described. One gene, nimA, is specifically expressed late in the cell cycle and codes for a putative protein kinase that induces mitosis, even in cells blocked in S-phase. The second gene, bimG, codes for a putative phosphatase that interacts functionally with the nimA kinase. The third gene, bimE, codes for a protein that suppresses mitosis during interphase, apparently by keeping nimA turned off. None of these genes appear to be similar to any of the genes affecting mitosis that have been characterized in other eukaryotes, but rather appear to be elements of a system that prevents mitosis from occurring during interphase.  相似文献   

6.
TD-60 and INCENP are two members of the chromosome passenger protein family, and each has been suggested to play a role in the control of cytokinesis. Here we demonstrate by confocal immunofluorescence microscopy that TD-60 and INCENP distribute identically throughout the cell cycle. Both appear coordinately in G2-phase nuclei and become concentrated at centromeres during prophase. TD-60 and INCENP both then leave the chromosome together during anaphase and redistribute to the spindle midzone, as do other chromosome passenger proteins, and traverse the entire equatorial diameter from cortex to cortex. By image overlay and pixel count analysis we show that TD-60 and INCENP are distinct among known chromosome passenger proteins in extending beyond the spindle to the cortex. Further, we show that the cytokinesis-associated protein kinase AIM-1 also shares this distribution property. We suggest that this redistribution is required to signal cytokinesis. TD-60 and INCENP also show identical localization in cells that exit mitosis in the presence of dihydrocytochalasin B (DCB), an inhibitor of actin assembly. Such cells can resume cleavage upon removal of DCB and in a recovery subpopulation that cleaves only on one side, these proteins both colocalize to the cortex only where a cleavage furrow forms. Given the coincident distribution of TD-60 and INCENP during both interphase and mitosis, we suggest that these proteins may cooperate, perhaps within a protein complex, in signalling cytokinesis. Such a mechanism, using chromosome passenger proteins, may ensure that cytokinesis occurs only between the separated chromatids, and only after they have segregated. Received: 12 August 1998; in revised form: 1 September 1998 / Accepted: 2 September 1998  相似文献   

7.
Endocytosis resumes during late mitosis and is required for cytokinesis   总被引:1,自引:0,他引:1  
Recent work has underscored the importance of membrane trafficking events during cytokinesis. For example, targeted membrane secretion occurs at the cleavage furrow in animal cells, and proteins that regulate endocytosis also influence the process of cytokinesis. Nonetheless, the prevailing dogma is that endosomal membrane trafficking ceases during mitosis and resumes after cell division is complete. In this study, we have characterized endocytic membrane trafficking events that occur during mammalian cell cytokinesis. We have found that, although endocytosis ceases during the early stages of mitosis, it resumes during late mitosis in a temporally and spatially regulated pattern as cells progress from anaphase to cytokinesis. Using fixed and live cell imaging, we have found that, during cleavage furrow ingression, vesicles are internalized from the polar region and subsequently trafficked to the midbody area during later stages of cytokinesis. In addition, we have demonstrated that cytokinesis is inhibited when clathrin-mediated endocytosis is blocked using a series of dominant negative mutants. In contrast to previous thought, we conclude that endocytosis resumes during the later stages of mitosis, before cytokinesis is completed. Furthermore, based on our findings, we propose that the proper regulation of endosomal membrane traffic is necessary for the successful completion of cytokinesis.  相似文献   

8.
BACKGROUND: In fission yeast, the Wee1 kinase delays entry into mitosis until a critical cell size has been reached; however, a similar role for Wee1-related kinases has not been reported in other organisms. SWE1, the budding yeast homolog of wee1, is thought to function in a morphogenesis checkpoint that delays entry into mitosis in response to defects in bud morphogenesis. RESULTS: In contrast to previous studies, we found that budding yeast swe1 Delta cells undergo premature entry into mitosis, leading to birth of abnormally small cells. Additional experiments suggest that conditions that activate the morphogenesis checkpoint may actually be activating a G2/M cell size checkpoint. For example, actin depolymerization is thought to activate the morphogenesis checkpoint by inhibiting bud morphogenesis. However, actin depolymerization also inhibits bud growth, suggesting that it could activate a cell size checkpoint. Consistent with this possibility, we found that actin depolymerization fails to induce a G2/M delay once daughter buds pass a critical size. Other conditions that activate the morphogenesis checkpoint block bud formation, which could also activate a size checkpoint if cell size at G2/M is monitored in the daughter bud. Previous work reported that Swe1 is degraded during G2, which was proposed to account for failure of large-budded cells to arrest in response to actin depolymerization. However, we found that Swe1 is present throughout G2 and undergoes hyperphosphorylation as cells enter mitosis, as found in other organisms. CONCLUSIONS: Our results suggest that the mechanisms known to coordinate entry into mitosis in other organisms have been conserved in budding yeast.  相似文献   

9.
By indirect immunofluorescence microscopy and electron microscopy, we studied the behavior of intermediate filaments during mitosis in three human epithelial cell lines, derived from normal epidermis (PcaSE-1, from a cancer patient), stratified epithelium (CNE, from nasopharyngeal carcinoma) and simple epithelium (SPC-A-1 from lung adenocarcinoma) respectively. CNE cells and SPC-A-1 cells express two different intermediate filament systems; keratin filaments and vimentin filaments, but PcaSE-1 cells only express keratin filaments. The keratin filament system in PcaSE-1 cells remained intact and encircled the developing mitotic spindle as the cells entered mitosis. In contrast, in CNE cells and SPC-A-1 cells, keratin filaments appeared to disassemble into amorphous cytoplasmic bodies during mitosis. However, their vimentin filaments remained morphologically intact throughout mitosis. We propose; (1) The disassembly of keratin filaments in mitotic epithelial cells is more or less associated with the degree of their cell malignancy rather than with the abundance of keratin filaments in interphase. (2) Intermediate filaments may be involved in the positioning and/or centering of the spindle during mitosis. (3) The possible function of vimentin filament system in CNE cells is positioning and orientation of chromosomes.  相似文献   

10.
To ensure that the genetic information, replicated in the S-phase of the cell cycle, is correctly distributed between daughter cells at mitosis, chromatin duplication and chromosome segregation are highly regulated events. Since the early 1980's, our knowledge of the mechanisms governing these two events has greatly increased due to the use of genetic and biochemical approaches. We present here, first, an overview of the replication process, highlighting molecular aspects involved in coupling replication with chromatin dynamics in mitosis. The second part will present the current understanding of chromosome condensation and segregation during mitosis in higher eukaryotes. Finally, we will underline the links that exist between replication and mitosis.  相似文献   

11.
Erk5 is activated and acts as a survival factor in mitosis   总被引:2,自引:0,他引:2  
Erk5 is a recently discovered MAPK claimed to be responsible for some of the roles attributed to Erk1/2; here we report that it is activated in mitosis in comparison to G1/S. When Erk5 is inactivated pharmacologically or largely ablated by RNAi, cell survival in mitosis is diminished. We have previously shown Bim, a BH3-only protein of the Bcl-2 family, to be phosphorylated in mitosis, in a MEK-dependent manner (M. Grãos, A. D. Almeida, S. Chatterjee, Biochem. J. 388 (2005) 185). Inactivation of Erk5 in mitosis causes dephosphorylation of Bim. Bim is in the mitochondria in mitosis and when dephosphorylated interacts with Bax, inducing caspase activation. We also show that in mitosis Bim co-immunoprecipitates with Erk5 and Erk5 phosphorylates GST-Bim in in vitro kinase reaction. Taken together, our results identify a new target of the still largely mysterious Erk5 and suggest that Erk5 in mitosis may be a decisive step for the survival of proliferating cells.  相似文献   

12.
Cell surface changes during mitosis and cytokinesis of epithelial cells   总被引:4,自引:0,他引:4  
Summary PtK2 cells were studied with scanning electron microscopy to record changes on the cell surface during mitosis and cytokinesis. During prophase, prometaphase and metaphase, the cells remain very flat with few microvilli on their surfaces. In anaphase cells, there is a marked increase in the number of microvilli, most of which are clumped over the separating chromosomes and polar regions of the mitotic spindle leaving the surface of the interzonal spindle region relatively smooth. Microvilli appear over the interzonal spindle region in telophase and the cells also increase in height. At the beginning of cleavage, the distribution of microvilli is roughly uniform over the surface but it becomes asymmetric at the completion of cleav-age when the daughter cells begin to spread. At this time most microvilli are over the daughter nuclei and the surfaces that border the former cleavage furrow. The regions of the daughter cells distal to the furrow are the first to spread and their surfaces have very few microvilli. When chromosome movement is inhibited by either Nocodazole or Taxol, microvilli formation is inhibited on the arrested cells. Nevertheless cell rounding still takes place in the normal time period. It is concluded from these observations that the signal for the onset of chromosome movement in anaphase is accompanied by a signal for the formation of microvilli. It is suggested that there is also a separate signal for the cell-rounding event in mitosis and that microvilli do not play a role in this contractile process.  相似文献   

13.
BACKGROUND: During asymmetric cell division in the Drosophila nervous system, Numb segregates into one of two daughter cells where it is required for the establishment of the correct cell fate. Numb is uniformly cortical in interphase, but in late prophase, the protein concentrates in the cortical area overlying one of two centrosomes in an actin/myosin-dependent manner. What triggers the asymmetric localization of Numb at the onset of mitosis is unclear. RESULTS: We show here that the mitotic kinase Aurora-A is required for the asymmetric localization of Numb. In Drosophila sensory organ precursor (SOP) cells mutant for the aurora-A allele aurA(37), Numb is uniformly localized around the cell cortex during mitosis and segregates into both daughter cells, leading to cell fate transformations in the SOP lineage. aurA(37) mutant cells also fail to recruit Centrosomin (Cnn) and gamma-Tubulin to centrosomes during mitosis, leading to spindle morphology defects. However, Numb still localizes asymmetrically in cnn mutants or after disruption of microtubules, indicating that there are two independent functions for Aurora-A in centrosome maturation and asymmetric protein localization during mitosis. Using photobleaching of a GFP-Aurora fusion protein, we show that two rapidly exchanging pools of Aurora-A are present in the cytoplasm and at the centrosome and might carry out these two functions. CONCLUSIONS: Our results suggest that activation of the Aurora-A kinase at the onset of mitosis is required for the actin-dependent asymmetric localization of Numb. Aurora-A is also involved in centrosome maturation and spindle assembly, indicating that it regulates both actin- and microtubule-dependent processes in mitotic cells.  相似文献   

14.
To analyze the effects of the HIV-Tat-tubulin interaction, we microinjected HIV-Tat purified protein into Drosophila syncytial embryos. Following the Tat injection, altered timing of the cortical nuclear cycles was observed; specifically, the period between the nuclear envelope breakdown and anaphase initiation was lengthened as was the period between anaphase initiation and the formation of the next nuclear envelope. These two periods correspond to kinetochore alignment at metaphase and to mitosis exit, respectively. We also demonstrated that these two delays are the consequence of damage specifically induced by Tat on kinetochore alignment and on the timing of sister chromatid segregation at anaphase. Furthermore, we show that the expression of Tat in Drosophila larvae brain cells produces a significant percentage of polyploid and aneuploid cells. The results reported here indicate that Tat impairs the mitotic process and that Tat-tubulin interaction appears to be responsible for the observed defects. The presence of polyploid and aneuploid cells is consistent with a delay or arrest in the M phase of a substantial fraction of the cells expressing Tat, suggesting that mitotic spindle checkpoints are overridden following Tat expression.  相似文献   

15.
16.
J Minshull  J J Blow  T Hunt 《Cell》1989,56(6):947-956
The cyclins are a family of proteins encoded by maternal mRNA. Cyclin polypeptides accumulate during interphase and are destroyed during mitosis at about the time of entry into anaphase. We show here that Xenopus oocytes contain mRNAs encoding two cyclins that are major translation products in a cell-free extract from activated eggs. Cutting these mRNAs with antisense oligonucleotides and endogenous RNAase H blocks entry into mitosis in a cell-free egg extract. The extracts can enter mitosis if either of the cyclin mRNAs is left intact. We conclude that the synthesis of these cyclins is necessary for mitotic cell cycles in cleaving Xenopus embryos.  相似文献   

17.
Summary Xenopus laevis larvae at stage 52–53 (according to Nieuwkoop and Faber 1956) were subjected to amputation of both limbs at the thigh level as well as to repeated denervations of the right limb. Results obtained in larvae sacrificed during wound healing (1 after amputation), blastema formation (3 days) and blastema growth (5 and 7 days) showed that denervated right limbs have undergone the same histological modifications observed in innervated left limbs and have formed a regeneration blastema consisting of mesenchymal cells with a pattern of DNA synthesis and mitosis very similar to that in presence of nerves. Also, the patterns of cellular density in regenerating right and left limbs were very similar. On the whole, the data here reported show a highly remarkable degree of nerve-independence for regeneration in hindlimbs of larval Xenopus laevis at stage 52–53 and lend some substance to the hypothesis that, in early limbs, there would exist trophic factors capable of replacing those released by nerves, promoting DNA synthesis and mitosis in blastemal cells. Offprint requests to: S. Filoni  相似文献   

18.
During mitosis the nuclear envelope breaks down, leading to potential interactions between cytoplasmic and nuclear components. PML bodies are nuclear structures with tumor suppressor and antiviral functions. Early endosomes, on the other hand, are cytoplasmic vesicles involved in transport and growth factor signaling. Here we demonstrate that PML bodies form stable interactions with early endosomes immediately following entry into mitosis. The 2 compartments remain stably associated throughout mitosis and dissociate in the cytoplasm of newly divided daughter cells. We also show that a minor subset of PML bodies becomes anchored to the mitotic spindle poles during cell division. The study demonstrates a stable mitosis-specific interaction between a cytoplasmic and a nuclear compartment.  相似文献   

19.
Jacobs HW  Keidel E  Lehner CF 《The EMBO journal》2001,20(10):2376-2386
The destruction box (D-box) consensus sequence has been defined as a motif mediating polyubiquitylation and proteolysis of B-type cyclins during mitosis. We show here that the regions with similarity to D-boxes are not required for mitotic degradation of Drosophila Cyclin A. Instead of a simple D-box, a complex N-terminal degradation signal is present in this cyclin. Mutations that impair or abolish mitotic Cyclin A destruction delay progression through metaphase, but only when overexpressed. Moreover, these mutations prevent epidermal cells from entering the first G1 phase of embryogenesis and lead to a complete extra division cycle instead of a timely cell proliferation arrest. Residual Cyclin A activity after mitosis, therefore, has S phase-promoting activity. In principle, an S phase defect could also explain why epidermal cells fail to enter mitosis 16 in mutants lacking zygotic Cyclin A function. However, we demonstrate that this failure of mitosis is not caused simply by DNA replication or damage checkpoints. Entry into mitosis requires a function of Cyclin A that does not depend on the presence of the N-terminal region.  相似文献   

20.
The human genome has three unique genes coding for kinesin-13 proteins called Kif2a, Kif2b, and MCAK (Kif2c). Kif2a and MCAK have documented roles in mitosis, but the function of Kif2b has not been defined. Here, we show that Kif2b is expressed at very low levels in cultured cells and that GFP-Kif2b localizes predominately to centrosomes and midbodies, but also to spindle microtubules and transiently to kinetochores. Kif2b-deficient cells assemble monopolar or disorganized spindles. Chromosomes in Kif2b-deficient cells show typical kinetochore-microtubule attachments, but the velocity of movement is reduced approximately 80% compared with control cells. Some Kif2b-deficient cells attempt anaphase, but the cleavage furrow regresses and cytokinesis fails. Like Kif2a-deficient cells, bipolar spindle assembly can be restored to Kif2b-deficient cells by simultaneous deficiency of MCAK or Nuf2 or treatment with low doses of nocodazole. However, Kif2b-deficient cells are unique in that they assemble bipolar spindles when the pole focusing activities of NuMA and HSET are perturbed. These data demonstrate that Kif2b function is required for spindle assembly and chromosome movement and that the microtubule depolymerase activities of Kif2a, Kif2b, and MCAK fulfill distinct functions during mitosis in human cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号