首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The type III secretion system (TTSS) is a specialized protein secretion machinery used by numerous gram-negative bacterial pathogens of animals and plants to deliver effector proteins directly into the host cells. In plant-pathogenic bacteria, genes encoding the TTSS were discovered as hypersensitive response and pathogenicity (hrp) genes, because mutation of these genes typically disrupts the bacterial ability to cause diseases on host plants and to elicit hypersensitive response on nonhost plants. The hrp genes and the type III effector genes (collectively called TTSS genes hereafter) are repressed in nutrient-rich media but induced when bacteria are infiltrated into plants or incubated in nutrient-deficient inducing media. Multiple regulatory components have been identified in the plant-pathogenic bacteria regulating TTSS genes under various conditions. In Ralstonia solanacearum, several signal transduction components essential for the induction of TTSS genes in plants are dispensable for the induction in inducing medium. In addition to the inducing signals, recent studies indicated the presence of negative signals in the plant regulating the Pseudomonas syringae TTSS genes. Thus, the levels of TTSS gene expression in plants likely are determined by the interactions of multiple signal transduction pathways. Studies of the hrp regulons indicated that TTSS genes are coordinately regulated with a number of non-TTSS genes.  相似文献   

2.
3.
细菌的IV型分泌系统   总被引:2,自引:0,他引:2  
细菌的分泌系统与细菌的生存及致病性密切相关。细菌的分泌系统包括I-VI型,其中,IV型分泌系统是与细菌接合机制有关的一类分泌系统。IV型分泌系统不但可以转运DNA,还可以转运蛋白质及核糖核蛋白复合物等大分子物质,这点区别于其他几种分泌系统。IV型分泌系统介导基因水平转移,通过细菌间接合作用,传递抗性基因和毒力基因,有利于细菌进化;另一方面,IV型分泌系统转运效应蛋白质分子到宿主细胞,参与细菌致病。本文着重从IV型分泌系统几种主要类型的分泌机制等方面对IV型分泌系统进行概述。  相似文献   

4.
5.
Photorhabdus is an entomopathogenic bacterium belonging to the Enterobacteriaceae. The genome of the TT01 strain of Photorhabdus luminescens was recently sequenced and a large number of toxin-encoding genes were found. Genomic analysis predicted the presence on the chromosome of genes encoding a type three secretion system (TTSS), the main role of which is the delivery of effector proteins directly into eukaryotic host cells. We report here the functional characterization of the TTSS. The locus identified encodes the secretion/translocation apparatus, gene expression regulators and an effector protein - LopT - homologous to the Yersinia cysteine protease cytotoxin YopT. Heterologous expression in Yersinia demonstrated that LopT was translocated into mammal cells in an active form, as shown by the appearance of a form of the RhoA GTPase with modified electrophoretic mobility. In vitro study showed that recombinant LopT was able to release RhoA and Rac from human and insect cell membrane. In vivo assays of infection of the cutworm Spodoptera littoralis and the locust Locusta migratoria with a TT01 strain carrying a translational fusion of the lopT gene with the gfp reporter gene revealed that the lopT gene was switched on only at sites of cellular defence reactions, such as nodulation, in insects. TTSS-mutant did not induce nodule formation and underwent phagocytosis by insect macrophage cells, suggesting that the LopT effector plays an essential role in preventing phagocytosis and indicating an unexpected link between TTSS expression and the nodule reaction in insects.  相似文献   

6.
The bacterial type III secretion pathway delivers effector proteins into eukaryotic cells. Analysis of the type III system and flagellar export genes in the obligate parasites of the family Chlamydiales suggests that the type III system arose from the flagellar export system in chlamydiae or related bacteria.  相似文献   

7.
Type III secretion systems (T3SSs) are essential virulence devices for many gram-negative bacteria that are pathogenic for plants, animals, and humans. They serve to translocate virulence effector proteins directly into eukaryotic host cells. T3SSs are composed of a large cytoplasmic bulb and a transmembrane region into which a needle is embedded, protruding above the bacterial surface. The emerging antibiotic resistance of bacterial pathogens urges the development of novel strategies to fight bacterial infections. Therapeutics that rather than kill bacteria only attenuate their virulence may reduce the frequency or progress of resistance emergence. Recently, a group of salicylidene acylhydrazides were identified as inhibitors of T3SSs in Yersinia, Chlamydia, and Salmonella species. Here we show that these are also effective on the T3SS of Shigella flexneri, where they block all related forms of protein secretion so far known, as well as the epithelial cell invasion and induction of macrophage apoptosis usually demonstrated by this bacterium. Furthermore, we show the first evidence for the detrimental effect of these compounds on T3SS needle assembly, as demonstrated by increased numbers of T3S apparatuses without needles or with shorter needles. Therefore, the compounds generate a phenocopy of T3SS export apparatus mutants but with incomplete penetrance. We discuss why this would be sufficient to almost completely block the later secretion of effector proteins and how this begins to narrow the search for the molecular target of these compounds.  相似文献   

8.
Progress in the genetic and biochemical dissection of the hrp-encoded type III secretion pathway has revealed new mechanisms by which phytopathogenic bacteria infect plants. The suggestion that bacterial gene products are 'delivered to' and 'perceived by' plants cells has fundamentally changed the way in which plant-bacterial interactions are now being viewed.  相似文献   

9.
YscC is the integral outer membrane component of the type III protein secretion machinery of Yersinia enterocolitica and belongs to the family of secretins. This group of proteins forms stable ring-like oligomers in the outer membrane, which are thought to function as transport channels for macromolecules. The YscC oligomer was purified after solubilization from the membrane with a nonionic detergent. Sodium dodecyl sulfate did not dissociate the oligomer, but it caused a change in electrophoretic mobility and an increase in protease susceptibility, indicating partial denaturation of the subunits within the oligomer. The mass of the homo-oligomer, as determined by scanning transmission electron microscopy, was approximately 1 MDa. Analysis of the angular power spectrum from averaged top views of negatively stained YscC oligomers revealed a 13-fold angular order, suggesting that the oligomer consists of 13 subunits. Reconstituted in planar lipid bilayers, the YscC oligomer displayed a constant voltage-independent conductance of approximately 3 nS, thus forming a stable pore. However, in vivo, the expression of YscC did not lead to an increased permeability of the outer membrane. Electron microscopy revealed that the YscC oligomer is composed of three domains, two stacked rings attached to a conical domain. This structure is consistent with the notion that the secretin forms the upper part of the basal body of the needle structure of the type III secreton.  相似文献   

10.
The target range of a bacterial secretion system can be defined by effector substrate specificity or by the efficacy of effector delivery. Here, we report the crystal structure of Tse1, a type VI secretion (T6S) bacteriolytic amidase effector from Pseudomonas aeruginosa. Consistent with its role as a toxin, Tse1 has a more accessible active site than related housekeeping enzymes. The activity of Tse1 against isolated peptidoglycan shows its capacity to act broadly against Gram-negative bacteria and even certain Gram-positive species. Studies with intact cells indicate that Gram-positive bacteria can remain vulnerable to Tse1 despite cell wall modifications. However, interbacterial competition studies demonstrate that Tse1-dependent lysis is restricted to Gram-negative targets. We propose that the previously observed specificity for T6S against Gram-negative bacteria is a consequence of high local effector concentration achieved by T6S-dependent targeting to its site of action rather than inherent effector substrate specificity.  相似文献   

11.
Many Gram-negative bacteria use a type III secretion (T3S) system to directly inject effector molecules into eucaryotic cells in order to establish a symbiotic or pathogenic relationship with their host. The translocation of many T3S proteins requires specialized chaperones from the bacterial cytosol. SycD belongs to a class of T3S chaperones that assists the secretion of pore-forming translocators and, specifically chaperones the translocators YopB and YopD from enteropathogenic Yersinia enterocolitica. In addition, SycD is involved in the regulation of virulence factor biosynthesis and secretion. In this study, we present two crystal structures of Y. enterocolitica SycD at 1.95 and 2.6 Å resolution, the first experimental structures of a T3S class II chaperone specific for translocators. The fold of SycD is entirely α-helical and reveals three tetratricopeptide repeat-like motifs that had been predicted from amino acid sequence. In both structures, SycD forms dimers utilizing residues from the first tetratricopeptide repeat motif. Using site-directed mutagenesis and size exclusion chromatography, we verified that SycD forms head-to-head homodimers in solution. Although in both structures, dimerization largely depends on the same residues, the two assemblies represent alternative dimers that exhibit different monomer orientations and overall shape. In these two distinct head-to-head dimers, both the concave and the convex surface of each monomer are accessible for interactions with the SycD binding partners YopB and YopD. A SycD variant carrying two point mutations in the dimerization interface is properly folded but defective in dimerization. Expression of this stable SycD monomer in Yersinia does not rescue the phenotype of a sycD null mutant, suggesting a physiological relevance of the dimerization interface.  相似文献   

12.
Vibrio parahaemolyticus causes human gastroenteritis. Genomic sequencing of this organism has revealed that it has two sets of type III secretion systems, T3SS1 and T3SS2, both of which are important for its pathogenicity. However, the mechanism of protein secretion via T3SSs is unknown. A characteristic of many effectors is that they require specific chaperones for efficient delivery via T3SSs; however, no chaperone has been experimentally identified in the T3SSs of V. parahaemolyticus . In this study, we identified candidate T3SS1-associated chaperones from genomic sequence data and examined their roles in effector secretion/translocation and binding to their cognate substrates. From these experiments, we concluded that there is a T3S-associated chaperone, VecA, for a cytotoxic T3SS1-dependent effector, VepA. Further analysis using pulldown and secretion assays characterized the chaperone-binding domain encompassing the first 30–100 amino acids and an amino terminal secretion signal encompassing the first 5–20 amino acids on VepA. These findings will provide a strategy to clarify how the T3SS1 of V. parahaemolyticus secretes its specific effectors.  相似文献   

13.
Aims: To differentiate pathogenic and nonpathogenic Edwardsiella tarda strains based on the detection of type III secretion system (T3SS) gene using polymerase chain reaction (PCR). Methods and Results: Primers were designed to amplify Edw. tarda T3SS component gene esaV, catalase gene katB, haemolysin gene hlyA and 16S rRNA gene as an internal positive control. Genomic DNAs were extracted using a commercial isolation kit from 36 Edw. tarda strains consisting of 18 pathogenic and 18 nonpathogenic strains, and 50 ng of each DNA was used as the template for PCR amplification. PCR was performed with a thermocycler (TaKaRa TP600) in a 25‐μl volume. Products of esaV were detected in all pathogenic strains, but not in nonpathogenic strains; katB was detected in all pathogenic strains and one of nonpathogenic strains; hlyA was not detected in any strains. Conclusions: The detection of esaV gene can be used for the assessment of pathogenic Edw. tarda strains. Significance and Impact of the Study: The strategy using T3SS gene as the virulence indicator provides a useful tool for the clinical assessment of pathogenic Edw. tarda strains and prediction of edwardsiellosis risk in fish culture environments.  相似文献   

14.
The type III secretion system (T3SS) plays a key role in the exertion of full virulence by Bordetella bronchiseptica. However, little is known about the environmental stimuli that induce expression of T3SS genes. Here, it is reported that iron starvation is a signal for T3SS gene expression in B. bronchiseptica. It was found that, when B. bronchiseptica is cultured under iron-depleted conditions, secretion of type III secreted proteins is greater than that in bacteria grown under iron-replete conditions. Furthermore, it was confirmed that induction of T3SS-dependent host cell cytotoxicity and hemolytic activity is greatly enhanced by infection with iron-depleted Bordetella. In contrast, production of filamentous hemagglutinin is reduced in iron-depleted Bordetella. Thus, B. bronchiseptica controls the expression of virulence genes in response to iron starvation.  相似文献   

15.
16.
17.
Bacterial infections trigger the expression of type I and II interferon genes but little is known about their effect on type III interferon (IFN-λ) genes, whose products play important roles in epithelial innate immunity against viruses. Here, we studied the expression of IFN-λ genes in cultured human epithelial cells infected with different pathogenic bacteria and in the mouse placenta infected with Listeria monocytogenes. We first showed that in intestinal LoVo cells, induction of IFN-λ genes by L. monocytogenes required bacterial entry and increased further during the bacterial intracellular phase of infection. Other Gram-positive bacteria, Staphylococcus aureus, Staphylococcus epidermidis and Enterococcus faecalis, also induced IFN-λ genes when internalized by LoVo cells. In contrast, Gram-negative bacteria Salmonella enterica serovar Typhimurium, Shigella flexneri and Chlamydia trachomatis did not substantially induce IFN-λ. We also found that IFN-λ genes were up-regulated in A549 lung epithelial cells infected with Mycobacterium tuberculosis and in HepG2 hepatocytes and BeWo trophoblastic cells infected with L. monocytogenes. In a humanized mouse line permissive to fetoplacental listeriosis, IFN-λ2/λ3 mRNA levels were enhanced in placentas infected with L. monocytogenes. In addition, the feto-placental tissue was responsive to IFN-λ2. Together, these results suggest that IFN-λ may be an important modulator of the immune response to Gram-positive intracellular bacteria in epithelial tissues.  相似文献   

18.
Enterohemorrhagic Escherichia coli (EHEC) is a common cause of severe hemorrhagic colitis. EHEC's virulence is dependent upon a type III secretion system (TTSS) encoded by 41 genes. These genes are organized in several operons clustered in the locus of enterocyte effacement. Most of the locus of enterocyte effacement genes, including grlA and grlR, are positively regulated by Ler, and Ler expression is positively and negatively modulated by GrlA and GrlR, respectively. However, the molecular basis for the GrlA and GrlR activity is still elusive. We have determined the crystal structure of GrlR at 1.9 A resolution. It consists of a typical beta-barrel fold with eight beta-strands containing an internal hydrophobic cavity and a plug-like loop on one side of the barrel. Strong hydrophobic interactions between the two beta-barrels maintain the dimeric architecture of GrlR. Furthermore, a unique surface-exposed EDED (Glu-Asp-Glu-Asp) motif is identified to be critical for GrlA-GrlR interaction and for the repressive activity of GrlR. This study contributes a novel molecular insight into the mechanism of GrlR function.  相似文献   

19.
Members of the family Chlamydiaceae possess at least 13 genes, distributed throughout the chromosome, that are homologous with genes of known type III secretion systems (TTS). The aim of this study was to use putative TTS proteins of Chlamydophila pneumoniae, whose equivalents in other bacterial TTS function as chaperones, to identify interactions between chlamydial proteins. Using the BacterioMatch Two-Hybrid Vector system (Stratagene, La Jolla, Calif.), lcrH-2 and sycE, positions 1021 and 0325, respectively, from C. pneumoniae CM-1 were used as "bait" to identify target genes (positions 0324, 0705, 0708, 0808 to 0810, 1016 to 1020, and 1022) in close proximity on the chromosome. Interaction between the products of the lcrH-2 (1021) and lcrE (copN) (0324) genes was detected and confirmed by pull-down experiments and enzyme immunoassays using recombinant LcrH-2 and LcrE. As further confirmation of this interaction, the homologous genes from Chlamydia trachomatis, serovar E, and Chlamydophila psittaci, Texas turkey, were also cloned in the two-hybrid system to determine if LcrH-2 and LcrE would interact with their orthologs in other species. Consistent with their genetic relatedness, LcrH-2 from C. pneumoniae interacted with LcrE produced from the three species of Chlamydiaceae; LcrH-2 from C. psittaci reacted with LcrE from C. pneumoniae but not from C. trachomatis; and C. trachomatis LcrH-2 did not react with LcrE from the other two species. Deletions from the N and C termini of LcrE from C. pneumoniae identified the 50 C-terminal amino acids as essential for the interaction with LcrH-2. Thus, it appears that in the Chlamydiaceae TTS, LcrH-2 interacts with LcrE, and therefore it may serve as a chaperone for this protein.  相似文献   

20.
The type III secretion system (T3SS) is employed by a number of Gram-negative bacterial pathogens to inject toxins into eukaryotic cells. The biogenesis of this complex machinery requires the regulated interaction between over 20 cytosolic, periplasmic, and membrane-imbedded proteins, many of which undergo processes such as polymerization, partner recognition, and partial unfolding. Elements of this intricate macromolecular system have been characterized through electron microscopy, crystallography, and NMR techniques, allowing for an initial understanding of the spatiotemporal regulation of T3SS-related events. Here, we report recent advances in the structural characterization of T3SS proteins from a number of bacteria, and provide an overview of recently identified small molecule T3SS inhibitors that could potentially be explored for novel antibacterial development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号