首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aqueous phase synthesis of CdTe quantum dots (QDs) with surface functionalization for bioconjugation remains the best approach for biosensing and bioimaging applications. We present a facile aqueous phase method to prepare CdTe QDs by adjusting precursor and ligand concentrations. CdTe QDs had photoluminescence quantum yield up to ≈33% with a narrow spectral distribution. The powder X‐ray diffraction profile elucidated characteristic broad peaks of zinc blende cubic CdTe nanoparticles with 2.5–3 nm average crystalline size having regular spherical morphology as revealed by transmission electron microscopy. Infra‐red spectroscopy confirmed disappearance of characteristic absorptions for –SH thiols inferring thiol coordinated CdTe nanoparticles. The effective molar concentration of 1 : 2.5 : 0.5 respectively for Cd2+/3‐mercaptopropionic acid/HTe at pH 9 ± 0.2 resulted in CdTe quantum dots of 2.2–3.06 nm having band gap in the range 2.74–2.26 eV respectively. Later, QD523 and QD601 were used for monitoring staphylococcal enterotoxin B (SEB; a bacterial superantigen responsible for food poisoning) using Forster resonance energy transfer based two QD fluorescence. QD523 and QD601 were bioconjugated to anti‐SEB IgY antibody and SEB respectively according to carbodiimide protocol. The mutual affinity between SEB and anti‐SEB antibody was relied upon to obtain efficient energy transfer between respective QDs resulting in fluorescence quenching of QD523 and fluorescence enhancement of QD601. Presence of SEB in the range 1–0.05 µg varied the rate of fluorescence quenching of QD523, thereby demonstrating efficient use of QDs in the Forster resonance energy transfer based immunosensing method by engineering the QD size. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
We report a fluorescence resonance energy transfer (FRET) system in which the fluorescent donor is fluorescein isothiocyanate (FITC) dye and the fluorescent acceptor is CdTe quantum dot (QDs). Based on FRET quenching theory, we designed a method to detect the concentration of silver ions (Ag+). The results revealed a good linear trend over Ag+ concentrations in the range 0.01–8.96 nmol/L, a range that was larger than with other methods; the quenching coefficient is 0.442. The FRET mechanism and physical mechanisms responsible for dynamic quenching are also discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, a systematic investigation of the interaction of bovine serum albumin (BSA) with water‐soluble CdTe quantum dots (QDs) of two different sizes capped with carboxylic thiols is presented based on steady‐state and time‐resolved fluorescence measurements. Efficient Förster resonance energy transfer (FRET) was observed to occur from BSA donor to CdTe acceptor as noted from reduction in the fluorescence of BSA and enhanced fluorescence from CdTe QDs. FRET parameters such as Förster distance, spectral overlap integral, FRET rate constant and efficiency were determined. The quenching of BSA fluorescence in aqueous solution observed in the presence of CdTe QDs infers that fluorescence resonance energy transfer is primarily responsible for the quenching phenomenon. Bimolecular quenching constant (kq) determined at different temperatures and the time‐resolved fluorescence data provide additional evidence for this. The binding stoichiometry and various thermodynamic parameters are evaluated by using the van ‘t Hoff equation. The analysis of the results suggests that the interaction between BSA and CdTe QDs is entropy driven and hydrophobic forces play a key role in the interaction. Binding of QDs significantly shortened the fluorescence lifetime of BSA which is one of the hallmarks of FRET. The effect of size of the QDs on the FRET parameters are discussed in the light of FRET parameters obtained.  相似文献   

4.
This communication describes a quantum dot probe that can be activated by a reporter enzyme, beta-lactamase. Our design is based on the principle of fluorescence resonance energy transfer (FRET). A biotinylated beta-lactamase substrate was labeled with a carbocyanine dye, Cy5, and immobilized on the surface of quantum dots through the binding of biotin to streptavidin pre-coated on the quantum dots. In assembling this nanoprobe, we have found that both the distance between substrates and the quantum dot surface, and the density of substrates are important for its function. The fluorescence emission from quantum dots can be efficiently quenched (up to 95%) by Cy5 due to FRET. Our final quantum dot probe, assembled with QD605 and 1:1 mixture of biotin and a Cy5-labeled lactam, can be activated by 32microg/mL of beta-lactamase with 4-fold increase in the fluorescence emission.  相似文献   

5.
A novel sensing system based on the near infrared (NIR) fluorescence resonance energy transfer (FRET) between Mn:CdTe quantum dots (Qdots) and Au nanorods (AuNRs) was established for the detection of human IgG. The NIR-emitting Qdots linked with goat anti-human IgG (Mn:CdTe-Ab1) and AuNRs linked with rabbit anti-human IgG (AuNRs-Ab2) acted as fluorescence donors and acceptors, respectively. FRET occurred by human IgG with the specific antigen–antibody interaction. And human IgG was detected based on the modulation in FRET efficiency. The calibration graph was linear over the range of 0.05–2.5 μM of human IgG under optimal conditions. The proposed sensing system can decrease the interference of biomolecules in NIR region and increase FRET efficiency in optimizing the spectral overlap of AuNRs with Mn:CdTe Qdots. This method has great potential for multiplex assay with different donor–acceptor pairs.  相似文献   

6.
Different sizes of CdTe semiconductor nanoparticles were prepared in aqueous solution. These nanoparticles exhibit narrow fluorescence with full width at half-maximum (FWHM) of 35-45 nm that spans the visible spectrum, and they also have high PL quantum yield with high resistance to photodegradation. In addition, CdTe quantum dot (QD)-labelled microspheres, comprising polystyrene (PS) cores and CdTe/polyelectrolyte (PE) shells, were also prepared by the layer-by-layer technique in this paper. The optical properties of the CdTe nanoparticles and CdTe-labelled microspheres were investigated by UV-Visible absorption and luminescence spectroscopy, and fluorescence microscopy was employed for microscopic identification behaviour of the luminescent microspheres.  相似文献   

7.
In this study, 573 nm quantum dots (QDs)-rabbit IgG-goat anti-rabbit IgG-638 nm QDs immunocomplexes were prepared, utilizing antigen-antibody interaction. 573 nm-emitting QDs were conjugated to antigen (rabbit IgG) and 638 nm-emitting QDs were conjugated to antibody (goat anti-rabbit IgG) via electrostatic/hydrophilic self-assembly, respectively. The mutual affinity of the antigen and antibody brought two kinds of QDs close enough to result in fluorescence resonance energy transfer (FRET) between them; the luminescence emission of 573 nm QDs was quenched, while that of 638 nm QDs was enhanced. The luminescence emission of 573 nm QDs could be recovered when the immunocomplexes were exposed to the unlabelled rabbit IgG antigen. The FRET efficiency (E) and the distance between the donor and the acceptor were calculated.  相似文献   

8.
Quantum dots (QD) are semiconductor fluorescent nanoparticles, which can be made use of for environmental monitoring with high sensitivity. In view of the alarming levels of pesticides and herbicides being used in agriculture practices, there is a need for their rapid, sensitive and specific detection in food and environmental samples, as pesticides and herbicides are harmful to living beings even at trace levels. Present study was carried out to develop a reliable and rapid method for analysis and detection of 2,4-D (herbicide) using cadmium telluride quantum dot nanoparticle (CdTe QD). Fluoroimmunoassay based on the fluorescent property of quantum dot was used along with immunoassay to detect 2,4-D. CdTe capped with mercaptopropionic acid, was conjugated using N-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride (EDC) and a coupling reagent like N-hydroxysuccinimide (NHS) to alkaline phosphatase (ALP) which was in turn conjugated to 2,4-D molecule. Anti 2,4-D-IgG antibodies were immobilized in an immunoreactor column using Sepharose CL-4B as an inert matrix. The detection of 2,4-D was carried out by fluoroimmunoassay-based biosensor using competitive binding between conjugated 2,4-D-ALP-CdTe and free 2,4-D with immobilized anti 2,4-D antibodies in an immunoreactor column. It was possible to detect 2,4-D upto 250pgmL(-1). Present study also emphasizes on the resonance energy transfer between ALP and CdTe QD as a result of bioconjugation, which can be used for future biosensor development based on quantum dot-biomolecular interactions.  相似文献   

9.
Water-soluble gold nanoparticles with an average diameter of 5 nm were prepared with carboxylic acid terminated thiol ligands. These ligands contain zero to eight methylene moieties. CdTe nanocrystals with an average diameter of 5 nm were synthesized with aminoethanethiol capping. These nanocrystals displayed characteristic absorption and emission spectra of quantum dots. The amine terminated CdTe nanocrystals and carboxylic-acid-terminated gold nanoparticles were conjugated in aqueous solution at pH 5.0 by electrostatic interaction, and the conjugation was monitored with fluorescence spectroscopy. The CdTe nanocrystals were significantly quenched upon binding with gold nanoparticles. The quenching efficiency was affected by both the concentration of gold nanoparticles in the complex and the length of spacer between the CdTe nanocrystal and Au nanoparticle. The observed quenching was explained using Förster resonance energy transfer (FRET) mechanism, and the Förster distance was estimated to be 3.8 nm between the donor–acceptor pair.  相似文献   

10.

The temperature-driven plasmon-exciton coupling in thermoresponsive dextran-graft-PNIPAM/Au nanoparticle/CdTe quantum dot (D-g-PNIPAM/Au NPs/CdTe QDs) hybrid nanosystem was studied. A significant (0.84 eV) splitting of the absorption peak was observed in the absorption spectrum of the nanosystem, which reflects the fact of formation of plexcitons, occurring due to strong plasmon-exciton coupling. An increasing with time plasmonic enhancement of the photoluminescence of CdTe QDs was revealed, as a result of the penetration of quantum dots into the volume of the D-g-PNIPAM/Au NP hybrid nanosystem and bonding to it. The heating–cooling cycle of the aqueous solution of the studied nanosystem leads to a reversible quenching-recovery alteration of the QD photoluminescence. The quenching was rationalized as a result of an increased probability of nonradiative resonance energy transfer (RET) from CdTe QDs to Au NPs, which occurs due to shortening of the NP-QD distance, caused by shrinking of the macromolecule due to cooling-induced lower critical solution temperature phase transition. Increasing the NP-QD distance in the heating stage recovers the QD PL intensity. The observed effect opens up opportunities for the controlled reversible temperature-driven tuning of the photoluminescence intensity of D-g-PNIPAM/Au NP/CdTe QD nanosystem, which is highly important for its potential use in photonics and biomedical applications.

  相似文献   

11.
In this study, tri‐functional immunofluorescent probes (Ce6–IgG–QDs) based on covalent combinations of quantum dots (QDs), immunoglobulin G (IgG) and chlorin e6 (Ce6) were developed and their photodynamic ability to induce the death of cancer cells was demonstrated. Strategically, one type of second‐generation photosensitizer, Ce6, was first coupled with anti‐IgG antibody using the EDC/NHS cross‐linking method to construct the photosensitive immunoconjugate Ce6–IgG. Then, a complex of Ce6–IgG–QDs immunofluorescent probes was obtained in succession by covalently coupling Ce6–IgG to water soluble CdTe QDs. The as‐manufactured Ce6–IgG–QDs maintained the bio‐activities of both the antigen–antibody‐based tumour targeting effects of IgG and the photodynamic‐related anticancer activities of Ce6. By way of polyclonal antibody interaction with rabbit anti‐human epidermal growth factor receptor (anti‐EGFR antibody, N‐terminus), Ce6–IgG–QDs were labelled indirectly onto the surface of human hepatocarcinoma (HepG2) cells in cell recognition and killing experiments. The results indicated that the Ce6–IgG–QDs probes have excellent tumour cell selectivity and higher photosensitivity in photodynamic therapy (PDT) compared with Ce6 alone, due to their antibody‐based specific recognition and location of HepG2 cells and the photodynamic effects of Ce6 killed cells based on efficient fluorescence resonance energy transfer between QDs and Ce6. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
A new nanoprobe was designed for the fluorescence imaging of fluoride anion (F(-)) in living cells with high sensitivity and selectivity. The design is based on the fluorescence resonance energy transfer (FRET) between CdTe quantum dots (CdTe QDs) and gold nanoparticles (AuNPs) through the formation of cyclic esters between phenylborinic acid and diol. In the presence of F(-), the boronate ester, a "hard acid", strongly reacts with F(-), a "hard base". Therefore, the boronate ester is converted to trifluoro borate, which causes the breakage of the linkage and disassembles CdTe QDs from AuNPs, resulting in the fluorescence recovery of the quenched CdTe QDs. The interaction mechanism was investigated by (19)FNMR on a model that was constructed by a small molecule and F(-). Quantum chemical calculations also testify the reactivity of boronate ester to F(-) and the sensing mechanism. Experimental results show that the increase in fluorescence intensity is proportional to the concentration of F(-) in the range of 5.0-45 μM. The detection limit and the relative standard deviation were 50 nM and 2.6%, respectively. Fluorescence imaging of F(-) in macrophages cells indicates good cell membrane penetration ability and low cytotoxicity of the nanoprobe, providing a viable alternative to detection of F(-) in biological or environmental samples.  相似文献   

13.
Polystyrene fluorescent microspheres prepared by deposition of CdTe quantum dots (QDs) are used in an immunoassay in this study. CdTe QDs/polyelectrolyte multilayers on the surface of polystyrene microspheres have been formed by layer-by-layer self-assembly via electrostatic interactions. As a model antigen, rabbit IgG has been bound to the outermost layer of the fluorescent microspheres. The immunoreaction between fluorescent microspheres/rabbit IgG and the corresponding antibody was confirmed by change of the fluorescence spectrum and competitive immunoassay. This approach allowed detection of the antigen (rabbit IgG) in the range 1-500 mg/L, based on the change in the fluorescence intensity of the reporter (fluorescent microspheres/rabbit IgG). A novel microfluidic chip device with a laser-induced fluorescence system was established and used for the detection of fluorescent microspheres in this study.  相似文献   

14.
H(+)-ATPsynthases couple a transmembrane proton transport with ATP synthesis and ATP hydrolysis. Previously, the relative subunit movement during this process has been measured by fluorescence resonance energy transfer (FRET) between two organic fluorophores covalently bound to different subunits. To improve the photophysical stability, a luminescent CdSe/ZnS nanocrystal (quantum dot) was bound to the enzyme and an organic fluorophore, Alexa568, was used as fluorescence acceptor. Single-molecule spectroscopy with the membrane integrated labeled H(+)-ATPsynthase was carried out. Single-pair FRET indicates three different conformations of the enzyme. During ATP hydrolysis relative intramolecular subunit movements are observed in real time.  相似文献   

15.
We have developed a sensitive, one-step, homogeneous open sandwich fluoroimmunoassay (OsFIA) based on fluorescence resonance energy transfer (FRET) and luminescent semiconductor quantum dots (QDs). In this FRET assay, estrogen receptor beta (ER-beta) antigen was incubated with QD-labeled anti-ER-beta monoclonal antibody and Alexa Fluor (AF)-labeled anti-ER polyclonal antibody for 30 min, followed by FRET measurement. The dye separation distance was estimated between 80 and 90 A. The current method is rapid, simple, and highly sensitive, and it did not require the bound/free reagent separation steps and solid-phase carriers. A concentration as low as 0.05 nM (2.65 ng/ml) receptor was detected with linearity. In addition, the assay was performed with commercial antibodies. This assay provides a convenient alternative to conventional, laborious sandwich immunoassays.  相似文献   

16.
We describe a noncompetitive homogeneous bioluminescent immunoassay based on the antigen-dependent reassociation of antibody variable domains (open sandwich bioluminescent immunoassay, OS-BLIA). The reassociation of two chimeric proteins, an antibody heavy-chain fragment (V(H))-Renilla luciferase (Rluc) and an antibody light-chain fragment (V(L))-enhanced yellow fluorescent protein (EYFP), was monitored by a bioluminescence resonance energy transfer (BRET) between the two. Upon simple mixing of the reagents with the sample, an antigen-dependent increase in BRET was observed with a measurable concentration range of 0.1 to approximately 10 microg/ml antigen hen egg lysozyme. Compared with our comparable assays based on fluorescence resonance energy transfer (FRET), a 10-fold improvement in the sensitivity was attained, probably due to a reduction in reagent concentration.  相似文献   

17.
In this study, we developed a novel simple fluorescence resonance‐energy transfer (FRET) system between two‐color CdTe quantum dots (QDs) assisted by cetyltrimethylammonium bromide (CTAB). Mercaptopropionic (MPA)‐capped CdTe QDs serving as both donors and acceptors were successfully synthesized by changing the refluxing time in aqueous solution. CTAB micelles formed in water and minimized the distance between the donors and acceptors significantly by electrostatic interactions, improving FRET efficiency. Several factors that affected the fluorescence spectra of the FRET system were investigated. The prepared FRET system was feasible as an effective fluorescent probe to detect Hg(II) in aqueous solution. At pH 7.0, a linear relationship between the quenched fluorescence intensity of orange‐emitting acceptors (QDs(A)) and Hg(II) concentration was acquired in the range 5–250 nmol/L with a detection limit of 1.95 nmol/L. The developed method showed excellent analytical performance for Hg(II) with high sensitivity and acceptable selectivity, reproducibility and stability. This finding indicated that the method has a promising potential application for environmental monitoring. This study demonstrated the great promise of QDs for expedient, low‐cost and high‐sensitivity detection of Hg(II).  相似文献   

18.
In this article, we have examined the direct spectroscopic and microscopic evidence of efficient quantum dots‐ α‐chymotrypsin (ChT) interaction. The intrinsic fluorescence of digestive enzyme is reduced in the presence of quantum dots through ground‐state complex formation. Based on the fluorescence data, quenching rate constant, binding constant, and number of binding sites are calculated under optimized experimental conditions. Interestingly, fluorescence quenching method clearly illustrated the size dependent interaction of MPA‐CdTe quantum dots. Conformational change of ChT was traced using synchronous fluorescence measurements, circular dichroism and FTIR spectroscopic methods. Furthermore, the AFM results revealed that the individual enzyme molecule dimensions were changed after interacting with quantum dot. Consequently, this result could be helpful for constructing safe and effective utilisation of QDs in biological applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Semiconductor quantum dots are inorganic fluorescent nanocrystals that, because of their unique optical properties compared with those of organic fluorophores, have become popular as fluorescent imaging probes. Although external light excitation is typically required for imaging with quantum dots, a new type of quantum dot conjugate has been reported that can luminesce with no need for external excitation. These self-illuminating quantum dot conjugates can be prepared by coupling of commercially available carboxylate-presenting quantum dots to the light-emitting protein Renilla luciferase. When the conjugates are exposed to the luciferase's substrate coelenterazine, the energy released by substrate catabolism is transferred to the quantum dots through bioluminescence resonance energy transfer, leading to quantum dot light emission. This protocol describes step-by-step procedures for the preparation and characterization of these self-illuminating quantum dot conjugates. The preparation process is relatively simple and can be done in less than 2 hours. The availability of self-illuminating quantum dot conjugates will provide many new possibilities for in vivo imaging and detection, such as monitoring of in vivo cell trafficking, multiplex bioluminescence imaging and new quantum dot-based biosensors.  相似文献   

20.
Water‐soluble glutathione (GSH)‐capped core/shell CdTe/CdS quantum dots (QDs) were synthesized. In pH 5.4 sodium phosphate buffer medium, the interaction between GSH‐CdTe/CdS QDs and sanguinarine (SA) was investigated by spectroscopic methods, including fluorescence spectroscopy and ultraviolet‐visible absorption spectroscopy. Addition of SA to GSH‐CdTe/CdS QDs results in fluorescence quenching of GSH‐CdTe/CdS QDs. Quenching intensity was in proportion to the concentration of SA in a certain range. Investigation of the quenching mechanism, proved that the fluorescence quenching of GSH‐CdTe/CdS QDs by SA is a result of electron transfer. Based on the quenching of the fluorescence of GSH‐CdTe/CdS QDs by SA, a novel, simple, rapid and specific method for SA determination was proposed. The detection limit for SA was 3.4 ng/mL and the quantitative determination range was 0.2–40.0 µg/mL with a correlation coefficient of 0.9988. The method has been applied to the determination of SA in synthetic samples and fresh urine samples of healthy human with satisfactory results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号