首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A review of recent data concerning the apoptotic death of cells during senescence at the organismic level. The data analyzed suggest interrelations between apoptosis deregulation and some age-related pathologies and senescent phenotypes. Genetic aspects and possible mechanisms of age-related changes in the program of apoptosis are considered. It has been proposed that age-related deregulation of apoptosis is a mechanism of senescence.  相似文献   

2.
Klotho-mutated mice manifest multiple age-related disorders that are observed in humans. A recent study suggested that Klotho protein might function as an anti-aging hormone in mammals. Because it has been reported that apoptosis and senescence in vascular endothelial cells are closely related to the progression of atherosclerosis, we investigated Klotho's ability to interfere with apoptosis and cellular senescence in human umbilical vascular endothelial cells (HUVEC). Klotho overexpression decreased H(2)O(2)-induced apoptosis in COS-1 cells and Jurkat cells. Klotho protein also reduced H(2)O(2)- and etoposide-induced apoptosis in HUVEC. Caspase-3 and caspase-9 activity was lower in Klotho-treated HUVEC than in control cells. Senescence-associated beta-gal staining showed that Klotho protein interferes with H(2)O(2)-induced premature cellular senescence. The expression of p53 and p21 was lower in Klotho-treated cells. Our study suggests that Klotho acts as a humoral factor to reduce H(2)O(2)-induced apoptosis and cellular senescence in vascular cells.  相似文献   

3.
Understanding how senescence is established and maintained is an important area of study both for normal cell physiology and in tumourigenesis. Modifications to N-terminal tails of histone proteins, which can lead to chromatin remodelling, appear to be key to the regulation of the senescence phenotype. Epigenetic mechanisms such as modification of histone proteins have been shown to be sufficient to regulate gene expression levels and specific gene promoters can become epigenetically altered at senescence. This suggests that epigenetic mechanisms are important in senescence and further suggests epigenetic deregulation could play an important role in the bypass of senescence and the acquisition of a tumourigenic phenotype. Tumour suppressor proteins and cellular senescence are intimately linked and such proteins are now known to regulate gene expression through chromatin remodelling, again suggesting a link between chromatin modification and cellular senescence. Telomere dynamics and the expression of the telomerase genes are also both implicitly linked to senescence and tumourigenesis, and epigenetic deregulation of the telomerase gene promoters has been identified as a possible mechanism for the activation of telomere maintenance mechanisms in cancer. Recent studies have also suggested that epigenetic deregulation in stem cells could play an important role in carcinogenesis, and new models have been suggested for the attainment of tumourigenesis and bypass of senescence. Overall, proper regulation of the chromatin environment is suggested to have an important role in the senescence pathway, such that its deregulation could lead to tumourigenesis.  相似文献   

4.
Reactive oxygen species (ROS) act as subcellular messengers in such complex cellular processes as mitogenic signal transduction, gene expression, regulation of cell proliferation, replicative senescence, and apoptosis. They serve to maintain cellular homeostasis and their production is under strict control. However, the mechanisms whereby ROS act are still obscure. Here we review recent advances in our understanding of signaling mechanisms and recent data about the involvement of ROS in: (i) the regulation of the mitogenic transduction elements, particularly protein kinases and phosphatases; (ii) the regulation of gene expression; and (iii) the induction of replicative senescence and the role, if any, in aging and age-related disorders.  相似文献   

5.
During the course of biological aging, there is a gradual accumulation of damaged proteins and a concomitant functional decline in the protein degradation system. Protein quality control is normally ensured by the coordinated actions of molecular chaperones and the protein degradation system that collectively help to maintain protein homeostasis. The carboxyl terminus of Hsp70-interacting protein (CHIP), a ubiquitin ligase/cochaperone, participates in protein quality control by targeting a broad range of chaperone substrates for proteasome degradation via the ubiquitin-proteasome system, demonstrating a broad involvement of CHIP in maintaining cytoplasmic protein quality control. In the present study, we have investigated the influence that protein quality control exerts on the aging process by using CHIP-/- mice. CHIP deficiency in mice leads to a markedly reduced life span, along with accelerated age-related pathophysiological phenotypes. These features were accompanied by indications of accelerated cellular senescence and increased indices of oxidative stress. In addition, CHIP-/- mice exhibit a deregulation of protein quality control, as indicated by elevated levels of toxic oligomer proteins and a decline in proteasome activity. Taken together, these data reveal that impaired protein quality control contributes to cellular senescence and implicates CHIP-dependent quality control mechanisms in the regulation of mammalian longevity in vivo.  相似文献   

6.
Vascular endothelial cells have a finite cell lifespan and eventually enter an irreversible growth arrest, cellular senescence. The functional changes associated with cellular senescence are thought to contribute to human aging and age-related cardiovascular disorders, e.g. atherosclerosis. In this study, induction of Angiotensin II (Ang II) promoted a growth arrest with phenotypic characteristics of cell senescence, such as enlarged cell shapes, increased senescence-associated beta-galactosidase (SA-beta-gal) positive staining cell, and depressed cell proliferation. Apoptotic changes were increased in senescent cells, with a small subset of the senescent cells showing aberrant morphology such as pronounced nuclear fragmentation or multiple micronuclei. The results suggest cell apoptosis is possibly an important factor in the process of pathologic and physiologic senescence of endothelial cells as well as vascular aging.  相似文献   

7.
衰老是一个新兴的重要研究领域,随着该领域相关知识的积累和技术的进步,人们逐渐意识到衰老本身可以被针对性地干预,实现延长寿命并且延缓衰老相关疾病的发生发展,具有重要的科学和现实意义.引起个体衰老的众多因素中,衰老细胞的积累被认为是导致器官衰老发生退行性变,最终引起衰老相关疾病的重要原因.近年来,多项研究表明,清除体内衰老细胞可以延缓多种衰老相关疾病的发生,直接证明了衰老细胞是导致衰老相关疾病的重要原因之一,为治疗衰老相关疾病提供了新靶点.细胞衰老是由于损伤积累诱发了细胞周期抑制通路的激活,细胞永久地退出细胞增殖周期.衰老细胞会发生细胞形态、转录谱、蛋白质稳态、表观遗传以及代谢等系列特征的改变,同时衰老细胞对凋亡发生抵抗从而在体内多器官组织积累.衰老细胞会激活炎症因子分泌通路,导致组织局部非感染性炎症微环境,进而导致器官退行性变及多种衰老相关疾病的发生发展.因此针对衰老细胞对凋亡抵抗的特性,多个研究小组通过筛选小分子化合物库,发现某些化合物能够选择性清除衰老细胞,这些小分子化合物被称为"senolytics",意为"衰老细胞杀伤性化合物".衰老细胞杀伤性化合物在多种衰老相关疾病动物模型中能够延缓疾病的发展并延长哺乳动物寿命.因此,靶向杀伤衰老细胞对多种衰老相关疾病的治疗从而提高健康寿命具有重要的临床应用前景.除靶向杀伤衰老细胞策略以外,干细胞移植、基因编辑、异体共生等策略在抗衰老研究发展中也具有重要意义,具有启发性.本文通过汇总近期衰老细胞清除领域的重要进展和多种抗衰老策略,将细胞衰老研究发展史做简要梳理,就细胞衰老与衰老相关疾病的关系作一综述,重点讨论衰老细胞在多种衰老相关疾病中作为治疗靶点的应用潜力,并就其局限性和进一步的研究方向进行探讨.  相似文献   

8.
The effects of ageing in humans appear to be a combination of influence of genetically programmed phenomena and exogenous environmental factors, and take place at the cellular level (senescence), rather than at the level of the organism. There are many processes, which occur in somatic cells as a consequence of DNA replication (accumulation of DNA errors or mutations that outstrip repair processes, telomere shortening, deregulation of apoptosis, etc.) and which drive replicative senescence in human cells. DNA errors are considered to be critical primary lesions in the formation of chromosomal aberrations. It can be concluded that the chromosome aberrations are biomarkers of ageing in human cells. Studies of human metaphases, interphase nuclei and micronuclei showed the increase in loss of chromosomes and the increase in frequency of stable chromosome aberrations as a function of age.  相似文献   

9.
Effects of aging on the common lymphoid progenitor to pro-B cell transition   总被引:7,自引:0,他引:7  
The number of common lymphoid progenitors (CLP) and their pre-pro-B and pro-B cell progeny is reduced in old mice, but the age-related changes responsible for these declines have not been fully elucidated. The aim of this study was to provide additional insights into the impact of senescence on early B cell development by analyzing the CLP and pro-B cell compartments under steady-state conditions and after cytoablation with 5-fluorouracil. 5-Fluorouracil subjects the hemopoietic system to acute stress and has the advantage of revealing defects in progenitors that may otherwise be subtle. The data demonstrate significant, age-related defects in the proliferative potential of early B cell precursors and suggest that the ability of CLP to differentiate into pre-pro-B cells is also compromised by senescence. These age-related changes in early B lymphopoiesis do not result from a general defect in HSC or the bone marrow microenvironment that impairs development in all hemopoietic lineages. Instead, data demonstrating that myeloid progenitor number and developmental potential do not decline with age indicate that B lymphopoiesis is particularly sensitive to defects that accumulate during senescence.  相似文献   

10.
Genome instability contributes to cancer development and accelerates age-related pathologies as evidenced by a variety of congenital cancer susceptibility and progeroid syndromes that are caused by defects in genome maintenance mechanisms. DNA damage response (DDR) pathways that are mediated through the tumor suppressor p53 play an important role in the cell-intrinsic responses to genome instability, including a transient cell cycle arrest, senescence and apoptosis. Both senescence and apoptosis are powerful tumor-suppressive pathways preventing the uncontrolled proliferation of transformed cells. However, both pathways can potentially deplete stem and progenitor cell pools, thus promoting tissue degeneration and organ failure, which are both hallmarks of aging. p53 signaling is also involved in mediating non-cell-autonomous interactions with the innate immune system and in the systemic adjustments during the aging process. The network of p53 target genes thus functions as an important regulator of cancer prevention and aging.  相似文献   

11.
《Genomics》2023,115(2):110574
Chondrocyte senescence is a decisive component of age-related osteoarthritis, however, the function of small noncoding RNAs (sncRNAs) in chondrocyte senescence remains underexplored. Human hip joint cartilage chondrocytes were cultivated up to passage 4 to induce senescence. RNA samples were extracted and then analyzed using small RNA sequencing and qPCR. β-galactosidase staining was used to detect the effect of sncRNA on chondrocyte aging. Results of small RNA sequencing showed that 279 miRNAs, 136 snoRNAs, 30 snRNAs, 102 piRNAs, and 5 rasiRNAs were differentially expressed in senescent chondrocytes. The differential expression of 150 sncRNAs was further validated by qPCR. Transfection of sncRNAs and β-galactosidase staining were also performed to further revealed that hsa-miR-135b-5p, SNORA80B-201, and RNU5E-1-201 have the function to restrain chondrocyte senescence, while has-piR-019102 has the function to promote chondrocyte senescence. Our data suggest that sncRNAs have therapeutic potential as novel epigenetic targets in age-related osteoarthritis.  相似文献   

12.
13.
14.
Cell senescence is the limited ability of primary human cells to divide when cultured in vitro. This eventual cessation of division is accompanied by a specific set of changes in cell physiology, morphology, and gene expression. Such changes in phenotype have the potential to contribute to human ageing and age-related diseases. Until now, senescence has largely been studied as an in vitro phenomenon, but recent data have for the first time directly demonstrated the presence of senescent cells in aged human tissues. Although a direct causal link between the ageing of whole organisms and the senescence of cells in culture remains elusive, a large body of data is consistent with cell senescence contributing to a variety of pathological changes seen in the aged. This review considers the in vitro phenotype of cellular senescence and speculates on the various possible routes whereby the presence of senescent cells in old bodies may affect different tissue systems.  相似文献   

15.
Loss of the tumor suppressor phosphatase and tensin homolog (PTEN) has frequently been observed in human gliomas, conferring AKT activation and resistance to ionizing radiation (IR) and drug treatments. Recent reports have shown that PTEN loss or AKT activation induces premature senescence, but many details regarding this effect remain obscure. In this study, we tested whether the status of PTEN determined fate of the cell by examining PTEN-deficient U87, U251, and U373, and PTEN-proficient LN18 and LN428 glioma cells after exposure to IR. These cells exhibited different cellular responses, senescence or apoptosis, depending on the PTEN status. We further observed that PTEN-deficient U87 cells with high levels of both AKT activation and intracellular reactive oxygen species (ROS) underwent senescence, whereas PTEN-proficient LN18 cells entered apoptosis. ROS were indispensable for inducing senescence in PTEN-deficient cells, but not for apoptosis in PTEN-proficient cells. Furthermore, transfection with wild-type (wt) PTEN or AKT small interfering RNA induced a change from premature senescence to apoptosis and depletion of p53 or p21 prevented IR-induced premature senescence in U87 cells. Our data indicate that PTEN acts as a pivotal determinant of cell fate, regarding senescence and apoptosis in IR-exposed glioma cells. We conclude that premature senescence could have a compensatory role for apoptosis in the absence of the tumor suppressor PTEN through the AKT/ROS/p53/p21 signaling pathway.  相似文献   

16.
The mechanisms involved in the progressive malfunction of the trabecular meshwork (TM) in glaucoma are not yet understood. To study age-related changes in human TM cells, we isolated primary TM cell cultures from young (ages 9, 14, and 25) and old (ages 66, 70, and 73) donors, and compared levels of oxidized proteins, autofluorescence, proteasome function, and markers for cellular senescence. TM cells from old donors showed a 3-fold increase in oxidized proteins and a 7.5-fold decrease of proteasome activity. Loss of proteasome function was not associated with decreased proteasome content but with partial replacement of the proteolytic subunit PSMB5 with the inducible subunit LMP7. Cells from old donors also demonstrated features characteristic of cellular senescence associated with phosphorylation of p38MAPK but only a modest increase in p53. These data suggest that age-related proteasome inhibition and cellular senescence could contribute to the pathophysiological alterations of the TM in glaucoma.  相似文献   

17.
18.
Studies regarding age-related erectile dysfunction (ED) based on naturally aging models are limited by their high costs, especially for the acquisition of primary cells from the corpus cavernosum. Herein, d -galactose ( d -gal) was employed to accelerate cell senescence, and the underlying mechanism was explored. As predominant functional cells involved in the erectile response, corpus cavernosum smooth muscle cells (CCSMCs) were isolated from 2-month-old rats. Following this, d -gal was introduced to induce cell senescence, which was verified via β-galactosidase staining. The effects of d -gal on CCSMCs were evaluated by terminal deoxynucleoitidyl transferase dUTP nick-end labeling (TUNEL), immunofluorescence staining, flow cytometry, western blot, and quantitative real-time polymerase chain reaction (qRT-PCR). Furthermore, RNA interference (RNAi) was carried out for rescue experiments. Subsequently, the influence of senescence on the corpus cavernosum was determined via scanning electron microscopy, qRT-PCR, immunohistochemistry, TUNEL, and Masson stainings. The results revealed that the accelerated senescence of CCSMCs was promoted by d -gal. Simultaneously, smooth muscle alpha-actin (alpha-SMA) expression was inhibited, while that of osteopontin (OPN) and Krüppel-like factor 4 (KLF4), as well as fibrotic and apoptotic levels, were elevated. After knocking down KLF4 expression in d -gal-induced CCSMCs by RNAi, the expression level of cellular alpha-SMA increased. Contrastingly, the OPN expression, apoptotic and fibrotic levels declined. In addition, cellular senescence acquired partial remission. Accordingly, in the aged corpus cavernosum, the fibrotic and apoptotic rates were increased, followed by downregulation in the expression of alpha-SMA and the concurrent upregulation in the expression of OPN and KLF4. Overall, our results signaled that d -gal-induced accelerated senescence of CCSMCs could trigger fibrosis, apoptosis and phenotypic switch to the synthetic state, potentially attributed to the upregulation of KLF4 expression, which may be a multipotential therapeutic target of age-related ED.  相似文献   

19.
Telomeres as biomarkers for ageing and age-related diseases   总被引:4,自引:0,他引:4  
Telomeres in telomerase-negative cells shorten during DNA replication in vitro due to numerous causes including the inability of DNA polymerases to fully copy the lagging strand, DNA end processing and random damage, often caused by oxidative stress. Short telomeres activate replicative senescence, an irreversible cell cycle arrest. Thus, telomere length is an indicator of replicative history, of the probability of cell senescence, and of the cumulative history of oxidative stress. Telomeres in most human cells shorten during ageing in vivo as well, suggesting that telomere length could be a biomarker of ageing and age-related morbidity. There are two distinct possibilities: First, in a tissue-specific fashion, short telomeres might indicate senescence of (stem) cells, and this might contribute to age-related functional attenuation in this tissue. Second, short telomeres in one tissue might cause systemic effects or might simply indicate a history of high stress and damage in the individual and could thus act as risk markers for age-related disease residing in a completely different tissue. In recent years, data have been published to support both approaches, and we will review these. While they together paint a fairly promising picture, it needs to be pointed out that until now most of the evidence is correlative, that much of it comes from underpowered studies, and that causal evidence for essential pathways, for instance for the impact of cell senescence on tissue ageing in vivo, is still very weak.  相似文献   

20.
Enlarged or irregularly shaped nuclei are frequently observed in tissue cells undergoing senescence. However, it remained unclear whether this peculiar morphology is a cause or a consequence of senescence and how informative it is in distinguishing between proliferative and senescent cells. Recent research reveals that nuclear morphology can act as a predictive biomarker of senescence, suggesting an active role for the nucleus in driving senescence phenotypes. By employing deep learning algorithms to analyze nuclear morphology, accurate classification of cells as proliferative or senescent is achievable across various cell types and species both in vitro and in vivo. This quantitative imaging-based approach can be employed to establish links between senescence burden and clinical data, aiding in the understanding of age-related diseases, as well as assisting in disease prognosis and treatment response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号