首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The interactions between sulphur nutrition and Cd exposure were investigated in maize (Zea mays L.) plants. Plants were grown for 12 days in nutrient solution with or without sulphate. Half of the plants of each treatment were then supplied with 100 microM Cd. Leaves were collected 0, 1, 2, 3, 4 and 5 days from the beginning of Cd application and used for chemical analysis and enzyme assays. Cd exposure produced symptoms of toxicity (leaf chlorosis, growth reduction) and induced a noticeable accumulation of non-protein SH compounds. As phytochelatins are glutamate- and cysteine-rich peptides, the effect of cadmium on some enzyme activities involved in N and S metabolism of maize leaves was studied in relation to the plant sulphur supply. In vivo Cd application to S-sufficient plants resulted in a drop of all measured enzyme activities. On the other hand, S-deficient plants showed a decrease in nitrate reductase (NR; EC 1.6.6.1) and glutamine synthetase (GS; EC 6.3.1.2) activity, and an increase in NAD-dependent glutamate dehydrogenase (GDH; EC 1.4.1.2) and phosphoenolpyruvate carboxylase (PEPc; EC 4.1.1.31) activity as a result of the Cd treatment. Furthermore, in the same plants ATP sulphurylase (ATPs; EC 2.7.7.4) and O-acetylserine sulphydrylase (OASs; EC 4.2.99.8) showed a particular pattern as both enzymes exhibited a transient maximum value of activity after 4 days from the beginning of Cd exposure. Results provide evidence that the increase of ATPs, OASs, GDH and PEPc activities, observed exclusively in S-deficient Cd-treated plants, may be part of the defence mechanism based on the production of phytochelatins.  相似文献   

3.
Influence of different concentrations of NO3 and NH+ on the activity of glutamine synthetase (GS), asparagine synthetase (AS), glutamate dehydrogenase (GDH), nitrate reductase (NR) and the changes of GS-mRNA in wheat roots have been studied with enzymes activity assay and Northern blot. The results showed that the higher GS activity was found in roots of wheat when NH+4-N was the sole nitrogen source than when NO3-N was the sole nitrogen source. GS-mRNA of Northern blot was simillar to GS activity. 3 mmol/L NO3- promoted the activity of AS. The change of AS was independent of the change of GS. GDH activity was not been detected, and change in regulation of NR activity was not found.  相似文献   

4.
The studies were performed on young triticale seedlings grown on a mineral medium containing 5 mM NO 3 as the nitrogen source, with the addition of 0.5 mM CdCl2. It was determined that cadmium ions accumulated mainly in the plant roots. Decreases in nitrate concentrations both in the roots and shoots of seedlings, as well as decreases in soluble protein contents with simultaneous increases in endopeptidase activity were also observed. Both in roots and shoots significant decreases in glutamic acid were noted. Toxic cadmium ion accumulation in seedlings significantly modified activity of primary nitrogen assimilating enzymes, i.e. glutamine synthetase (GS, EC 6.3.1.2) and glutamate dehydrogenase (GDH, EC 1.4.1.2). There was a significant decrease in GS activity both in roots and in shoots of the stressed plants, in comparison to plants grown without cadmium. In shoots of the control plants and plants subjected to stress two GS isoforms were discovered: cytoplasmatic (GS1) and chloroplastic (GS2). Substantial decreases in total glutamine synthetase activity in green parts of seedlings, occurring under stress conditions, result from dramatic decrease in GS2 activity (by 60 % in relation to the control plants); despite simultaneous increases in the cytoplasmatic isoform (GS1) activity by approx. 96 %. Cadmium ions accumulating in roots and shoots of seedlings not only increased GDH activity, but also modified its coenzymatic specificity.  相似文献   

5.
Summary The relationship between N2-fixation, nitrate reductase and various enzymes of ammonia assimilation was studied in the nodules and leaves ofC. arietinum. In the nodules of the plants growing on atmospheric nitrogen, maximum activities of glutamine synthetase (GS), glutamate synthase (GOGAT), glutamate dehydrogenase (GDH), asparagine synthetase (AS) and aspartate aminotransferase (AAT) were recorded just prior to maximum activity of nitrogenase. In nitrate fed plants, the first major peak of GDH and AS coincided with that of nitrate reductase in the nodules. With the exception of AS, application of nitrate decreased the activities of all these enzymes in nodules but not in leaves. Activities of GS, GOGAT and AAT were affected to much greater extent than that of GDH. On comparing the plants grown without nitrate and those with nitrate, the ratios of the activities of GDH/GS and GDH/GOGAT in nitrate given plants, increased by 4 and 12 fold, respectively. The results presented in this paper suggest that in nodules of nitrate fed plants, assimilation of ammonia via GDH assumes much greater importance.  相似文献   

6.
利用酶活性测定和 Northern分子杂交等技术 ,研究了小麦幼苗根在不同浓度的 Na NO3 和(NH4) 2 SO4的供应下 ,其谷氨酰胺合成酶 (GS)、天冬酰胺合成酶 (AS)、谷氨酸脱氢酶 (GDH)、硝酸还原酶 (NR)以及 GS- m RNA的变化。结果表明 :NH 4 处理的小麦 ,其根部 GS活性比 NO-3 处理的高 ;高浓度处理的比低浓度处理的高 ;Northern杂交结果说明 GS- m RNA转录量与 GS活性一致 ;3mmol/ L NO-3促进了 AS的活性。AS酶活性变化与 GS酶活性变化无明显依赖关系。在实验的条件下 ,没能测出 GDH的活性 ,不同浓度的 NO-3 和 NH 4 处理对 NR活性没有明显的规律。  相似文献   

7.
Nitrate reductase level in leaves of pea plants is higher than in roots despite of the lower content of endogenous nitrate. Addition of ammonium ions to nutrient solution containing nitrate decreases nitrate reductase level in leaves estimatedin vivo while its level estimatedin vitro is increased. Glutamine synthetase (GS) level in roots decreases during short (24 and 48 h) and long (14 d) term cultivation of seedlings in solutions containing ammonium ions. This decrease occurs in leaves only after the long term influence of ammonium ions. Level of this enzyme is higher in plants grown in the presence of nitrogen (ammonium and nitrate) as compared to those grown without the nitrogen. Level of glutamate dehydrogenase in roots is increased after both short and long term cultivation of plants in the presence of ammonium ions.  相似文献   

8.
We examined the influence of cadmium (Cd) exposure on nitrate assimilation in bean (Phaseolus vulgaris L. cv Morgane). Bean plants were submitted to either a short- (24 h) or long-term (7 d) supply of Cd in the nutrient solution. Addition of Cd decreases very significantly both the water and nitrate uptake of the treated plants when compared to untreated plants. Cadmium also induces a decrease in nitrate reductase (NR, EC 1.6.6.1) activation state after 24 h of exposure whereas, after 7 d, NR activation state was similar to that of the control bean plants. On the other hand, the level of NR protein was decreased by about 80 % after 7 d of Cd exposure and by only 15 % 1 d after Cd addition. We then investigated the in vitro effect of Cd on NR catalytic activities and inactivation by phosphorylation. The molybdenum cofactor-binding domain of NR seemed to be the most affected by Cd which did not interfere with the in vitro inactivation process of NR by MgATP. Glutamate synthase and NR activities were more inhibited by supply of Cd in the long-term experiment than the activities of nitrite reductase and glutamine synthetase. Conversely, an increase in glutamate dehydrogenase activity was observed in parallel with an increase in ammonium concentration. It thus appears that Cd treatment induces both rapid and long-term changes in the activity of the enzymes involved in nitrate assimilation, partly in response to reduced water and nutrient uptake. Moreover we have also shown that Cd itself can have a direct effect on the activities of these enzymes.  相似文献   

9.
An important pathway by which plants detoxify heavy metals is through sequestration with heavy-metal-binding peptides called phytochelatins or their precursor, glutathione. To identify limiting factors for heavy-metal accumulation and tolerance, and to develop transgenic plants with an increased capacity to accumulate and/or tolerate heavy metals, the Escherichia coli gshII gene encoding glutathione synthetase (GS) was overexpressed in the cytosol of Indian mustard (Brassica juncea). The transgenic GS plants accumulated significantly more Cd than the wild type: shoot Cd concentrations were up to 25% higher and total Cd accumulation per shoot was up to 3-fold higher. Moreover, the GS plants showed enhanced tolerance to Cd at both the seedling and mature-plant stages. Cd accumulation and tolerance were correlated with the gshII expression level. Cd-treated GS plants had higher concentrations of glutathione, phytochelatin, thiol, S, and Ca than wild-type plants. We conclude that in the presence of Cd, the GS enzyme is rate limiting for the biosynthesis of glutathione and phytochelatins, and that overexpression of GS offers a promising strategy for the production of plants with superior heavy-metal phytoremediation capacity.  相似文献   

10.
11.
The aim of this study was to determine the effects of high temperature stress on ammonium assimilation in leaves of two tall fescue cultivars (Festuca arundinacea), Jaguar 3 brand (J3) (heat-tolerant) and TF 66 (T6) (heat-sensitive). High temperature stress for either 10 d or 20 d, and particularly the 20 d stress, produced dramatic changes in ammonium assimilation. After 20 d of stress treatment, the accumulations of total nitrogen, nitrate, soluble protein and total free amino acid (20 amino acids) decreased in both cultivars. Moreover, the activities of main regulatory enzymes, such as nitrate reductase, glutamine synthetase (GS), NADH-dependent glutamate synthase (GOGAT), as well as Δ1-pyrroline-5-carboxylate reductase (P5CR), also decreased in both cultivars when exposed to 20 d stress. Heat stress had little influence on ammonium accumulation in J3, but this was not the case with T6. The accumulations of nitrate, ammonium, soluble protein, and total free amino acid between the two cultivars were different. This suggests that accumulations of these nitrogen forms were associated with heat tolerance in both tall fescue cultivars. Changes of both NADH-glutamate dehydrogenase (NADH-GDH) activity and Glx (glutamine and glutamic acid) concentration in both cultivars indicated that there is an alternative system for assimilation of nitrogen through glutamate dehydrogenase (GDH) in T6 during longer high temperature stress periods. Our results provide an insight to further selection and breeding of heat-tolerant tall fescue turfgrass cultivars.  相似文献   

12.
Nitrate and nitrite reductases were both induced by adding three concentrations of nitrate to the nutrient supply of nitrate-starved barley seedlings. Enzyme induction was not proportional to the amount of nitrate introduced. Glutamine synthetase also increased above a high endogenous activity but the increase did not differ significantly between any of the three nitrate treatments. Nitrate accumulated rapidly in leaves of plants given 4.0 mM or 0.5 mM nitrate but not with 0.1 mM nitrate. In all treatments, amino acids in leaves increased for 2 d, chiefly attributable to glutamine, then declined. Transferring plants from the three nitrate treatments to nitrate-free nutrient produced an immediate decline in nitrate reductase but nitrite reductase continued to increase for 2 d, before declining. Glutamine-synthetase activity was not affected by withdrawal of nitrate, nor did nitrate withdrawal retard plant growth during the 9-d period of the experiment. The disparity between accumulated nitrate and nitrate-reducing capacity and the rapid decrease in leaf nitrate when nutrient nitrate supply was removed, indicated the presence of a nitrate-storage pool that could be called upon to maintain amino-acid production in times of nitrogen starvation.Abbreviations GS glutamine synthetase - NR nitrate reductase - NiR nitrite reductase  相似文献   

13.
The influence of 50 and 100 μM Ni on the activities of nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT), glutamate dehydrogenase (GDH), alanine aminotransferase (AlaAT) and aspartate aminotransferase (AspAT) was studied in the wheat roots. Root fresh weight, tissue Ni, nitrate, ammonium, glutamate and protein concentrations were also determined. Exposure to Ni resulted in a marked reduction in fresh weight of the roots accompanied by a rapid accumulation of Ni in these organs. Both nitrate and ammonium contents in the root tissue were considerably enhanced by Ni stress. While protein content was not significantly influenced by Ni application, glutamate concentration was slightly reduced on the first day after treatment with the higher Ni dose. Treatment of the wheat seedlings with 100 μM Ni led to a decrease in NR activity; however, it did not alter the activation state of this enzyme. Decline in NiR activity observed after application of 100 μM Ni was more pronounced than that in NR. The activities of GS and NADH-GOGAT also showed substantial decreases in response to Ni stress with the latter being more susceptible to this metal. Starting from the fourth day, both aminating and deaminating GDH activities in the roots of the seedlings supplemented with Ni were lower in comparison to the control. While the activity of AspAT remained unaltered after Ni application that of AlaAT showed a considerable enhancement. The results indicate that exposure of the wheat seedlings to Ni resulted in a general depression of nitrogen assimilation in the roots. Increase in the glutamate-producing activity of AlaAT may suggest its involvement in supplying the wheat roots with this amino acid under Ni stress.  相似文献   

14.
15.
Nitrogen remobilization during senescence has been studied in perennial herb Paris polyphylla. We analyzed changes in N content, amino acids, N-remobilization enzymes and effects of gibberellic acid (GA) during natural senescence. There was a gradual decrease in the contents of N, chlorophyll and soluble proteins and activities of glutamine synthetase (GS; EC 6.3.1.2) and glutamate dehydrogenase (GLDH; EC 1.4.1.2). Activity staining and Western blots showed that GS2 activity decreased, whereas GS1 activity was relatively stable over time. In contrast, the C/N ratio and total amino acid content increased. Among individual amino acids, the proportions of glutamine (Gln) and asparagine (Asn) increased, and proportions of arginine, aspartate and glycine decreased. Treatment with GA slowed the senescence and retarded decreases in the activities of GS and GLDH and the contents of N, chlorophyll and soluble proteins. Conversely, this treatment slowed increases in the C/N ratio, total free amino acid content, and proportions of Gln and Asn. We conclude that low N resorption efficiency during senescence of P. polyphylla results from a sharp decrease in N remobilization enzyme activity.  相似文献   

16.
We investigated the physiological consequences for nitrogen metabolism and growth of the deregulated expression of an N-terminal-deleted tobacco nitrate reductase in two lines of potato (Solanum tuberosum L. cv Safrane). The transgenic plants showed a higher biomass accumulation, especially in tubers, but a constant nitrogen content per plant. This implies that the transformed lines had a reduced nitrogen concentration per unit of dry weight. A severe reduction in nitrate concentrations was also observed in all organs, but was more apparent in tubers where nitrate was almost undetectable in the transgenic lines. In leaves and roots, but not tubers, this nitrate decrease was accompanied by a statistically significant increase in the level of malate, which acts as a counter-anion for nitrate reduction. Apart from glutamine in tubers, no major changes in amino acid concentration were seen in leaves, roots or tubers. We conclude that enhancement of nitrate reduction rate leads to higher biomass production, probably by allowing a better allocation of N-resources to photosynthesis and C-metabolism.Abbreviations DAP Days after planting - Gln Glutamine - NR Nitrate reductase - WT Wild type  相似文献   

17.
The effect of 2,4-dinitrophenol (2,4-DNP), NaN3, and iodoacetic acid (IDA) on glutamine synthetase (GS) and the effect of arsenate on GS, glutamate dehydrogenase (GDH) and nitrate reductase (NR) was studied in isolated pea roots. In sucrose supplied roots, GS level is depressed by higher concentrations of all the inhibitors tested and increased by lower (2 × and 3 × 10 M) concentrations of 2,4-DNP; the decrease in GS level caused by sugar starvation is enhanced by all but IDA. GDH is enhanced by arsenate in a wider range of concentrations in sucrose-supplied roots than in roots cultivated without sucrose. NR is affected by arsenate similarly as GS.  相似文献   

18.
Tomato plants (Lycopersicon esculentum Mill, cv. Chibli F1) grown for 10 days on control medium were exposed to differing concentrations of NaCl (0, 25, 50, and 100mM). Increasing salinity led to a decrease of dry weight (DW) production and protein contents in the leaves and roots. Conversely, the root to shoot (R/S) DW ratio was increased by salinity. Na(+) and Cl(-) accumulation were correlated with a decline of K(+) and NO(3)(-) in the leaves and roots. Under salinity, the activities of nitrate reductase (NR, EC 1.6.6.1) and glutamine synthetase (GS, EC 6.3.1.2) were repressed in the leaves, while they were enhanced in the roots. Nitrite reductase (NiR, EC 1.7.7.1) activity was decreased in both the leaves and roots. Deaminating activity of glutamate dehydrogenase (GDH, EC 1.4.1.2) was inhibited, whereas the aminating function was significantly stimulated by salinity in the leaves and roots. At a high salt concentration, the nicotinamide adenine dinucleotide reduced (NADH)-GDH activity was stimulated concomitantly with the increasing NH(4)(+) contents and proteolysis activity in the leaves and roots. With respect to salt stress, the distinct sensitivity of the enzymes involved in nitrogen assimilation is discussed.  相似文献   

19.
Low nitrate assimilation activity of the root nodules was demonstrated by assaying the activities of nitrate reductase, glutamate synthetase, glutamate dehydrogenase, and asparagine synthetase as well as the kinetics of 14C-labeled sucrose incorporation in the amino acids and amides of the cortex and the bacteroid-containing root nodule zones. Irrespective of the exogenous nitrogen concentration (0, 11.2, or 25 mM NO- 3), nitrate concentration in the nodules was low as compared to the plant roots, leaves, and stems. This allowed us to propose the presence of structural and/or metabolic barriers in the nodules limiting nitrate transport and assimilation in the nodule.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号