首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gomes MM  Wall SB  Takahashi K  Novak J  Renfrow MB  Herr AB 《Biochemistry》2008,47(43):11285-11299
The IgA isotype of human antibodies triggers inflammatory responses via the IgA-specific receptor FcalphaRI (CD89). Structural studies have suggested that IgA1 N-glycans could modulate the interaction with FcalphaRI. We have carried out detailed biophysical analyses of three IgA1 samples purified from human serum and recombinant IgA1-Fc and compared their binding to FcalphaRI. Analytical ultracentrifugation revealed wide variation in the distribution of polymeric species between IgA1 samples, and Fourier transform ion cyclotron resonance mass spectrometry showed overlapping but distinct populations of N-glycan species between IgA1 samples. Kinetic and equilibrium data from surface plasmon resonance experiments revealed that variation in the IgA1 C H2 N-glycans had no effect on the kinetics or affinity constants for binding to FcalphaRI. Indeed, complete enzymatic removal of the IgA1 N-glycans yielded superimposable binding curves. These findings have implications for renal diseases such as IgA nephropathy.  相似文献   

2.
The relevance of reactive oxygen species (ROS) in the pathogenesis of inflammatory diseases is widely documented. Immunochemical detection of ROS DNA adducts has been developed, however, recognition of glyoxal-DNA adducts has not previously been described. We have generated a polyclonal antibody that has shown increased antibody binding to ROS-modified DNA in comparison to native DNA. In addition, dose-dependent antibody binding to DNA modified with ascorbate alone was shown, with significant inhibition by desferrioxamine, catalase, and ethanol. Minimal inhibition was observed with uric acid, 1,10-phenanthroline and DMSO. However, antibody binding in the presence of EDTA increased 3500-fold. The involvement of hydrogen peroxide and hydroxyl radical in ascorbate-mediated DNA damage is consistent with ascorbate acting as a reducing agent for DNA-bound metal ions. Glyoxal is known to be formed during oxidation of ascorbate. Glyoxylated DNA, that previously had been proposed as a marker of oxidative damage, was recognised in a dose dependent manner using the antibody. We describe the potential use of our anti-ROS DNA antibody, that detects predominantly Fenton-type mediated damage to DNA and report on its specificity for the recognition of glyoxal-DNA adducts.  相似文献   

3.
Previous studies have shown that the isotype of an antibody response is selected, in part, by the inhibition of isotype-specific suppression. The antisuppressor model predicts that isotype selection is initiated through an interaction between Ag, Ig, and a T cell-derived factor within 6 h of immunization. This report characterizes some of these molecules and their contribution to isotype regulation. Cultures of murine spleen cells stimulated with the T cell-dependent Ag SRBC led to Ag-specific IgG and IgA responses that could be suppressed and then antisuppressed by a molecular complex produced by mixing purified serum Ig with the supernatant of Ag-pulsed macrophages co-cultured with T cells. The supernatants from separate cultures of Ag-pulsed macrophages and rIL-1 alpha stimulated CD4+ T cells, could be pooled and mixed with Ig to produce functional antisuppressive complexes thereby allowing the factors from the different cell types to be studied separately. Adsorption of the co-culture or the rIL-1 alpha stimulated T cell supernatants against monoclonal IgG or IgA, removed IgG and IgA binding factors, respectively, and abrogated the ability to enhance the corresponding isotype. The adherent material could be recovered and used to reconstitute enhancement by the supernatants depleted of the binding factors. When affinity purified IgG or IgA was used as the source of Ig within the antisuppressive complexes, the enhancement of the antibody response was limited to the isotype of the regulatory Ig used to form the complex. Thus, manipulation of the antisuppressive molecules has a predictable effect on isotype selection. Release of isotype-specific binding factors by CD4+ cells by rIL-1 alpha supports the hypothesis that T cell circuits play a role in initiating isotype regulation.  相似文献   

4.
Mitochondria consume about 90 percent of oxygen used by the body, and are a particularly rich source of reactive oxygen species (ROS). In this research communication mitochondrial DNA (mtDNA) was isolated from fresh goat liver and modified in vitro by hydroxyl radical generated from UV irradiation (254 nm) of hydrogen peroxide. As a consequence of hydroxyl radical modification, mtDNA showed hyperchromicity and sensitivity to nuclease S1 digestion as compared to control mtDNA. Animals immunized with mtDNA and ROS-modified mtDNA induced antibodies as detected by direct binding and competition ELISA. The data suggest that immunogenicity of mtDNA got augmented after treatment with hydroxyl radical. IgG isolated from immune sera showed specificity for respective immunogen and cross-reaction with other nucleic acids. Binding of induced antibodies with array of antigens clearly indicates their polyspecific nature. Moreover, the polyspecificity exhibited by induced antibodies is unique in view of similar multiple antigen binding properties of naturally occurring anti-DNA antibodies derived from SLE patients.  相似文献   

5.
Antibody therapy is a validated treatment approach for several malignancies. All currently clinically applied therapeutic antibodies (Abs) are of the IgG isotype. However, not all patients respond to this therapy and relapses can occur. IgA represents an alternative isotype for antibody therapy that engages FcαRI expressing myeloid effector cells, such as neutrophils and monocytes. IgA Abs have been shown to effectively kill tumor cells both in vitro and in vivo. However, due to the short half-life of IgA Abs in mice, daily injections are required to reach an effect comparable to IgG Abs. The relatively long half-life of IgG Abs and serum albumin arises from their capability of interacting with the neonatal Fc receptor (FcRn). As IgA Abs lack a binding site for FcRn, we generated IgA Abs with the variable regions of the Her2-specific Ab trastuzumab and attached an albumin-binding domain (ABD) to the heavy or light chain (HCABD/LCABD) to extend their serum half-life. These modified Abs were able to bind albumin from different species in vitro. Furthermore, tumor cell lysis of IgA-Her2-LCABD Abs in vitro was similar to unmodified IgA-Her2 Abs. Pharmacokinetic studies in mice revealed that the serum exposure and half-life of the modified IgA-Her2 Abs was extended. In a xenograft mouse model, the modified IgA1 Abs exhibited a slightly, but significantly, improved anti-tumor response compared to the unmodified Ab. In conclusion, empowering IgA Abs with albumin-binding capacity results in in vitro and in vivo functional Abs with an enhanced exposure and prolonged half-life.  相似文献   

6.
8-Oxoguanine (8-OG) is an important biomarker of oxidative DNA damage induced by reactive oxygen species (ROS). By using ELISA with monoclonal antibodies against 8-OG, the formation of 8-OG in DNA by the action of uranyl ions, gamma-irradiation, and heating at 37 degrees C and their combined action was investigated in view of environmental pollution by uranium oxides as a result of the use of armor piercing shells with depleted uranium. The content of 8-OG in DNA induced by the action of gamma-irradiation, 5 microM uranyl ions and heating changes with time in a complicated manner. These results suggest that, by the action of uranyl ions, an additional generation of ROS occurs, which leads both to the formation of 8-OG in DNA and its further oxidation. Uranyl ions at a conceptration of 5 microM increase the thermal deamination of cytosine in DNA several times but do not influence DNA thermal depurination. It is shown that uranyl ions essentially increase the production of hydrogen peroxide and hydroxyl radicals by the action of heat on water. The results indicate a high chemical genotoxicity of uranyl ions and their enhancing effect on DNA base damage by the action of heat and gamma-irradiation.  相似文献   

7.
The unique features of IgA, such as the ability to recruit neutrophils and suppress the inflammatory responses mediated by IgG and IgE, make it a promising antibody isotype for several therapeutic applications. However, in contrast to IgG, reports on plant production of IgA are scarce. We produced IgA1κ and IgG1κ versions of three therapeutic antibodies directed against pro‐inflammatory cytokines in Nicotiana benthamiana: Infliximab and Adalimumab, directed against TNF‐α, and Ustekinumab, directed against the interleukin‐12p40 subunit. We evaluated antibody yield, quality and N‐glycosylation. All six antibodies had comparable levels of expression between 3.5 and 9% of total soluble protein content and were shown to have neutralizing activity in a cell‐based assay. However, IgA1κ‐based Adalimumab and Ustekinumab were poorly secreted compared to their IgG counterparts. Infliximab was poorly secreted regardless of isotype backbone. This corresponded with the observation that both IgA1κ‐ and IgG1κ‐based Infliximab were enriched in oligomannose‐type N‐glycan structures. For IgG1κ‐based Ustekinumab and Adalimumab, the major N‐glycan type was the typical plant complex N‐glycan, biantennary with terminal N‐acetylglucosamine, β1,2‐xylose and core α1,3‐fucose. In contrast, the major N‐glycan on the IgA‐based antibodies was xylosylated, but lacked core α1,3‐fucose and one terminal N‐acetylglucosamine. This type of N‐glycan occurs usually in marginal percentages in plants and was never shown to be the main fraction of a plant‐produced recombinant protein. Our data demonstrate that the antibody isotype may have a profound influence on the type of N‐glycan an antibody receives.  相似文献   

8.
Antibodies of human IgA isotype are critical components of the mucosal immune system, but little is known about their immunotherapeutic potential. Compared with IgG antibodies, IgA molecules carry a C-terminal tail piece extension of 18 amino acids with a free cysteine at position 471. This cysteine is required for the formation of dimeric IgA antibodies, but may impair molecular characteristics of monomeric IgA antibodies as therapeutic reagents. Thus, we generated and characterized a d471-mutated antibody against the epidermal growth factor receptor (EGFR) and compared it to its respective IgA2 m(1) wild type antibody. Both wild type and mutated IgA antibodies demonstrated similar EGFR binding and were similarly efficient in inhibiting EGF binding and in blocking EGF-mediated cell proliferation. Recruitment of Fc-mediated effector functions like antibody-dependent cell-mediated cytotoxicity by monocytes, macrophages or PMN was similar, but the d471-mutated IgA exhibited different biochemical properties compared with wild type antibody. As expected, mutated IgA did not form stable dimers in the presence of human joining (J)-chain, but we also observed reduced levels of dimeric aggregates in the absence of J-chain. Furthermore, glycoprofiling revealed different glycosylation patterns for both antibodies, including considerably less mannosylation of d471-mutated antibodies. Overall, our results demonstrate that the deletion of the C-terminal cysteine of IgA2 did not affect the investigated effector functions compared with wild type antibody, but it improved biochemical properties of an IgA2 m(1) antibody against EGFR, and may thereby assist in exploring the immunotherapeutic potential of recombinant IgA antibodies.  相似文献   

9.
10.
Seasonal and highly infectious strains of the influenza A and influenza B viruses cause millions of cases of severe complications in elderly people, children, and patients with immune diseases each year. Immunoglobulin A (IgA), which is an active component of humoral immunity, can prevent the spread of the virus in the upper respiratory tract. The preparation and study of the properties of recombinant virus-specific IgA could be an important approach to finding new means of preventing and treating influenza. Based on CHO DG44 cells, we developed stable monoclonal cell lines that produce monomeric and dimeric antibodies FI6-IgA1 and FI6-IgA2m1 to hemagglutinin (HA) of the influenza A virus. When studying the productivity, growth, and stability of the obtained clones, we found that the dimeric form of antibodies of IgA1 isotype is superior to other forms. The dimeric form of IgA antibodies plays a key role in mucosal immunity. Recognizing the prospects of using dimeric IgA as prophylactic and therapeutic mucosal drugs for viral infections, we studied their virus-neutralizing and antiviral activities on MDCK cell culture and compared them with the antibodies of the IgG1 isotype. This study presents the data on antiviral and virus-neutralizing activities of the FI6-IgA1 dimers to seasonal and highly infectious strains of influenza A virus.  相似文献   

11.
Induction of massive apoptosis of hair follicle cells by chemotherapy has been implicated in the pathogenesis of chemotherapy-induced alopecia (CIA), but the underlying mechanisms of regulation are not well understood. The present study investigated the apoptotic effect of cisplatin in human hair follicle dermal papilla cells and HaCaT keratinocytes, and determined the identity and role of specific reactive oxygen species (ROS) involved in the process. Treatment of the cells with cisplatin induced ROS generation and a parallel increase in caspase activation and apoptotic cell death. Inhibition of ROS generation by antioxidants inhibited the apoptotic effect of cisplatin, indicating the role of ROS in the process. Studies using specific ROS scavengers further showed that hydroxyl radical, but not hydrogen peroxide or superoxide anion, is the primary oxidative species responsible for the apoptotic effect of cisplatin. Electron spin resonance studies confirmed the formation of hydroxyl radicals induced by cisplatin. The mechanism by which hydroxyl radical mediates the apoptotic effect of cisplatin was shown to involve down-regulation of the anti-apoptotic protein Bcl-2 through ubiquitin-proteasomal degradation. Bcl-2 was also shown to have a negative regulatory role on hydroxyl radical. Together, our results indicate an essential role of hydroxyl radical in cisplatin-induced cell death of hair follicle cells through Bcl-2 regulation. Since CIA is a major side effect of cisplatin and many other chemotherapeutic agents with no known effective treatments, the knowledge gained from this study could be useful in the design of preventive treatment strategies for CIA through localized therapy without compromising the chemotherapy efficacy.  相似文献   

12.
《MABS-AUSTIN》2013,5(3):320-334
The development and production of recombinant monoclonal antibodies is well established. Although most of these are IgGs, there is also great interest in producing recombinant IgAs since this isotype plays a critical role in providing immunologic protection at mucosal surfaces. The choice of expression system for production of recombinant antibodies is crucial because they are glycoproteins containing at least one N-linked carbohydrate. These glycans have been shown to contribute to the stability, pharmacokinetics and biologic function of antibodies. We have produced recombinant human IgA1 and all three allotypes of IgA2 in murine myeloma and CHO cell lines to systematically characterize and compare the N-linked glycans. Recombinant IgAs produced in murine myelomas differ significantly from IgA found in humans in that they contain the highly immunogenic Galα(1,3)Gal epitope and N-glycolylneuraminic acid residues, indicating that murine myeloma is not the optimal expression system for the production of human IgA. In contrast, IgAs produced in CHO cells contained glycans that were more similar to those found on human IgA. Expression of IgA1 and IgA2 in Lec2 and Lec8 cell lines that are defective in glycan processing resulted in a less complex pool of N-glycans. In addition, the level of sialylation of rIgAs produced in murine and CHO cells was significantly lower than that previously reported for serum IgA1. These data underscore the importance of choosing the appropriate cell line for the production of glycoproteins with therapeutic potential.  相似文献   

13.
The development and production of recombinant monoclonal antibodies is well established. Although most of these are IgGs, there is also great interest in producing recombinant IgAs since this isotype plays a critical role in providing immunologic protection at mucosal surfaces. the choice of expression system for production of recombinant antibodies is crucial because they are glycoproteins containing at least one N-linked carbohydrate. these glycans have been shown to contribute to the stability, pharmacokinetics and biologic function of antibodies. We have produced recombinant human IgA1 and all three allotypes of IgA2 in murine myeloma and CHo cell lines to systematically characterize and compare the N-linked glycans. Recombinant IgAs produced in murine myelomas differ significantly from IgA found in humans in that they contain the highly immunogenic Galα(1,3)Gal epitope and N-glycolylneuraminic acid residues, indicating that murine myeloma is not the optimal expression system for the production of human IgA. In contrast, IgAs produced in CHo cells contained glycans that were more similar to those found on human IgA. expression of IgA1 and IgA2 in Lec2 and Lec8 cell lines that are defective in glycan processing resulted in a less complex pool of N-glycans. In addition, the level of sialylation of rIgAs produced in murine and CHo cells was significantly lower than that previously reported for serum IgA1. these data underscore the importance of choosing the appropriate cell line for the production of glycoproteins with therapeutic potential.Key words: recombinant antibody, IgA, glycosylation, expression system, mass spectrometry  相似文献   

14.
To determine the extent of clonal involvement of the secretory immune system and the origin of salivary immunoglobulins (Ig) in monoclonal gammopathy patients, saliva and serum samples were collected from five affected individuals (two IgA myelomas, one IgG myeloma, one IgG benign monoclonal gammopathy, and one IgM lymphoma) and were assayed for the presence of monoclonal Ig. Purified polyclonal or monoclonal anti-idiotype (Id) antibodies were prepared against each of the isolated serum paraproteins. In all five individuals, the patient saliva samples inhibited the binding of 125I-labeled homologous Ig to the corresponding anti-Id antibodies, but normal saliva did not. The concentration of Id in patients' saliva varied from 1 to 400 micrograms/ml; i.e., 0.004 to 1.0% of the corresponding serum values. Saliva of a lymphoma patient whose IgM kappa protein exhibited rheumatoid factor (RF) activity also contained RF. The salivary Id-bearing molecules were found to have the same Ig isotype as the serum paraproteins. The myeloma IgA represented a minor component (0.4 and 3.9%) of the total salivary IgA. The salivary IgA myeloma proteins were associated at least in part with secretory component, but the salivary IgG paraproteins were not. In an IgA myeloma patient, a minority (17%) of the IgA+ plasma cells found in the lacrymal gland biopsy specimen were Id+, whereas the great majority (98%) of bone marrow IgA plasma cells were Id+. The results suggest active transport rather than passive transudation of myeloma IgA into the patients' saliva, and the integrity of the secretory immune system was not compromised by the neoplastic process.  相似文献   

15.
In recent years several groups have shown that isotype switching from IgM to IgG to IgA can affect the affinity and specificity of antibodies sharing identical variable (V) regions. However, whether the same applies to IgE is unknown. In this study we compared the fine specificity of V region-identical IgE and IgA to Cryptococcus neoformans capsular polysaccharide and found that these differed in specificity from each other. The IgE and IgA paratopes were probed by nuclear magnetic resonance spectroscopy with 15N-labeled peptide mimetics of cryptococcal polysaccharide antigen (Ag). IgE was found to cleave the peptide at a much faster rate than V region-identical IgG subclasses and IgA, consistent with an altered paratope. Both IgE and IgA were opsonic for C. neoformans and protected against infection in mice. In summary, V-region expression in the context of the ϵ constant (C) region results in specificity changes that are greater than observed for comparable IgG subclasses. These results raise the possibility that expression of certain V regions in the context of α and ϵ C regions affects their function and contributes to the special properties of those isotypes.  相似文献   

16.
17.
The objective of the present study was to estimate genetic parameters for natural antibody isotypes immunoglobulin (Ig) A, IgG1 and IgM titers binding the bacterial antigens lipopolysaccharide, peptidoglycan and the model antigen keyhole limpet hemocyanin in Dutch Holstein‐Friesian cows (= 1695). Further, this study included total natural antibody titers binding the antigens mentioned above, making no isotype distinction, as well as total natural antibody titers and natural antibody isotypes IgA, IgG1 and IgM binding lipoteichoic acid. The study showed that natural antibody isotype titers are heritable, ranging from 0.06 to 0.55, and that these heritabilities were generally higher than heritabilities for total natural antibody titers. Genetic correlations, the combinations of total natural antibody titers and natural antibody isotype titers, were nearly all positive and ranged from ?0.23 to 0.99. Strong genetic correlations were found between IgA and IgM. Genetic correlations were substantially weaker when they involved an IgG1 titer, indicating that IgA and IgM have a common genetic basis, but that the genetic basis for IgG1 differs from that for IgA or IgM. Results from this study indicate that natural antibody isotype titers show the potential for effective genetic selection. Further, natural antibody isotypes may provide a better characterization of different elements of the immune response or immune competence. As such, natural antibody isotypes may enable more effective decisions when breeding programs start to include innate immune parameters.  相似文献   

18.

Introduction  

We and others have previously shown that antibodies against cyclic citrullinated proteins (anti-CCP) precede the development of rheumatoid arthritis (RA) and in a more recent study we reported that individuals who subsequently developed RA had increased concentrations of several cytokines and chemokines years before the onset of symptoms of joint disease. Here we aimed to evaluate the prevalence and predictive values of anti-CCP antibodies of IgG, IgM and IgA isotype in individuals who subsequently developed RA and also to relate these to cytokines and chemokines, smoking, genetic factors and radiographic score.  相似文献   

19.
We have recently shown that hyperosmotic stress activates p65/RelB NFkappaB in cultured cardiomyocytes with dichotomic actions on caspase activation and cell death. It remains unexplored how NFkappaB is regulated in cultured rat cardiomyocytes exposed to hyperosmotic stress. We study here: (a) if hyperosmotic stress triggers reactive oxygen species (ROS) generation and in turn whether they regulate NFkappaB and (b) if insulin-like growth factor-1 (IGF-1) modulates ROS production and NFkappaB activation in hyperosmotically-stressed cardiomyocytes. The results showed that hyperosmotic stress generated ROS in cultured cardiac myocytes, in particular the hydroxyl and superoxide species, which were inhibited by N-acetylcysteine (NAC). Hyperosmotic stress-induced NFkappaB activation as determined by IkappaBalpha degradation and NFkappaB DNA binding. NFkappaB activation and procaspase-3 and -9 fragmentation were prevented by NAC and IGF-1. However, this growth factor did not decrease ROS generation induced by hyperosmotic stress, suggesting that its actions over NFkappaB and caspase activation may be due to modulation of events downstream of ROS generation. We conclude that hyperosmotic stress induces ROS, which in turn activates NFkappaB and caspases. IGF-1 prevents NFkappaB activation by a ROS-independent mechanism.  相似文献   

20.
Respiratory syncytial virus (RSV) infection is a leading cause of hospitalization and mortality in young children. Protective therapy options are limited. Currently, palivizumab, a monoclonal IgG1 antibody, is the only licensed drug for RSV prophylaxis, although other IgG antibody candidates are being evaluated. However, at the respiratory mucosa, IgA antibodies are most abundant and act as the first line of defense against invading pathogens. Therefore, it would be logical to explore the potential of recombinant human IgA antibodies to protect against viral respiratory infection, but very little research on the topic has been published. Moreover, it is unknown whether human antibodies of the IgA isotype are better suited than those of the IgG isotype as antiviral drugs to combat respiratory infections. To address this, we generated various human IgA antibody formats of palivizumab and motavizumab, two well-characterized human IgG1 anti-RSV antibodies. We evaluated their efficacy to prevent RSV infection in vitro and in vivo and found similar, but somewhat decreased efficacy for different IgA subclasses and formats. Thus, reformatting palivizumab or motavizumab into IgA reduces the antiviral potency of either antibody. Moreover, our results indicate that the efficacy of intranasal IgA prophylaxis against RSV infection in human FcαRI transgenic mice is independent of Fc receptor expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号