首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Efficient post-Golgi trafficking depends on microtubules, but actin filaments and actin-associated proteins are also postulated. Here we examined, by inverse fluorescence recovery after photobleaching, the role of actin dynamics in the exit from the TGN of fluorescent-tagged apical or basolateral and raft or non-raft-associated cargoes. Either the actin-stabilizing jasplakinolide or the actin-depolymerising latrunculin B variably but significantly inhibited post-Golgi traffic of non-raft associated apical p75NTR and basolateral VSV-G cargoes. The TGN-exit of the apical-destined VSV-G mutant was impaired only by latrunculin B. Strikingly, the raft-associated GPI-anchor protein was not affected by either actin toxin. Results indicate that actin dynamics participates in the TGN egress of both apical- and basolateral-targeted proteins but is not needed for apical raft-associated cargo.  相似文献   

2.
The epithelial-specific adaptor AP1B sorts basolateral plasma membrane (PM) proteins in both biosynthetic and recycling routes, but the site where it carries out this function remains incompletely defined. Here, we have investigated this topic in Fischer rat thyroid (FRT) epithelial cells using an antibody against the medium subunit micro1B. This antibody was suitable for immunofluorescence and blocked the function of AP1B in these cells. The antibody blocked the basolateral recycling of two basolateral PM markers, Transferrin receptor (TfR) and LDL receptor (LDLR), in a perinuclear compartment with marker and functional characteristics of recycling endosomes (RE). Live imaging experiments demonstrated that in the presence of the antibody two newly synthesized GFP-tagged basolateral proteins (vesicular stomatitis virus G [VSVG] protein and TfR) exited the trans-Golgi network (TGN) normally but became blocked at the RE within 3-5 min. By contrast, the antibody did not block trafficking of green fluorescent protein (GFP)-LDLR from the TGN to the PM but stopped its recycling after internalization into RE in approximately 45 min. Our experiments conclusively demonstrate that 1) AP1B functions exclusively at RE; 2) TGN-to-RE transport is very fast and selective and is mediated by adaptors different from AP1B; and 3) the TGN and AP1B-containing RE cooperate in biosynthetic basolateral sorting.  相似文献   

3.
The rapid turnover of actin filaments and the tertiary meshwork formation are regulated by a variety of actin-binding proteins. Protein phosphorylation of cofilin, an actin-binding protein that depolymerizes actin filaments, suppresses its function. Thus, cofilin is a terminal effector of signaling cascades that evokes actin cytoskeletal rearrangement. When wild-type LIMK2 and kinase-dead LIMK2 (LIMK2/KD) were respectively expressed in cells, LIMK2, but not LIMK2/KD, phosphorylated cofilin and induced formation of stress fibers and focal complexes. LIMK2 activity toward cofilin phosphorylation was stimulated by coexpression of activated Rho and Cdc42, but not Rac. Importantly, expression of activated Rho and Cdc42, respectively, induced stress fibers and filopodia, whereas both Rho- induced stress fibers and Cdc42-induced filopodia were abrogated by the coexpression of LIMK2/KD. In contrast, the coexpression of LIMK2/KD with the activated Rac did not affect Rac-induced lamellipodia formation. These results indicate that LIMK2 plays a crucial role both in Rho- and Cdc42-induced actin cytoskeletal reorganization, at least in part by inhibiting the functions of cofilin. Together with recent findings that LIMK1 participates in Rac-induced lamellipodia formation, LIMK1 and LIMK2 function under control of distinct Rho subfamily GTPases and are essential regulators in the Rho subfamilies-induced actin cytoskeletal reorganization.  相似文献   

4.
Intestinal epithelial lipid rafts contain ganglioside GM1 that is the receptor for cholera toxin (CT). The ganglioside binds CT at the plasma membrane (PM) and carries the toxin through the trans-Golgi network (TGN) to the endoplasmic reticulum (ER). In the ER, a portion of the toxin unfolds and translocates to the cytosol to activate adenylyl cyclase. Activation of the cyclase leads to an increase in intracellular cAMP, which results in apical chloride secretion. Here, we find that an intact actin cytoskeleton is necessary for the efficient transport of CT to the Golgi and for subsequent activation of adenylyl cyclase. CT bound to GM1 on the cell membrane fractionates with a heterogeneous population of lipid rafts, a portion of which is enriched in actin and other cytoskeletal proteins. In this actin-rich fraction of lipid rafts, CT and actin colocalize on the same membrane microdomains, suggesting a possible functional association. Depolymerization or stabilization of actin filaments interferes with transport of CT from the PM to the Golgi and reduces the levels of cAMP generated in the cytosol. Depletion of membrane cholesterol, which also inhibits CT trafficking to the TGN, causes displacement of actin from the lipid rafts while CT remains stably raft associated. On the basis of these observations, we propose that the CT-GM1 complex is associated with the actin cytoskeleton via the lipid rafts and that the actin cytoskeleton plays a role in trafficking of CT from the PM to the Golgi/ER and the subsequent activation of adenylyl cyclase. membrane microdomains; membrane lipids; bacterial toxins; endocytosis; intestinal mucosa  相似文献   

5.
LIM-kinases (LIMK1 and LIMK2) regulate actin cytoskeletal reorganization through phosphorylation of cofilin, an actin-depolymerizing factor of actin filaments. Here, we describe a detailed analysis of the cell-cycle-dependent activity of endogenous LIMK1. When HeLa cells were synchronized at prometaphase by nocodazole-treatment, LIMK1 was hyperphosphorylated, and its activity toward cofilin phosphorylation was markedly increased. During cell cycle progression, LIMK1 activity was low in interphase but reached a maximal level during mitosis. Activation of LIMK1 during mitosis was abrogated by roscovitine, a specific inhibitor of cyclin-dependent kinases (CDKs), suggesting that activation of CDKs directly or indirectly participates in LIMK1 activation. These results strongly suggest that LIMK1 may play an important role in the cell cycle progression through regulation of actin cytoskeletal rearrangements.  相似文献   

6.
Qiu  Y.  Chen  W. Y.  Wang  Z. Y.  Liu  F.  Wei  M.  Ma  C.  Huang  Y. G. 《Neurochemical research》2016,41(9):2457-2469

Neuropathic pain occurs due to deleterious changes in the nervous system caused by a lesion or dysfunction. Currently, neuropathic pain management is unsatisfactory and remains a challenge in clinical practice. Studies have suggested that actin cytoskeleton remodeling may be associated with neural plasticity and may involve a nociceptive mechanism. Here, we found that the RhoA/LIM kinase (LIMK)/cofilin pathway, which regulates actin dynamics, was activated after chronic constriction injury (CCI) of the sciatic nerve. Treatments that reduced RhoA/LIMK/cofilin pathway activity, including simvastatin, the Rho kinase inhibitor Y-27632, and the synthetic peptide Tat-S3, attenuated actin filament disruption in the dorsal root ganglion and CCI-induced neuropathic pain. Over-activation of the cytoskeleton caused by RhoA/LIMK/cofilin pathway activation may produce a scaffold for the trafficking of nociceptive signaling factors, leading to chronic neuropathic pain. Here, we found that simvastatin significantly decreased the ratio of membrane/cytosolic RhoA, which was significantly increased after CCI, by inhibiting the RhoA/LIMK/cofilin pathway. This effect was highly dependent on the function of the cytoskeleton as a scaffold for signal trafficking. We conclude that simvastatin attenuated neuropathic pain in rats subjected to CCI by inhibiting actin-mediated intracellular trafficking to suppress RhoA/LIMK/cofilin pathway activity.

  相似文献   

7.
The interaction of astral microtubules with cortical actin networks is essential for the correct orientation of the mitotic spindle; however, little is known about how the cortical actin organization is regulated during mitosis. LIM kinase-1 (LIMK1) regulates actin dynamics by phosphorylating and inactivating cofilin, an actin-depolymerizing protein. LIMK1 activity increases during mitosis. Here we show that mitotic LIMK1 activation is critical for accurate spindle orientation in mammalian cells. Knockdown of LIMK1 suppressed a mitosis-specific increase in cofilin phosphorylation and caused unusual cofilin localization in the cell cortex in metaphase, instability of cortical actin organization and astral microtubules, irregular rotation and misorientation of the spindle, and a delay in anaphase onset. Similar results were obtained by treating the cells with a LIMK1 in hibitor peptide or latrunculin A or by overexpressing a non-phosphorylatable cofilin(S3A) mutant. Furthermore, localization of LGN (a protein containing the repetitive Leu-Gly-Asn tripeptide motifs), an important regulator of spindle orientation, in the crescent-shaped cortical regions was perturbed in LIMK1 knockdown cells. Our results suggest that LIMK1-mediated cofilin phosphorylation is required for accurate spindle orientation by stabilizing cortical actin networks during mitosis.  相似文献   

8.
Kim H  Park M  Kim SJ  Hwang I 《The Plant cell》2005,17(3):888-902
Actin filaments are thought to play an important role in intracellular trafficking in various eukaryotic cells. However, their involvement in intracellular trafficking in plant cells has not been clearly demonstrated. Here, we investigated the roles actin filaments play in intracellular trafficking in plant cells using latrunculin B (Lat B), an inhibitor of actin filament assembly, or actin mutants that disrupt actin filaments when overexpressed. Lat B and actin2 mutant overexpression inhibited the trafficking of two vacuolar reporter proteins, sporamin:green fluorescent protein (GFP) and Arabidopsis thaliana aleurain-like protein:GFP, to the central vacuole; instead, a punctate staining pattern was observed. Colocalization experiments with various marker proteins indicated that these punctate stains corresponded to the Golgi complex. The A. thaliana vacuolar sorting receptor VSR-At, which mainly localizes to the prevacuolar compartment, also accumulated at the Golgi complex in the presence of Lat B. However, Lat B had no effect on the endoplasmic reticulum (ER) to Golgi trafficking of sialyltransferase or retrograde Golgi to ER trafficking. Lat B also failed to influence the Golgi to plasma membrane trafficking of H+-ATPase:GFP or the secretion of invertase:GFP. Based on these observations, we propose that actin filaments play a critical role in the trafficking of proteins from the Golgi complex to the central vacuole.  相似文献   

9.
A role for cofilin and LIM kinase in Listeria-induced phagocytosis   总被引:9,自引:0,他引:9       下载免费PDF全文
The pathogenic bacterium Listeria monocytogenes is able to invade nonphagocytic cells, an essential feature for its pathogenicity. This induced phagocytosis process requires tightly regulated steps of actin polymerization and depolymerization. Here, we investigated how interactions of the invasion protein InlB with mammalian cells control the cytoskeleton during Listeria internalization. By fluorescence microscopy and transfection experiments, we show that the actin-nucleating Arp2/3 complex, the GTPase Rac, LIM kinase (LIMK), and cofilin are key proteins in InlB-induced phagocytosis. Overexpression of LIMK1, which has been shown to phosphorylate and inactivate cofilin, induces accumulation of F-actin beneath entering particles and inhibits internalization. Conversely, inhibition of LIMK's activity by expressing a dominant negative construct, LIMK1(-), or expression of the constitutively active S3A cofilin mutant induces loss of actin filaments at the phagocytic cup and also inhibits phagocytosis. Interestingly, those constructs similarly affect other actin-based phenomenons, such as InlB-induced membrane ruffling or Listeria comet tail formations. Thus, our data provide evidence for a control of phagocytosis by both activation and deactivation of cofilin. We propose a model in which cofilin is involved in the formation and disruption of the phagocytic cup as a result of its local progressive enrichment.  相似文献   

10.
Research following introduction of the MDCK model system to study epithelial polarity (1978) led to an initial paradigm that posited independent roles of the trans Golgi network (TGN) and recycling endosomes (RE) in the generation of, respectively, biosynthetic and recycling routes of plasma membrane (PM) proteins to apical and basolateral PM domains. This model dominated the field for 20 years. However, studies over the past decade and the discovery of the involvement of clathrin and clathrin adaptors in protein trafficking to the basolateral PM has led to a new paradigm. TGN and RE are now believed to cooperate closely in both biosynthetic and recycling trafficking routes. Here, we critically review these recent advances and the questions that remain unanswered.  相似文献   

11.
The glycosphingolipid GM1 binds cholera toxin (CT) on host cells and carries it retrograde from the plasma membrane (PM) through endosomes, the trans-Golgi (TGN), and the endoplasmic reticulum (ER) to induce toxicity. To elucidate how a membrane?lipid can specify trafficking in these pathways, we synthesized GM1 isoforms with alternate ceramide domains and imaged their trafficking in live cells.?Only GM1 with unsaturated acyl chains sorted efficiently from PM to TGN and ER. Toxin binding, which effectively crosslinks GM1 lipids, was dispensable, but membrane cholesterol and the lipid raft-associated proteins actin and flotillin were required. The results implicate a protein-dependent mechanism of lipid sorting by ceramide structure and provide a molecular explanation for the diversity?and specificity of retrograde trafficking by CT in?host cells.  相似文献   

12.
p200 is a cytoplasmic protein that associates with vesicles budding from the trans-golgi network (TGN). The protein was identified by a monoclonal antibody AD7. We have used this antibody to analyze whether p200 functions in exocytic transport from the TGN to the apical or basolateral plasma membrane in Madin-Darby canine kidney cells. We found that transport of the viral marker proteins, influenza hemagglutinin (HA) to the apical surface or vesicular stomatitis virus glycoprotein (VSV G) to the basolateral surface in streptolysin O-permeabilized cells was not affected when p200 was depleted from both the membranes and the cytosol. When vesicles isolated from perforated cells were analyzed by equilibrium density gradient centrifugation, the p200 immunoreactive membranes did not comigrate with either the apical vesicle marker HA or the basolateral vesicle marker VSV G. Immunoelectron microscopy of perforated and double-labeled cells showed that the p200 positive vesicular profiles were not labeled by antibodies to HA or VSV G when the viral proteins were accumulated in the TGN. Furthermore, the p200-decorated vesicles were more electron dense than those labeled with the viral antibodies. Together, these results suggest that p200 does not function in the transport pathways that carry HA from the TGN to the apical surface or VSV G from the TGN to the basolateral surface.  相似文献   

13.
LIM-kinase 1 (LIMK1) and LIM-kinase 2 (LIMK2) regulate actin cytoskeletal reorganization via cofilin phosphorylation downstream of distinct Rho family GTPases. We report our findings that ROCK, a downstream protein kinase of Rho, specifically activates LIMK2 but not LIMK1 downstream of RhoA. LIMK1 and LIMK2 activities toward cofilin phosphorylation were stimulated by co-expression with the active form of ROCK (ROCK-Delta3), whereas full-length ROCK selectively activates LIMK2 but not LIMK1. Activation of LIMK2 by RhoA was inhibited by Y-27632, a specific inhibitor of ROCK, but Rac1-mediated activation of LIMK1 was not. ROCK directly phosphorylated the threonine 505 residue within the activation segment of LIMK2 and markedly stimulated LIMK2 activity. A LIMK2 mutant with replacement of threonine 505 by valine abolished LIMK2 activities for cofilin phosphorylation and actin cytoskeletal changes, whereas replacement by glutamate enhanced the protein kinase activity and stress fiber formation by LIMK2. These results indicate that ROCK directly phosphorylates threonine 505 and activates LIMK2 downstream of RhoA and that this phosphorylation is essential for LIMK2 to induce actin cytoskeletal reorganization. Together with the finding that LIMK1 is regulated by Pak1, LIMK1 and LIMK2 are regulated by different protein kinases downstream of distinct Rho family GTPases.  相似文献   

14.
Actin interacting protein 1 (Aip1) is a conserved component of the actin cytoskeleton first identified in a two-hybrid screen against yeast actin. Here, we report that Aip1p also interacts with the ubiquitous actin depolymerizing factor cofilin. A two-hybrid-based approach using cofilin and actin mutants identified residues necessary for the interaction of actin, cofilin, and Aip1p in an apparent ternary complex. Deletion of the AIP1 gene is lethal in combination with cofilin mutants or act1-159, an actin mutation that slows the rate of actin filament disassembly in vivo. Aip1p localizes to cortical actin patches in yeast cells, and this localization is disrupted by specific actin and cofilin mutations. Further, Aip1p is required to restrict cofilin localization to cortical patches. Finally, biochemical analyses show that Aip1p causes net depolymerization of actin filaments only in the presence of cofilin and that cofilin enhances binding of Aip1p to actin filaments. We conclude that Aip1p is a cofilin-associated protein that enhances the filament disassembly activity of cofilin and restricts cofilin localization to cortical actin patches.  相似文献   

15.
Vascular endothelial growth factor-A (VEGF-A) induces actin reorganization and migration of endothelial cells through a p38 mitogen-activated protein kinase (MAPK) pathway. LIM-kinase 1 (LIMK1) induces actin remodeling by phosphorylating and inactivating cofilin, an actin-depolymerizing factor. In this study, we demonstrate that activation of LIMK1 by MAPKAPK-2 (MK2; a downstream kinase of p38 MAPK) represents a novel signaling pathway in VEGF-A-induced cell migration. VEGF-A induced LIMK1 activation and cofilin phosphorylation, and this was inhibited by the p38 MAPK inhibitor SB203580. Although p38 phosphorylated LIMK1 at Ser-310, it failed to activate LIMK1 directly; however, MK2 activated LIMK1 by phosphorylation at Ser-323. Expression of a Ser-323-non-phosphorylatable mutant of LIMK1 suppressed VEGF-A-induced stress fiber formation and cell migration; however, expression of a Ser-323-phosphorylation-mimic mutant enhanced these processes. Knockdown of MK2 by siRNA suppressed VEGF-A-induced LIMK1 activation, stress fiber formation, and cell migration. Expression of kinase-dead LIMK1 suppressed VEGF-A-induced tubule formation. These findings suggest that MK2-mediated LIMK1 phosphorylation/activation plays an essential role in VEGF-A-induced actin reorganization, migration, and tubule formation of endothelial cells.  相似文献   

16.
Mammalian LIM kinase 1 (LIMK1) is involved in reorganization of actin cytoskeleton through inactivating phosphorylation of the ADF family protein cofilin, which depolymerizes actin filaments. Maintenance of the actin dynamics in an ordered fashion is essential for stabilization of cell shape or promotion of cell motility depending on the cell type. These are the two key phenomena that may become altered during acquisition of the metastatic phenotype by cancer cells. Here we show that LIMK1 is overexpressed in prostate tumors and in prostate cancer cell lines, that the concentration of phosphorylated cofilin is higher in metastatic prostate cancer cells, and that a partial reduction of LIMK1 altered cell proliferation by arresting cells at G2/M, changed cell shape, and abolished the invasiveness of metastatic prostate cancer cells. We also show that the ectopic expression of LIMK1 promotes acquisition of invasive phenotype by the benign prostate epithelial cells. Our data provide evidence of a novel role of LIMK1 in regulating cell division and invasive property of prostate cancer cells and indicate that the effect is not mediated by phosphorylation of cofilin. Our study correlates with the recent observations showing a metastasis-associated chromosomal gain on 7q11.2 in prostate cancer, suggesting a possible gain in LIMK1 DNA (7q11.23).  相似文献   

17.
Microtubules (MT) are required for the efficient transport of membranes from the trans-Golgi and for transcytosis of vesicles from the basolateral membrane to the apical cytoplasm in polarized epithelia. MTs in these cells are primarily oriented with their plus ends basally near the Golgi and their minus-ends in the apical cytoplasm. Here we report that isolated Golgi and Golgi-enriched membranes from intestinal epithelial cells possess the actin based motor myosin-I, the MT minus- end-directed motor cytoplasmic dynein and its in vitro motility activator dynactin (p150/Glued). The Golgi can be separated into stacks, possessing features of the Golgi cisternae, and small membranes enriched in the trans-Golgi network marker TGN 38/41. Whereas myosin-I is present on all membranes in the Golgi fraction, dynein is present only on the small membrane fraction. Dynein, like myosin-I, is associated with membranes as a cytoplasmic peripheral membrane protein. Dynein and myosin-I coassociate with membranes that bind to MTs and cross-link actin filaments and MTs in a nucleotide-dependent manner. We propose that cytoplasmic dynein moves Golgi membranes along MTs to the cell cortex where myosin-I provides local delivery through the actin- rich cytoskeleton to the apical membrane.  相似文献   

18.
LIM kinases (LIMK1 and LIMK2) regulate actin cytoskeletal reorganization through phosphorylating and inactivating cofilin, an actin-depolymerizing factor of actin filaments. Here, we describe a detailed analysis of the cell-cycle-dependent activity of LIMK2, and a subcellular localization of LIMK1 and LIMK2. The activity of LIMK2, distinct from LIMK1, toward cofilin phosphorylation did not change in the normal cell division cycle. In contrast, LIMK2 was hyperphosphorylated and its activity was markedly increased when HeLa cells were synchronized at mitosis with nocodazole treatment. Immunofluorescence analysis showed that LIMK1 was localized at cell-cell adhesion sites in interphase and prophase, redistributed to the spindle poles during prometaphase to anaphase, and accumulated at the cleavage furrow in telophase. In contrast, LIMK2 was diffusely localized in the cytoplasm during interphase, redistributed to the mitotic spindle, and finally to the spindle midzone during anaphase to telophase. These findings suggest that LIMK2 is activated in response to microtubule disruption, and that LIMK1 and LIMK2 may play different roles in regulating for the mitotic spindle organization, chromosome segregation, and cytokinesis during the cell division cycle.  相似文献   

19.
BACKGROUND: Previous work has led to the hypothesis that cofilin severing, as regulated by PLC, is involved in chemotactic sensing. We have tested this hypothesis by investigating whether activation of endogenous cofilin is spatially and temporally linked to sensing an EGF point source in carcinoma cells. RESULTS: We demonstrate that inhibition of endogenous cofilin activity with either siRNA or overexpression of LIMK suppresses directional sensing in carcinoma cells. LIMK siRNA knockdown, which suppresses cofilin phosphorylation, and microinjection of S3C cofilin, a cofilin mutant that is constitutively active and not phosphorylated by LIMK, also inhibits directional sensing and chemotaxis. These results indicate that phosphorylation of cofilin by LIMK, in addition to cofilin activity, is required for chemotaxis. Cofilin activity concentrates rapidly at the newly formed leading edge facing the gradient, whereas cofilin phosphorylation increases throughout the cell. Quantification of these results indicates that the amplification of asymmetric actin polymerization required for protrusion toward the EGF gradient occurs at the level of cofilin but not at the level of PLC activation by EGFR. CONCLUSIONS: These results indicate that local activation of cofilin by PLC and its global inactivation by LIMK phosphorylation combine to generate the local asymmetry of actin polymerization required for chemotaxis.  相似文献   

20.
We have previously reported that cofilin, an actin-binding protein, plays an important role in phagocyte functions, such as respiratory burst, phagocytosis, and chemotaxis. On the other hand, it was recently found that LIM motif-containing kinase (LIMK) phosphorylates cofilin. In this work, we investigated the roles of LIMK in activated phagocytes. The results of immunostaining showed that in dormant phagocytes the endogenous LIMK1 was diffusely distributed in the cytosol of macrophage-like U937 cells, and when activated by opsonized zymosan (OZ), it was translocated to plasma membranes. Green fluorescence protein (GFP)-conjugated LIMK was expressed in the phagocytes, and the GFP-positive cells were isolated by a fluorescence-activated cell sorter. The isolated wild-type LIMK-overexpressing cells produced superoxide at a rate that was 3.2-fold higher than that of only GFP-expressing control cells, whereas the respiratory burst of dominant negative LIMK1(D460A)-expressing cells decreased to 31% of that of the control cells. Phagocytic activity monitored by using Texas Red-labeled OZ was also decreased in the D460A-expressing cells. By immunoblotting using a specific anti-phosphorylated cofilin antibody, it was revealed that in the OZ-activated wild-type LIMK1-GFP-expressing cells, the phosphorylated cofilin increased by 2.3-fold, and that in the OZ-activated D460A-GFP-expressing cells, the phosphorylated cofilin decreased to 47% of that of only GFP-expressing cells (mock control). Furthermore, in the wild-type LIMK1-expressing cells, OZ-evoked increase in filamentous actin was markedly enhanced, whereas in the dominant negative LIMK1-expressing cells, the total level of F-actin was strongly suppressed. These results suggest that LIMK1 regulates the functions of phagocytes through phosphorylation of cofilin and enhances the formation of filamentous actin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号