首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1 We model the potential vegetation and annual net primary production (NPP) of China on a 10′ grid under the present climate using the processed‐based equilibrium terrestrial biosphere model BIOME3. The simulated distribution of the vegetation was in general in good agreement with the potential natural vegetation based on a numerical comparison between the two maps using the ΔV statistic (ΔV = 0.23). Predicted and measured NPP were also similar, especially in terms of biome‐averages. 2 A coupled ocean–atmosphere general circulation model including sulphate aerosols was used to drive a double greenhouse gas scenario for 2070–2099. Simulated vegetation maps from two different CO2 scenarios (340 and 500 p.p.m.v.) were compared to the baseline biome map using ΔV. Climate change alone produced a large reduction in desert, alpine tundra and ice/polar desert, and a general pole‐ward shift of the boreal, temperate deciduous, warm–temperate evergreen and tropical forest belts, a decline in boreal deciduous forest and the appearance of tropical deciduous forest. The inclusion of CO2 physiological effects led to a marked decrease in moist savannas and desert, a general decrease for grasslands and steppe, and disappearance of xeric woodland/scrub. Temperate deciduous broadleaved forest, however, shifted north to occupy nearly half the area of previously temperate mixed forest. 3 The impact of climate change and increasing CO2 is not only on biogeography, but also on potential NPP. The NPP values for most of the biomes in the scenarios with CO2 set at 340 p.p.m.v. and 500 p.p.m.v. are greater than those under the current climate, except for the temperate deciduous forest, temperate evergreen broadleaved forest, tropical rain forest, tropical seasonal forest, and xeric woodland/scrub biomes. Total vegetation and total carbon is simulated to increase significantly in the future climate scenario, both with and without the CO2 direct physiological effect. 4 Our results show that the global process‐based equilibrium terrestrial biosphere model BIOME3 can be used successfully at a regional scale.  相似文献   

2.
彭静  丹利 《生态学报》2016,36(21):6939-6950
利用了加拿大地球系统模式CanE SM2(Canadian Earth System Model of the CCCma)的结果,针对百年尺度大气CO_2浓度升高和气候变化如何影响陆地生态系统碳通量这一问题,分析了1850—1989年间陆地生态系统碳通量趋势对二者响应,以及与关键气候系统变量的关系。结果表明,140年间,当仅仅考虑CO_2浓度升高影响时,陆地生态系统净初级生产力(NPP)增加了117.1 gC m~(-2)a~(-1),土壤呼吸(Rh)增加了98.4 gC m~(-2)a~(-1),净生态系统生产力(NEP)平均增加了18.7 gC m~(-2)a~(-1)。相同情景下,全球陆地生态系统的NPP呈显著增加的线性趋势(约为0.30 PgC/a~2),Rh同样呈显著增加线性趋势(约为0.25 PgC/a~2)。仅仅考虑气候变化单独影响时,NPP平均减少了19.3 gC/m~2,土壤呼吸减少了8.5 gC/m~2,NEP减少了10.8 gC/m~2。在此情景下,整个陆地生态系统的NPP线性变化趋势约为-0.07 PgC/a~2(P0.05),Rh线性变化趋势约为-0.04 PgC/a~2(P0.05)。综合二者的影响,前者是决定陆地生态系统碳通量变化幅度和空间分布的最重要影响因子,其影响明显大于气候变化。值得注意的是,CanE SM2并没有考虑氮素的限制作用,所以CO_2浓度升高对植被的助长作用可能被高估。此外,气候变化的贡献也不容忽视,特别是在亚马逊流域,由于当温度升高、降水和土壤湿度减少,NPP和Rh均呈显著减少趋势。  相似文献   

3.
Southwestern North America faces an imminent transition to a warmer, more arid climate, and it is critical to understand how these changes will affect the carbon balance of southwest ecosystems. In order to test our hypothesis that differential responses of production and respiration to temperature and moisture shape the carbon balance across a range of spatio‐temporal scales, we quantified net ecosystem exchange (NEE) of CO2 and carbon storage across the New Mexico Elevational Gradient, which consists of six eddy‐covariance sites representing biomes ranging from desert to subalpine conifer forest. Within sites, hotter and drier conditions were associated with an increasing advantage of respiration relative to production such that daily carbon uptake peaked at intermediate temperatures – with carbon release often occurring on the hottest days – and increased with soil moisture. Across sites, biotic adaptations modified but did not override the dominant effects of climate. Carbon uptake increased with decreasing temperature and increasing precipitation across the elevational gradient; NEE ranged from a source of ~30 g C m?2 yr?1 in the desert grassland to a sink of ~350 g C m?2 yr?1 in the subalpine conifer forest. Total aboveground carbon storage increased dramatically with elevation, ranging from 186 g C m?2 in the desert grassland to 26 600 g C m?2 in the subalpine conifer forest. These results make sense in the context of global patterns in NEE and biomass storage, and support that increasing temperature and decreasing moisture shift the carbon balance of ecosystems in favor of respiration, such that the potential for ecosystems to sequester and store carbon is reduced under hot and/or dry conditions. This implies that projected climate change will trigger a substantial net release of carbon in these New Mexico ecosystems (~3 Gt CO2 statewide by the end of the century), thereby acting as a positive feedback to climate change.  相似文献   

4.
Based on review and original data, this synthesis investigates carbon pools and fluxes of Siberian and European forests (600 and 300 million ha, respectively). We examine the productivity of ecosystems, expressed as positive rate when the amount of carbon in the ecosystem increases, while (following micrometeorological convention) downward fluxes from the atmosphere to the vegetation (NEE = Net Ecosystem Exchange) are expressed as negative numbers. Productivity parameters are Net Primary Productivity (NPP=whole plant growth), Net Ecosystem Productivity (NEP = CO2 assimilation minus ecosystem respiration), and Net Biome Productivity (NBP = NEP minus carbon losses through disturbances bypassing respiration, e.g. by fire and logging). Based on chronosequence studies and national forestry statistics we estimate a low average NPP for boreal forests in Siberia: 123 gC m–2 y–1. This contrasts with a similar calculation for Europe which suggests a much higher average NPP of 460 gC m–2 y–1 for the forests there. Despite a smaller area, European forests have a higher total NPP than Siberia (1.2–1.6 vs. 0.6–0.9 × 1015 gC region–1 y–1). This arises as a consequence of differences in growing season length, climate and nutrition. For a chronosequence of Pinus sylvestris stands studied in central Siberia during summer, NEE was most negative in a 67-y old stand regenerating after fire (– 192 mmol m–2 d–1) which is close to NEE in a cultivated forest of Germany (– 210 mmol m–2 d–1). Considerable net ecosystem CO2-uptake was also measured in Siberia in 200- and 215-y old stands (NEE:174 and – 63 mmol m–2 d–1) while NEP of 7- and 13-y old logging areas were close to the ecosystem compensation point. Two Siberian bogs and a bog in European Russia were also significant carbon sinks (– 102 to – 104 mmol m–2 d–1). Integrated over a growing season (June to September) we measured a total growing season NEE of – 14 mol m–2 summer–1 (– 168 gC m–2 summer–1) in a 200-y Siberian pine stand and – 5 mol m–2 summer–1 (– 60 gC m–2 summer–1) in Siberian and European Russian bogs. By contrast, over the same period, a spruce forest in European Russia was a carbon source to the atmosphere of (NEE: + 7 mol m–2 summer–1 = + 84 gC m–2 summer–1). Two years after a windthrow in European Russia, with all trees being uplifted and few successional species, lost 16 mol C m–2 to the atmosphere over a 3-month in summer, compared to the cumulative NEE over a growing season in a German forest of – 15.5 mol m–2 summer–1 (– 186 gC m–2 summer–1; European flux network annual averaged – 205 gC m–2 y–1). Differences in CO2-exchange rates coincided with differences in the Bowen ratio, with logging areas partitioning most incoming radiation into sensible heat whereas bogs partitioned most into evaporation (latent heat). Effects of these different surface energy exchanges on local climate (convective storms and fires) and comparisons with the Canadian BOREAS experiment are discussed. Following a classification of disturbances and their effects on ecosystem carbon balances, fire and logging are discussed as the main processes causing carbon losses that bypass heterotrophic respiration in Siberia. Following two approaches, NBP was estimated to be only about 13–16 mmol m–2 y–1 for Siberia. It may reach 67 mmol m–2 y–1 in North America, and about 140–400 mmol m–2 y–1 in Scandinavia. We conclude that fire speeds up the carbon cycle, but that it results also in long-term carbon sequestration by charcoal formation. For at least 14 years after logging, regrowth forests remain net sources of CO2 to the atmosphere. This has important implications regarding the effects of Siberian forest management on atmospheric concentrations. For many years after logging has taken place, regrowth forests remain weaker sinks for atmospheric CO2 than are nearby old-growth forests.  相似文献   

5.
Carbon exchange by the terrestrial biosphere is thought to have changed since pre-industrial times in response to increasing concentrations of atmospheric CO2 and variations (anomalies) in inter-annual air temperatures. However, the magnitude of this response, particularly that of various ecosystem types (biomes), is uncertain. Terrestrial carbon models can be used to estimate the direction and size of the terrestrial responses expected, providing that these models have a reasonable theoretical base. We formulated a general model of ecosystem carbon fluxes by linking a process-based canopy photosynthesis model to the Rothamsted soil carbon model for biomes that are not significantly affected by water limitation. The difference between net primary production (NPP) and heterotrophic soil respiration (Rh) represents net ecosystem production (NEP). The model includes (i) multiple compartments for carbon storage in vegetation and soil organic matter, (ii) the effects of seasonal changes in environmental parameters on annual NEP, and (iii) the effects of inter-annual temperature variations on annual NEP. Past, present and projected changes in atmospheric CO2 concentration and surface air temperature (at different latitudes) were analysed for their effects on annual NEP in tundra, boreal forest and humid tropical forest biomes. In all three biomes, annual NEP was predicted to increase with CO2 concentration but to decrease with warming. As CO2 concentrations and temperatures rise, the positive carbon gains through increased NPP are often outweighed by losses through increased Rh, particularly at high latitudes where global warming has been (and is expected to be) most severe. We calculated that, several times during the past 140 years, both the tundra and boreal forest biomes have switched between being carbon sources (annual NEP negative) and being carbon sinks (annual NEP positive). Most recently, significant warming at high latitudes during 1988 and 1990 caused the tundra and boreal forests to be net carbon sources. Humid tropical forests generally have been a carbon sink since 1960. These modelled responses of the various biomes are in agreement with other estimates from either field measurements or geochemical models. Under projected CO2 and temperature increases, the tundra and boreal forests will emit increasingly more carbon to the atmosphere while the humid tropical forest will continue to store carbon. Our analyses also indicate that the relative increase in the seasonal amplitude of the accumulated NEP within a year is about 0–14% year?1 for boreal forests and 0–23% year?1 in the tundra between 1960 and 1990.  相似文献   

6.
Quantitative information on the response of global terrestrial net primary production (NPP) to climate change and increasing atmospheric CO2 is essential for climate change adaptation and mitigation in the 21st century. Using a process-based ecosystem model (the Dynamic Land Ecosystem Model, DLEM), we quantified the magnitude and spatiotemporal variations of contemporary (2000s) global NPP, and projected its potential responses to climate and CO2 changes in the 21st century under the Special Report on Emission Scenarios (SRES) A2 and B1 of Intergovernmental Panel on Climate Change (IPCC). We estimated a global terrestrial NPP of 54.6 (52.8–56.4) PgC yr−1 as a result of multiple factors during 2000–2009. Climate change would either reduce global NPP (4.6%) under the A2 scenario or slightly enhance NPP (2.2%) under the B1 scenario during 2010–2099. In response to climate change, global NPP would first increase until surface air temperature increases by 1.5°C (until the 2030s) and then level-off or decline after it increases by more than 1.5°C (after the 2030s). This result supports the Copenhagen Accord Acknowledgement, which states that staying below 2°C may not be sufficient and the need to potentially aim for staying below 1.5°C. The CO2 fertilization effect would result in a 12%–13.9% increase in global NPP during the 21st century. The relative CO2 fertilization effect, i.e. change in NPP on per CO2 (ppm) bases, is projected to first increase quickly then level off in the 2070s and even decline by the end of the 2080s, possibly due to CO2 saturation and nutrient limitation. Terrestrial NPP responses to climate change and elevated atmospheric CO2 largely varied among biomes, with the largest increases in the tundra and boreal needleleaf deciduous forest. Compared to the low emission scenario (B1), the high emission scenario (A2) would lead to larger spatiotemporal variations in NPP, and more dramatic and counteracting impacts from climate and increasing atmospheric CO2.  相似文献   

7.
During the past century, annual mean temperature has increased by 0.75°C and precipitation has shown marked variation throughout the Mediterranean basin. These historical climate changes may have had significant, but presently undefined, impacts on the productivity and structure of sclerophyllous shrubland, an important vegetation type in the region. We used a vegetation model for this functional type to examine climate change impacts, and their interaction with the concurrent historical rise in atmospheric CO2. Using only climate and soil texture as data inputs, model predictions showed good agreement with observations of seasonal and regional variation in leaf and canopy physiology, net primary productivity (NPP), leaf area index (LAI) and soil water. Model simulations for shrubland sites indicated that potential NPP has risen by 25% and LAI by 7% during the past century, although the absolute increase in LAI was small. Sensitivity analysis suggested that the increase in atmospheric CO2 since 1900 was the primary cause of these changes, and that simulated climate change alone had negative impacts on both NPP and LAI. Effects of rising CO2 were mediated by significant increases in the efficiency of water‐use in NPP throughout the region, as a consequence of the direct effect of CO2 on leaf gas exchange. This increase in efficiency compensated for limitation of NPP by drought, except in areas where drought was most severe. However, while water was used more efficiently, total canopy water loss rose slightly or remained unaffected in model simulations, because increases in LAI with CO2 counteracted the effects of reduced stomatal conductance on transpiration. Model simulations for the Mediterranean region indicate that the recent rise in atmospheric CO2 may already have had significant impacts on productivity, structure and water relations of sclerophyllous shrub vegetation, which tended to offset the detrimental effects of climate change in the region.  相似文献   

8.
A process‐based model of the energy crop Miscanthus×giganteus is integrated into the global climate impact model IMOGEN, simulating the potential of large‐scale Miscanthus plantation to offset fossil fuel emissions during the 21st century. This simulation produces spatially explicit, annual projections of Miscanthus yields from the present day to the year 2100 under an SRES A2 anthropogenic emissions scenario and includes the effects of climate change. IMOGEN also simulates natural vegetation and soil carbon storage throughout the 21st century. The benefit of Miscanthus cultivation (avoiding fossil fuel emissions of CO2) is then compared with the cost of displacing natural vegetation (carbon emissions from vegetation and soil). The time taken for these effects to cancel out, the pay‐back time, is calculated regionally. The effects of large‐scale Miscanthus plantation are then integrated globally to produce an estimate of atmospheric CO2 concentrations throughout the 21st century. Our best estimate of the pay‐back time for Miscanthus plantation is 30 years. We project a maximum possible reduction in atmospheric CO2 of 323 ppmv by the end of 21st century, with a reduction of 162 ppmv corresponding to the best estimate scenario.  相似文献   

9.
Evaluating the role of terrestrial ecosystems in the global carbon cycle requires a detailed understanding of carbon exchange between vegetation, soil, and the atmosphere. Global climatic change may modify the net carbon balance of terrestrial ecosystems, causing feedbacks on atmospheric CO2 and climate. We describe a model for investigating terrestrial carbon exchange and its response to climatic variation based on the processes of plant photosynthesis, carbon allocation, litter production, and soil organic carbon decomposition. The model is used to produce geographical patterns of net primary production (NPP), carbon stocks in vegetation and soils, and the seasonal variations in net ecosystem production (NEP) under both contemporary and future climates. For contemporary climate, the estimated global NPP is 57.0 Gt C y–1, carbon stocks in vegetation and soils are 640 Gt C and 1358 Gt C, respectively, and NEP varies from –0.5 Gt C in October to 1.6 Gt C in July. For a doubled atmospheric CO2 concentration and the corresponding climate, we predict that global NPP will rise to 69.6 Gt C y–1, carbon stocks in vegetation and soils will increase by, respectively, 133 Gt C and 160 Gt C, and the seasonal amplitude of NEP will increase by 76%. A doubling of atmospheric CO2 without climate change may enhance NPP by 25% and result in a substantial increase in carbon stocks in vegetation and soils. Climate change without CO2 elevation will reduce the global NPP and soil carbon stocks, but leads to an increase in vegetation carbon because of a forest extension and NPP enhancement in the north. By combining the effects of CO2 doubling, climate change, and the consequent redistribution of vegetation, we predict a strong enhancement in NPP and carbon stocks of terrestrial ecosystems. This study simulates the possible variation in the carbon exchange at equilibrium state. We anticipate to investigate the dynamic responses in the carbon exchange to atmospheric CO2 elevation and climate change in the past and future.  相似文献   

10.
基于MODIS的中国草地NPP综合估算模型   总被引:1,自引:0,他引:1  
草地生态系统是陆地生态系统分布最广的生态系统类型之一,其碳储量的估算在全球变化中的作用越来越受到重视。为了快速、便捷地实现中国草地净初级生产力(NPP)的估算,在获取野外调查资料与同期遥感影像数据的基础上,利用归一化植被指数(NDVI)以及气候数据,构建了草地NPP综合估算模型。模型包括叶面积指数(LAI)和光合累积量(PA)两个子模型,其中LAI子模型利用了遥感数据NDVI,PA子模型利用了温度、降水和辐射等气候数据。通过建模以外独立的实测数据的验证,模拟值与实测值之间有很好的相关性,R2为0.8519,相关性达到极显著水平。RMSE和RRMSE均较小,表明模型的模拟结果比较可靠。同时模拟值与实测值之间的平均相对误差仅为1.97%,模拟结果的准确度较高,因此利用上述模型估算中国草地NPP是可行的。以上结果为中国草地NPP估算提供了新的方法。  相似文献   

11.
为了解秦岭北坡太白红杉(Larix chinensis)的碳源/汇动态,运用BIOME-BGC模型模拟了1959-2016年太白红杉生产力、碳储量和碳利用效率(CUE),并利用气候情景设定方法预测碳源/汇功能的未来趋势。结果表明,58年间太白红杉的平均净初级生产力(NPP)、初级生产力(GPP)和净生态系统生产力(NEP)分别为328.59、501.56和31.42 g C m–2a–1,平均碳储量为35.38 kg C m–2a–1,平均CUE为0.65;除1960-1961、1969-1970、1997-1999年为"碳源"年外,绝大多数年份为"碳汇"年,年内呈现"碳源-碳汇-碳源"的变化特征,碳储量总体增加,潜在固碳能力较为稳定。GPP、NPP、碳储量的正向作用排序为气温上升CO_2浓度增加,NEP的正向作用排序反之,降水增加对生产力和碳储量增加起反作用,气温升高对CUE起反作用;气温和CO_2浓度是北坡太白红杉生长的限制因子,气温的限制性强于CO_2浓度,未来气温或CO_2浓度升高有利于碳汇功能发挥,降水增加减弱碳汇效果。RCP4.5、RCP8.5情景下太白红杉生产力和碳储量在21世纪呈上升趋势,RCP8.5上升幅度略大于RCP4.5,潜在固碳能力仍较强;1-3月和10-12月为"碳源"月,5-9月为"碳汇"月。这揭示了气候变化背景下气温、降水和CO_2浓度对太白红杉碳源/汇的影响方式,气温和CO_2浓度上升是碳汇的促进因素,降水增加为阻碍因素。  相似文献   

12.
王苗苗  王绍强  陈斌  张心怡  赵健 《生态学报》2023,43(6):2408-2418
CO2施肥效应是全球变绿的主要原因,随着大气中CO2浓度的持续增加,预估未来气候变化条件下,CO2施肥效应对陆地生态系统的影响对减缓全球气候变化具有重大意义。基于未来气候情景数据和Farquhar模型,并结合生态过程模型BEPS(Boreal Ecosystem Productivity Simulator),定量化研究2020—2050年CO2施肥效应对全球叶面积指数(LAI)和总初级生产力(GPP)的影响。研究结果显示2020—2050年,在RCP2.6、RCP4.5和RCP8.5气候情景下,CO2施肥效应导致的LAI年际变化趋势分别为0.002、0.003和0.005 m-2m-2a-1;三个气候情景下CO2施肥效应对LAI的影响为CO2每增加0.1%,LAI平均增加约8.1%—9.2%,由此导致GPP对应增加7.9%—14.6%;由CO2施...  相似文献   

13.
Ecosystem dynamics and the responses to climate change in mangrove forests are poorly understood. We applied the biogeochemical process model Biome-BGC to simulate the dynamics of net primary productivity (NPP) and leaf area index (LAI) under the present and future climate conditions in mangrove forests in Shenzhen, Zhanjiang, and Qiongshan across the southern coast of China, and in three monocultural mangrove stands of two native species, Avicennia marina and Kandelia obovata, and one exotic species, Sonneratia apetala, in Shenzhen. The soil hydrological process of the model was modified by incorporating a soil water (SW) stress index to account for the impact of the effective SW availability in the coastal wetland. Our modified Biome-BGC well predicted the dynamics of NPP and LAI in the mangrove forests at the study sites. We found that the six mangrove systems differed in sensitivity to variations in the effective SW availability. At the ecosystem level, however, soil salinity alone could not entirely explain the limitation of the effective SW availability on the productivity of mangrove forests. Increasing atmospheric CO2 concentration differentially affected growth of different mangrove species but only had a small impact on NPP (<7%); whereas a doubling of atmospheric CO2 concentration associated with a 2°C temperature rise would increase NPP by 14–19% across the three geographically separate mangrove forests and by 12% to as much as 68% across the three monocultural mangrove stands. Our simulation analysis indicates that temperature change is more important than increasing CO2 concentration in affecting productivity of mangroves at the ecosystem level, and that different mangrove species differ in sensitivity to increases in temperature and CO2 concentration.  相似文献   

14.
Although there is a great deal of information concerning responses to increases in atmospheric CO2 at the tissue and plant levels, there are substantially fewer studies that have investigated ecosystem-level responses in the context of integrated carbon, water, and nutrient cycles. Because our understanding of ecosystem responses to elevated CO2 is incomplete, modeling is a tool that can be used to investigate the role of plant and soil interactions in the response of terrestrial ecosystems to elevated CO2. In this study, we analyze the responses of net primary production (NPP) to doubled CO2 from 355 to 710 ppmv among three biogeochemistry models in the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP): BIOME-BGC (BioGeochemical Cycles), Century, and the Terrestrial Ecosystem Model (TEM). For the conterminous United States, doubled atmospheric CO2 causes NPP to increase by 5% in Century, 8% in TEM, and 11% in BIOME-BGC. Multiple regression analyses between the NPP response to doubled CO2 and the mean annual temperature and annual precipitation of biomes or grid cells indicate that there are negative relationships between precipitation and the response of NPP to doubled CO2 for all three models. In contrast, there are different relationships between temperature and the response of NPP to doubled CO2 for the three models: there is a negative relationship in the responses of BIOME-BGC, no relationship in the responses of Century, and a positive relationship in the responses of TEM. In BIOME-BGC, the NPP response to doubled CO2 is controlled by the change in transpiration associated with reduced leaf conductance to water vapor. This change affects soil water, then leaf area development and, finally, NPP. In Century, the response of NPP to doubled CO2 is controlled by changes in decomposition rates associated with increased soil moisture that results from reduced evapotranspiration. This change affects nitrogen availability for plants, which influences NPP. In TEM, the NPP response to doubled CO2 is controlled by increased carboxylation which is modified by canopy conductance and the degree to which nitrogen constraints cause down-regulation of photosynthesis. The implementation of these different mechanisms has consequences for the spatial pattern of NPP responses, and represents, in part, conceptual uncertainty about controls over NPP responses. Progress in reducing these uncertainties requires research focused at the ecosystem level to understand how interactions between the carbon, nitrogen, and water cycles influence the response of NPP to elevated atmospheric CO2. Received: 13 December 1996 / Accepted: 20 November 1997  相似文献   

15.
The landscape of the Barrow Peninsula in northern Alaska is thought to have formed over centuries to millennia, and is now dominated by ice‐wedge polygonal tundra that spans drained thaw‐lake basins and interstitial tundra. In nearby tundra regions, studies have identified a rapid increase in thermokarst formation (i.e., pits) over recent decades in response to climate warming, facilitating changes in polygonal tundra geomorphology. We assessed the future impact of 100 years of tundra geomorphic change on peak growing season carbon exchange in response to: (i) landscape succession associated with the thaw‐lake cycle; and (ii) low, moderate, and extreme scenarios of thermokarst pit formation (10%, 30%, and 50%) reported for Alaskan arctic tundra sites. We developed a 30 × 30 m resolution tundra geomorphology map (overall accuracy:75%; Kappa:0.69) for our ~1800 km² study area composed of ten classes; drained slope, high center polygon, flat‐center polygon, low center polygon, coalescent low center polygon, polygon trough, meadow, ponds, rivers, and lakes, to determine their spatial distribution across the Barrow Peninsula. Land‐atmosphere CO2 and CH4 flux data were collected for the summers of 2006–2010 at eighty‐two sites near Barrow, across the mapped classes. The developed geomorphic map was used for the regional assessment of carbon flux. Results indicate (i) at present during peak growing season on the Barrow Peninsula, CO2 uptake occurs at ‐902.3 106gC‐COday?1 (uncertainty using 95% CI is between ?438.3 and ?1366 106gC‐COday?1) and CH4 flux at 28.9 106gC‐CHday?1(uncertainty using 95% CI is between 12.9 and 44.9 106gC‐CHday?1), (ii) one century of future landscape change associated with the thaw‐lake cycle only slightly alter CO2 and CH4 exchange, while (iii) moderate increases in thermokarst pits would strengthen both CO2 uptake (?166.9 106gC‐COday?1) and CH4 flux (2.8 106gC‐CHday?1) with geomorphic change from low to high center polygons, cumulatively resulting in an estimated negative feedback to warming during peak growing season.  相似文献   

16.
Changes in the net primary productivity (NPP) of natural vegetation of monsoon East Asia were simulated under three, doubled CO2-climate scenarios (GISS, GFDL and UKMO). These three scenarios and baseline climate data were converted to grids of 1o×1o meshes. The gridded climatic data were used together with the Chikugo model to assess NPP under baseline and CO2-doubling climates. The potential total net production (TNP0) of East Asia was climatically evaluated to be 154×108 t dry matter year−1. The climatic changes induced by a doubled CO2 concentration are predicted to increase the TNP0 by approximately 9–15%, depending on the climatic scenario. The estimated increase in TNP0 would be limited by the difference between the rate of shift of climatic zones and the rate of migration of vegetation formations.  相似文献   

17.
S. LUYSSAERT  I. INGLIMA  M. JUNG  A. D. RICHARDSON  M. REICHSTEIN  D. PAPALE  S. L. PIAO  E. ‐D. SCHULZE  L. WINGATE  G. MATTEUCCI  L. ARAGAO  M. AUBINET  C. BEER  C. BERNHOFER  K. G. BLACK  D. BONAL  J. ‐M. BONNEFOND  J. CHAMBERS  P. CIAIS  B. COOK  K. J. DAVIS  A. J. DOLMAN  B. GIELEN  M. GOULDEN  J. GRACE  A. GRANIER  A. GRELLE  T. GRIFFIS  T. GRÜNWALD  G. GUIDOLOTTI  P. J. HANSON  R. HARDING  D. Y. HOLLINGER  L. R. HUTYRA  P. KOLARI  B. KRUIJT  W. KUTSCH  F. LAGERGREN  T. LAURILA  B. E. LAW  G. LE MAIRE  A. LINDROTH  D. LOUSTAU  Y. MALHI  J. MATEUS  M. MIGLIAVACCA  L. MISSON  L. MONTAGNANI  J. MONCRIEFF  E. MOORS  J. W. MUNGER  E. NIKINMAA  S. V. OLLINGER  G. PITA  C. REBMANN  O. ROUPSARD  N. SAIGUSA  M. J. SANZ  G. SEUFERT  C. SIERRA  M. ‐L. SMITH  J. TANG  R. VALENTINI  T. VESALA  I. A. JANSSENS 《Global Change Biology》2007,13(12):2509-2537
Terrestrial ecosystems sequester 2.1 Pg of atmospheric carbon annually. A large amount of the terrestrial sink is realized by forests. However, considerable uncertainties remain regarding the fate of this carbon over both short and long timescales. Relevant data to address these uncertainties are being collected at many sites around the world, but syntheses of these data are still sparse. To facilitate future synthesis activities, we have assembled a comprehensive global database for forest ecosystems, which includes carbon budget variables (fluxes and stocks), ecosystem traits (e.g. leaf area index, age), as well as ancillary site information such as management regime, climate, and soil characteristics. This publicly available database can be used to quantify global, regional or biome‐specific carbon budgets; to re‐examine established relationships; to test emerging hypotheses about ecosystem functioning [e.g. a constant net ecosystem production (NEP) to gross primary production (GPP) ratio]; and as benchmarks for model evaluations. In this paper, we present the first analysis of this database. We discuss the climatic influences on GPP, net primary production (NPP) and NEP and present the CO2 balances for boreal, temperate, and tropical forest biomes based on micrometeorological, ecophysiological, and biometric flux and inventory estimates. Globally, GPP of forests benefited from higher temperatures and precipitation whereas NPP saturated above either a threshold of 1500 mm precipitation or a mean annual temperature of 10 °C. The global pattern in NEP was insensitive to climate and is hypothesized to be mainly determined by nonclimatic conditions such as successional stage, management, site history, and site disturbance. In all biomes, closing the CO2 balance required the introduction of substantial biome‐specific closure terms. Nonclosure was taken as an indication that respiratory processes, advection, and non‐CO2 carbon fluxes are not presently being adequately accounted for.  相似文献   

18.
Aim We investigated how ozone pollution and climate change/variability have interactively affected net primary productivity (NPP) and net carbon exchange (NCE) across China's forest ecosystem in the past half century. Location Continental China. Methods Using the dynamic land ecosystem model (DLEM) in conjunction with 10‐km‐resolution gridded historical data sets (tropospheric O3 concentrations, climate variability/change, and other environmental factors such as land‐cover/land‐use change (LCLUC), increasing CO2 and nitrogen deposition), we conducted nine simulation experiments to: (1) investigate the temporo‐spatial patterns of NPP and NCE in China's forest ecosystems from 1961–2005; and (2) quantify the effects of tropospheric O3 pollution alone or in combination with climate variability and other environmental stresses on forests' NPP and NCE. Results China's forests acted as a carbon sink during 1961–2005 as a result of the combined effects of O3, climate, CO2, nitrogen deposition and LCLUC. However, simulated results indicated that elevated O3 caused a 7.7% decrease in national carbon storage, with O3‐induced reductions in NCE (Pg C year?1) ranging from 0.4–43.1% among different forest types. Sensitivity experiments showed that climate change was the dominant factor in controlling changes in temporo‐spatial patterns of annual NPP. The combined negative effects of O3 pollution and climate change on NPP and NCE could be largely offset by the positive fertilization effects of nitrogen deposition and CO2. Main conclusions In the future, tropospheric O3 should be taken into account in order to fully understand the variations of carbon sequestration capacity of forests and assess the vulnerability of forest ecosystems to climate change and air pollution. Reducing air pollution in China is likely to increase the resilience of forests to climate change. This paper offers the first estimate of how prevention of air pollution can help to increase forest productivity and carbon sequestration in China's forested ecosystems.  相似文献   

19.
Biogeochemical models have been developed to account for more and more processes, making their complex structures difficult to be understood and evaluated. Here, we introduce a framework to decompose a complex land model into traceable components based on mutually independent properties of modeled biogeochemical processes. The framework traces modeled ecosystem carbon storage capacity (Xss) to (i) a product of net primary productivity (NPP) and ecosystem residence time (τE). The latter τE can be further traced to (ii) baseline carbon residence times (τ′E), which are usually preset in a model according to vegetation characteristics and soil types, (iii) environmental scalars (ξ), including temperature and water scalars, and (iv) environmental forcings. We applied the framework to the Australian Community Atmosphere Biosphere Land Exchange (CABLE) model to help understand differences in modeled carbon processes among biomes and as influenced by nitrogen processes. With the climate forcings of 1990, modeled evergreen broadleaf forest had the highest NPP among the nine biomes and moderate residence times, leading to a relatively high carbon storage capacity (31.5 kg cm?2). Deciduous needle leaf forest had the longest residence time (163.3 years) and low NPP, leading to moderate carbon storage (18.3 kg cm?2). The longest τE in deciduous needle leaf forest was ascribed to its longest τ′E (43.6 years) and small ξ (0.14 on litter/soil carbon decay rates). Incorporation of nitrogen processes into the CABLE model decreased Xss in all biomes via reduced NPP (e.g., ?12.1% in shrub land) or decreased τE or both. The decreases in τE resulted from nitrogen‐induced changes in τ′E (e.g., ?26.7% in C3 grassland) through carbon allocation among plant pools and transfers from plant to litter and soil pools. Our framework can be used to facilitate data model comparisons and model intercomparisons via tracking a few traceable components for all terrestrial carbon cycle models. Nevertheless, more research is needed to develop tools to decompose NPP and transient dynamics of the modeled carbon cycle into traceable components for structural analysis of land models.  相似文献   

20.
马文婧  李英年  张法伟  韩琳 《生态学报》2023,43(3):1102-1112
青藏高原草甸草原是生态系统中重要的植被类型,准确评估高寒草甸草原生态系统碳源汇状况及碳储量变化尤为重要。基于涡度相关系统观测,分析了2009年至2016年8年期间青海湖北岸草甸草原环境因子以及碳通量的变化特征,运用结构方程模型(SEM)分析环境因子对总初级生产力(GPP)、净生态系统CO2交换量(NEE)、生态系统呼吸(Re)的调控机制。结果表明:2009—2016年8年NEE日均值在-2.02—0.88 gC m-2 d-1之间,5—9月NEE为负值,表现为碳吸收,雨热同期的6、7、8月是CO2净吸收最强的时期,平均每月吸收CO2 39.85 gC m-2 month-1,NEE负值日数约占全年的48%,10月—翌年4月为正值,表现为碳释放,初春3月和秋末11月是CO2净释放最强的时期;Re日均值为1.69 gC m-2 d-1,受季节温度的影响,呈夏季强,冬季弱的态...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号