共查询到20条相似文献,搜索用时 0 毫秒
1.
Linkage Disequilibrium in the Region of the Autosomal Dominant Polycystic Kidney Disease Gene (PKDI)
下载免费PDF全文

A. Snarey S. Thomas M. C. Schneider S. E. Pound N. Barton A. F. Wright S. Somlo G. G. Germino P. C. Harris S. T. Reeders A.-M. Frischauf 《American journal of human genetics》1994,55(2):365-371
The gene for autosomal dominant polycystic kidney disease (PKD1) is located on chromosome 16p, between the flanking markers D16S84 and D16S125 (26.6prox). This region is 750 kb long and has been cloned. We have looked at the association of 10 polymorphic markers from the region, with the disease and with each other. This was done in a set of Scottish families that had previously shown association with D16S94, a marker proximal to the PKD1 region. We report significant association between two CA repeat markers and the disease but have not found evidence for a single founder haplotype in these families, indicating the presence of several mutations in this population. Our results favor a location of the PKD1 gene in the proximal part of the candidate region. 相似文献
2.
Poly(ADP-ribosyl)ation of nuclear proteins plays a significant role in the maintenance of genomic DNA stability. To date, four poly(ADP-ribosyl)ating proteins have been identified in humans. We now report the full-length sequence, expression profile, and chromosomal localization of a novel gene, ADPRTL1, encoding an ADP-ribosyltransferase-like protein. The predicted open reading frame encodes a protein of 1724 amino acids with a molecular mass of 192.8 kDa. The protein contains a region showing homology to the catalytic domains of the nuclear-localized ADP-ribosyltransferase proteins (Adprt), two recently identified Adprt-like proteins (Adprtl2 and Adprtl3), and the telomere-associated protein tankyrase. Key amino acids known to be important for the activity of these enzymes are conserved within this region of the Adprtl1 protein, indicating that Adprtl1 is a functional poly(ADP-ribosyl)transferase. As has been noted for tankyrase, sequence analysis of the Adprtl1 protein suggests that it is not capable of binding DNA directly. Thus, the transferase activity of Adprtl1 may be activated by other factors such as protein–protein interaction mediated by the extensive carboxyl terminus. We have subsequently refined the location of the ADPRTL1 genomic locus to 13q11, close to the recently cloned ZNF198 gene. 相似文献
3.
Liang Ma Meixiang Xu Julia R. Forman Jane Clarke Andres F. Oberhauser 《The Journal of biological chemistry》2009,284(47):32942-32949
Mutations in polycystin-1 (PC1) can cause autosomal dominant polycystic kidney disease, which is a leading cause of renal failure. The available evidence suggests that PC1 acts as a mechanosensor, receiving signals from the primary cilia, neighboring cells, and extracellular matrix. PC1 is a large membrane protein that has a long N-terminal extracellular region (about 3000 amino acids) with a multimodular structure including 16 Ig-like polycystic kidney disease (PKD) domains, which are targeted by many naturally occurring missense mutations. Nothing is known about the effects of these mutations on the biophysical properties of PKD domains. Here we investigate the effects of several naturally occurring mutations on the mechanical stability of the first PKD domain of human PC1 (HuPKDd1). We found that several missense mutations alter the mechanical unfolding pathways of HuPKDd1, resulting in distinct mechanical phenotypes. Moreover, we found that these mutations also alter the thermodynamic stability of a structurally homologous archaeal PKD domain. Based on these findings, we hypothesize that missense mutations may cause autosomal dominant polycystic kidney disease by altering the stability of the PC1 ectodomain, thereby perturbing its ability to sense mechanical signals. 相似文献
4.
We have identified a novel human gene (mig-6) that is rapidly induced upon mitogenic stimulation of quiescent fibroblasts. Serum induction is partially inhibited by protein synthesis inhibitors, indicating that mig-6 shares characteristics of both primary and secondary response genes. In contrast to most other mitogen-responsive genes, mig-6 mRNA expression is also regulated during normal cell cycle progression, showing a clear peak around mid-G1. Consistent with the regulation of mig-6 expression during the cell cycle, terminal differentiation of HL-60 cells to either granulocytic or macrophage-like cells also leads to clear changes in the levels of mig-6 mRNA. These observations suggest that the mig-6 gene represents a useful tool for the analysis of cell cycle progression and perhaps terminal differentiation. As a first step toward a functional characterization we show that the Mig-6 polypeptide is located in the cytoplasm. 相似文献
5.
6.
7.
《American journal of human genetics》2011,(1):162-167
The identification of genetic causes for Mendelian disorders has been based on the collection of multi-incident families, linkage analysis, and sequencing of genes in candidate intervals. This study describes the application of next-generation sequencing technologies to a Swiss kindred presenting with autosomal-dominant, late-onset Parkinson disease (PD). The family has tremor-predominant dopa-responsive parkinsonism with a mean onset of 50.6 ± 7.3 years. Exome analysis suggests that an aspartic-acid-to-asparagine mutation within vacuolar protein sorting 35 (VPS35 c.1858G>A; p.Asp620Asn) is the genetic determinant of disease. VPS35 is a central component of the retromer cargo-recognition complex, is critical for endosome-trans-golgi trafficking and membrane-protein recycling, and is evolutionarily highly conserved. VPS35 c.1858G>A was found in all affected members of the Swiss kindred and in three more families and one patient with sporadic PD, but it was not observed in 3,309 controls. Further sequencing of familial affected probands revealed only one other missense variant, VPS35 c.946C>T; (p.Pro316Ser), in a pedigree with one unaffected and two affected carriers, and thus the pathogenicity of this mutation remains uncertain. Retromer-mediated sorting and transport is best characterized for acid hydrolase receptors. However, the complex has many types of cargo and is involved in a diverse array of biologic pathways from developmental Wnt signaling to lysosome biogenesis. Our study implicates disruption of VPS35 and retromer-mediated trans-membrane protein sorting, rescue, and recycling in the neurodegenerative process leading to PD. 相似文献
8.
C. Daniells Magitha Maheshwar Lazarus Lazarou Felicity Davies Gerry Coles David Ravine 《Human genetics》1998,102(2):216-220
A search has been conducted for disease-causing mutations in the PKD1 gene in 147 unrelated ADPKD index cases. Using the polymerase chain reaction with primer pairs located in the 3′ single copy
region of the gene and single-strand conformation polymorphism analysis, we detected novel aberrant bands in five individuals
that were absent in 100 control samples. Sequencing revealed three nonsense mutations (Q4010X, E4024X, Q4041X), a frameshift
mutation (12262 del 2 bp), and a missense mutation (G4031D). In addition, three polymorphisms were detected [12346 + 19delG,
heterozygosity (0.13), I4044V (0.23), 12212-34C > A (0.07)]. The mutational mechanism for the recurrent mutation (Q4041X)
is likely to be slipped mispairing of an adjacent direct imperfect repeat sequence.
Received: 5 April 1997 / Accepted: 26 August 1997 相似文献
9.
Hisashi Hashimoto Rieko Miyamoto Naoki Watanabe Dai Shiba Kenjiro Ozato Chikako Inoue Yuko Kubo Akihiko Koga Tomoko Jindo Takanori Narita Kiyoshi Naruse Kazuko Ohishi Keiko Nogata Tadasu Shin-I Shuichi Asakawa Nobuyoshi Shimizu Tomotsune Miyamoto Toshio Mochizuki Takahiko Yokoyama Hiroshi Hori Hiroyuki Takeda Yuji Kohara Yuko Wakamatsu 《PloS one》2009,4(7)
Polycystic kidney disease (PKD) is a common hereditary disease in humans. Recent studies have shown an increasing number of ciliary genes that are involved in the pathogenesis of PKD. In this study, the Gli-similar3 (glis3) gene was identified as the causal gene of the medaka pc mutant, a model of PKD. In the pc mutant, a transposon was found to be inserted into the fourth intron of the pc/glis3 gene, causing aberrant splicing of the pc/glis3 mRNA and thus a putatively truncated protein with a defective zinc finger domain. pc/glis3 mRNA is expressed in the epithelial cells of the renal tubules and ducts of the pronephros and mesonephros, and also in the pancreas. Antisense oligonucleotide-mediated knockdown of pc/glis3 resulted in cyst formation in the pronephric tubules of medaka fry. Although three other glis family members, glis1a, glis1b and glis2, were found in the medaka genome, none were expressed in the embryonic or larval kidney. In the pc mutant, the urine flow rate in the pronephros was significantly reduced, which was considered to be a direct cause of renal cyst formation. The cilia on the surface of the renal tubular epithelium were significantly shorter in the pc mutant than in wild-type, suggesting that shortened cilia resulted in a decrease in driving force and, in turn, a reduction in urine flow rate. Most importantly, EGFP-tagged pc/glis3 protein localized in primary cilia as well as in the nucleus when expressed in mouse renal epithelial cells, indicating a strong connection between pc/glis3 and ciliary function. Unlike human patients with GLIS3 mutations, the medaka pc mutant shows none of the symptoms of a pancreatic phenotype, such as impaired insulin expression and/or diabetes, suggesting that the pc mutant may be suitable for use as a kidney-specific model for human GLIS3 patients. 相似文献
10.
11.
Almira Kurbegovic Hyunho Kim Hangxue Xu Shengqiang Yu Julie Cruanès Robin L. Maser Alessandra Boletta Marie Trudel Feng Qian 《Molecular and cellular biology》2014,34(17):3341-3353
Polycystin-1 (Pc1) cleavage at the G protein-coupled receptor (GPCR) proteolytic site (GPS) is required for normal kidney morphology in humans and mice. We found a complex pattern of endogenous Pc1 forms by GPS cleavage. GPS cleavage generates not only the heterodimeric cleaved full-length Pc1 (Pc1cFL) in which the N-terminal fragment (NTF) remains noncovalently associated with the C-terminal fragment (CTF) but also a novel (Pc1) form (Pc1deN) in which NTF becomes detached from CTF. Uncleaved Pc1 (Pc1U) resides primarily in the endoplasmic reticulum (ER), whereas both Pc1cFL and Pc1deN traffic through the secretory pathway in vivo. GPS cleavage is not a prerequisite, however, for Pc1 trafficking in vivo. Importantly, Pc1deN is predominantly found at the plasma membrane of renal epithelial cells. By functional genetic complementation with five Pkd1 mouse models, we discovered that CTF plays a crucial role in Pc1deN trafficking. Our studies support GPS cleavage as a critical regulatory mechanism of Pc1 biogenesis and trafficking for proper kidney development and homeostasis. 相似文献
12.
Inherited mutation of the purine salvage enzyme, hypoxanthine guanine phosphoribosyltransferase (HPRT) gives rise to Lesch–Nyhan syndrome (LNS) or Lesch–Nyhan variants (LNVs). We report three novel independent mutations in the coding region of HPRT gene: exon 3: c.141delA, p.D47fs53X; exon 5: c.400G>A, p.E134K; exon 7: c.499A>G, p.R167G from three LNS affected male patients. 相似文献
13.
Mary Carrington Teri Kissner Bernard Gerrard Sergey Ivanov Stephen J. O'Brien Michael Dean 《American journal of human genetics》1997,61(6):1261-1267
The CCR5 gene encodes a cell-surface chemokine-receptor molecule that serves as a coreceptor for macrophage-tropic strains of HIV-1. Mutations in this gene may alter expression or function of the protein product, thereby altering chemokine binding/signaling or HIV-1 infection of cells that normally express CCR5 protein. Indeed, homozygotes for a 32-bp deletion allele of CCR5 (CCR5-delta 32), which causes a frameshift at amino acid 185, are relatively resistant to HIV-1 infection. Here we report the identification of 16 additional mutations in the coding region of the CCR5 gene, all but 3 of which are codon altering or "nonsynonymous." Most mutations were rare (found only once or twice in the sample); five were detected exclusively among African Americans, whereas eight were observed only in Caucasians. The mutations included 11 codon-altering nonsynonymous variants, one trinucleotide deletion, one chain-termination mutant, and three synonymous mutations. The high predominance of codon-altering alleles among CCR5 mutants (14/17 [81%], including CCR5-delta 32) is consistent with an adaptive accumulation of function-altering alleles for this gene, perhaps as a consequence of historic selective pressures. 相似文献
14.
Jill Norman 《生物化学与生物物理学报:疾病的分子基础》2011,1812(10):1327-1336
The age on onset of decline in renal function and end-stage renal disease (ESRD) in autosomal polycystic kidney disease (ADPKD) is highly variable and there are currently no prognostic tools to identify patients who will progress rapidly to ESRD. In ADPKD, expansion of cysts and loss of renal function are associated with progressive fibrosis. Similar to the correlation between tubulointerstitial fibrosis and progression of chronic kidney disease (CKD), in ADPKD, fibrosis has been identified as the most significant manifestation associated with an increased rate of progression to ESRD. Fibrosis in CKD has been studied extensively. In contrast, little is known about the mechanisms underlying progressive scarring in ADPKD although some commonality may be anticipated. Current data suggest that fibrosis associated with ADPKD shares at least some of the “classical” features of fibrosis in CKD (increased interstitial collagens, changes in matrix metalloproteinases (MMPs), over-expression of tissue inhibitor of metalloproteinase-1 (TIMP-1), over-expression of plasminogen activator inhibitor-1 (PAI-1) and increased transforming growth factor beta (TGFβ) but that there are also some unique and stage-specific features. Epithelial changes appear to precede and to drive interstitial changes leading to the proposal that development of fibrosis in ADPKD is biphasic with alterations in cystic epithelia precipitating changes in interstitial fibroblasts and that reciprocal interactions between these cell types drives progressive accumulation of extracellular matrix (ECM). Since fibrosis is a major component of ADPKD it follows that preventing or slowing fibrosis should retard disease progression with obvious therapeutic benefits. The development of effective anti-fibrotic strategies in ADPKD is dependent on understanding the precise mechanisms underlying initiation and progression of fibrosis in ADPKD and the role of the intrinsic genetic defect in these processes. This article is part of a Special Issue entitled: Polycystic Kidney Disease. 相似文献
15.
Xose M. Lens Luiz F. Onuchic Guanqing Wu Tomohito Hayashi Martin Daoust Toshio Mochizuki Lorenzo B. Santarina John M. Stockwin Gabi Mücher Jutta Becker William E. Sweeny Jr. Ellis D. Avner Lisa Guay-Woodford Klaus Zerres Stefan Somlo Gregory G. Germino 《Genomics》1997,41(3):463
Autosomal recessive polycystic kidney disease is one of the most common hereditary renal cystic diseases in children. Genetic studies have recently assigned the only known locus for this disorder, PKHD1, to chromosome 6p21–p12. We have generated a YAC contig that spans 5 cM of this region, defined by the markers D6S1253–D6S295, and have mapped 43 sequence-tagged sites (STS) within this interval. This set includes 20 novel STSs, which define 12 unique positions in the region, and three ESTs. A minimal set of two YACs spans the segment D6S465–D6S466, which contains PKHD1, and estimates of their sizes based on information in public databases suggest that the size of the critical region is <3.1 Mb. Twenty-eight STSs map to this interval, giving an average STS density of <1/150 kb. These resources will be useful for establishing a complete trancription map of the PKHD1 region. 相似文献
16.
The cryptic plasmid pGA1 (4.8 kb) from Corynebacterium glutamicum, replicating in the rolling-circle mode, has been reported to contain four open reading frames longer than 200 bp (ORFA/per, ORFA2, ORFB, ORFC/rep). Here we present another pGA1 gene, ORFE (174 bp), located in the region downstream of the per-ORFA2 gene cluster. The ORFE is transcribed into two RNA species in a direction opposite to that of the per-ORFA2 RNA. Introduction of ORFE in trans into the cells harboring the pGA1 derivatives carrying the main stability determinant, the per gene coding for a product that positively influences the pGA1 copy number and maintenance, increased their segregational stability. Mutation of the putative translational start of the ORFE abolished this observed positive effect in trans. ORFE thus codes for a protein acting as an accessory element involved in stable maintenance of plasmid pGA1 and was hence designated the aes gene (accessory effector of stable maintenance). 相似文献
17.
Muhammad?Arshad Rafiq Andreas?W. Kuss Lucia Puettmann Abdul Noor Annapoorani Ramiah Ghazanfar Ali Hao Hu Nadir?Ali Kerio Yong Xiang Masoud Garshasbi Muzammil?Ahmad Khan Gisele?E. Ishak Rosanna Weksberg Reinhard Ullmann Andreas Tzschach Kimia Kahrizi Khalid Mahmood Farooq Naeem Muhammad Ayub Kelley?W. Moremen John?B. Vincent Hans?Hilger Ropers Muhammad Ansar Hossein Najmabadi 《American journal of human genetics》2011,(2):348
18.
Muhammad Arshad Rafiq Andreas W. Kuss Lucia Puettmann Abdul Noor Annapoorani Ramiah Ghazanfar Ali Hao Hu Nadir Ali Kerio Yong Xiang Masoud Garshasbi Muzammil Ahmad Khan Gisele E. Ishak Rosanna Weksberg Reinhard Ullmann Andreas Tzschach Kimia Kahrizi Khalid Mahmood Farooq Naeem Muhammad Ayub Kelley W. Moremen John B. Vincent Hans Hilger Ropers Muhammad Ansar Hossein Najmabadi 《American journal of human genetics》2011,89(1):176-182
We have used genome-wide genotyping to identify an overlapping homozygosity-by-descent locus on chromosome 9q34.3 (MRT15) in four consanguineous families affected by nonsyndromic autosomal-recessive intellectual disability (NS-ARID) and one in which the patients show additional clinical features. Four of the families are from Pakistan, and one is from Iran. Using a combination of next-generation sequencing and Sanger sequencing, we have identified mutations in the gene MAN1B1, encoding a mannosyl oligosaccharide, alpha 1,2-mannosidase. In one Pakistani family, MR43, a homozygous nonsense mutation (RefSeq number : c.1418G>A [p.Trp473∗]), segregated with intellectual disability and additional dysmorphic features. We also identified the missense mutation c. 1189G>A (p.Glu397Lys; RefSeq number NM_016219.3), which segregates with NS-ARID in three families who come from the same village and probably have shared inheritance. In the Iranian family, the missense mutation c.1000C>T (p.Arg334Cys; RefSeq number NM_016219.3) also segregates with NS-ARID. Both missense mutations are at amino acid residues that are conserved across the animal kingdom, and they either reduce kcat by ∼1300-fold or disrupt stable protein expression in mammalian cells. MAN1B1 is one of the few NS-ARID genes with an elevated mutation frequency in patients with NS-ARID from different populations. NM_016219.3相似文献
19.
Notch proteins are a family of closely related transmembrane receptors proven to be instrumental in cell fate decisions. Recently, Notch ligands Delta and Jagged have been identified inDrosophilaand rat, respectively. We have isolated the human homolog of the ratJagged1gene,JAG1,from a CpG island in a YAC clone covering the Alagille syndrome critical region at chromosome 20p12 (tel–SNAP–D20S186–cen). Alagille syndrome is an autosomal dominant disorder characterized by neonatal jaundice, paucity of intrahepatic bile ducts, and abnormalities of the heart, skeleton, and eyes. The humanJagged1(JAG1), therefore, appears to be a strong candidate gene for this disease. Here we describe the identification, full-length cDNA cloning, expression patterns, and precise physical location of this gene within the Alagille syndrome critical region. 相似文献