首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A partial genome scan using microsatellite markers was conducted to detect quantitative trait loci (QTLs) for 10 fatty acid contents of backfat on 15 chromosomes in a porcine resource population. Two QTLs were discovered on Sus scrofa chromosome 4 (SSC4) and SSC7. The QTL on SSC4 was located between marker loci sw1336 and sw512, and this QTL was detected (P < 0.05) only for linoleic acid. Its position was in proximity of those mapped for linoleic acid content in previous studies. The QTL on SSC7 was mapped between markers swr1343 and sw2155, and it was significant (P < 0.05) only for oleic acid. A novelty of the QTL for oleic acid was suggested because the QTL was located far from any other QTLs previously mapped for fatness traits. The QTL on SSC7 explained 19% of phenotypic variation for oleic acid content. Further studies on fine mapping and positional comparative candidate gene analysis would be the next step toward better understanding of the genetic architecture of fatty acid contents.  相似文献   

2.
Many QTLs for fatness traits have been mapped on pig chromosome 7q1.1-1.4 in various pig resource populations. Eight novel markers, including seven SNPs and one insertion or deletion within BTNL1, COL21A1, PPARD, GLP1R, MDFI, GNMT, ABCC10, and PLA2G7 genes, as well as two previously reported SNPs in SLC39A7 and HMGA1 genes, were genotyped in Large White and Meishan pig breeds. Except for two SNPs in HMGA1 and ABCC10 genes, allele frequencies of the other eight markers are highly significant different between Chinese indigenous Meishan breeds and Large White pig breeds. Eight polymorphic sites were then used for linkage and QTL mapping to refine the fatness QTL in a Large White × Meishan F(2) resource population. Five chromosome-wise significant QTLs were detected, of which the QTLs for leaf fat weight, backfat thickness at 6-7th rib and rump, and mean backfat thickness were narrowed to the interval between PPARD and GLP1R genes and the QTL for backfat thickness at thorax-waist between GNMT and PLA2G7 genes on SSC7p1.1-q1.4.  相似文献   

3.
Pig chromosome 6 (SSC6) has been reported to have QTL affecting backfat thickness (BFT) and intramuscular fat (IMF). A human-pig comparative map covering 18 autosomes with the highest resolution has been constructed and based on this map SSC6 has conserved syntenicgroups with human chromosome (HSA) 16, 19, 1, and 18. In this study, the pig Affy elements mapped to the SSC6 were analyzed, and the differentially expressed genes in three tissues (liver, backfat and loin muscle) between Yorkshire and Korean Native Pigs (KNP) were collected, in particular those genes located in the internal between markers SW1355 and SW1823 where a quantitative trait loci (QTL) affecting the intramuscular fat content (IMF) have been detected in multiple pig populations. The genes listed here may offer information for further study the candidate genes affecting these QTL on the expression level.  相似文献   

4.
Results from a QTL experiment on growth and carcass traits in an experimental F2 cross between Iberian and Landrace pigs are reported. Phenotypic data for growth, length of carcass and muscle mass, fat deposition and carcass composition traits from 321 individuals corresponding to 58 families were recorded. Animals were genotyped for 92 markers covering the 18 porcine autosomes (SSC). The results from the genomic scan show genomewide significant QTL in SSC2 (longissimus muscle area and backfat thickness), SSC4 (length of carcass, backfat thickness, loin, shoulder and belly bacon weights) and SSC6 (longissimus muscle area, backfat thickness, loin, shoulder and belly bacon weights). Suggestive QTL were also found on SSC1, SSC5, SSC7, SSC8, SSC9, SSC13, SCC14, SSC16 and SSC17. A bidimensional genomic scan every 10 cM was performed to detect interaction between QTL. The joint action of two suggestive QTL in SSC2 and SSC17 led to a genome-wide significant effect in live weight. The results of the bidimensional genomic scan showed that the genetic architecture was mainly additive or the experimental set-up did not have enough power to detect epistatic interactions.  相似文献   

5.
Here, we analysed quantitative trait loci (QTL) for fatty acid composition, one of the factors affecting fat quality, in a Japanese wild boar x Large White cross. We found 25 significant effects for 17 traits at 13 positions at the 5% genome-wise level, of which 16 effects for 12 traits at 10 positions were significant at the 1% level. QTL for saturated fatty acids (SFA) in back fat were mapped to swine (Sus scrofa) chromosomes (SSC) 1p, 9 and 15. QTL for unsaturated fatty acids in back fat were mapped to SSC1p, 1q, 4, 5, 9, 15 and 17. Using a regression model that fits back fat thickness as a covariate, two of the QTL for linoleic acid content on SSC4 and SSC17 were not significant, but one QTL for total SFA composition was detected on SSC5 with correction for back fat thickness. Wild boar alleles at six of seven QTL tended to increase SFAs and to decrease unsaturated fatty acids. QTL for fatty acid composition in perirenal fat were mapped on SSC2, 3, 4, 5, 6, 14, 16 and X. QTL for melting point (in back fat samples) were mapped on SSC1, 2 and 15. Wild boar alleles in QTL on SSC1 and SSC15 were associated with elevated melting points whereas those on SSC2 were associated with lower melting point measurements.  相似文献   

6.
Detection of QTL affecting fatty acid composition in the pig   总被引:3,自引:0,他引:3  
We present a QTL genome scan for fatty acid composition in pigs. An F2 cross between Iberian × Landrace pigs and a regression approach fitting the carcass weight as a covariate for QTL identification was used. Chromosomes (Chrs) 4, 6, 8, 10, and 12 showed highly significant effects. The Chr 4 QTL influenced the linoleic content and both the fatty acid double-bond index and peroxidability index. In Chr 6 we found significant associations with the double-bond index and the unsaturated index of fatty acids. Chr 8 showed clear effects on the percentages of palmitic and palmitoleic fatty acids as well as the average chain length of fatty acids. In Chr 10 we detected a significant QTL for the percentage of myristic fatty acid, with an F value that was slightly above the genomewide threshold. The percentage of linolenic fatty acid was affected by a region on Chr 12. A nearly significant QTL for the content of gadoleic fatty acid was also detected in Chr 12. We also analyzed the genomic QTL distribution by a regression model that fits the backfat thickness as a covariate. Some of the QTL that were detected in our analysis could not be detected when the data were corrected by backfat thickness. This work shows how critical the selection of a covariate can be in the interpretation of results. This is the first report of a genome scan detection of QTL directly affecting fatty acid composition in pigs.  相似文献   

7.
Soybean [Glycine max (L.) Merr.] is an important oilseed crop which produces about 30 % of the world’s edible vegetable oil. The quality of soybean oil is determined by its fatty acid composition. Soybean oil high in oleic and low in linolenic fatty acids is desirable for human consumption and other uses. The objectives of this study were to identify quantitative trait loci (QTLs) for unsaturated fatty acids and to evaluate the genetic effects of single QTL and QTL combinations in soybean. A population of recombinant inbred lines derived from the cross of SD02-4-59 × A02-381100 was evaluated for fatty acid content in seven environments. In total, 516 polymorphic single nucleotide polymorphism markers, 477 polymorphic simple sequence repeat markers and three GmFAD3 genes were used to genotype the mapping population. By using the composite interval mapping and/or the interval mapping method, a total of 15 QTLs for the three unsaturated fatty acids were detected in more than two environments. Two QTLs for oleic acid on linkage groups G [chromosome (Chr) 18] (qOLE-G) and J (Chr 16) (qOLE-J), three QTLs for linoleic acid on linkage groups A1 (Chr 5) (qLLE-A1) and G (Chr 18) (qLLE-G-1 and qLLE-G-2), and five QTLs for linolenic acid on linkage groups C2 (Chr 6), D1a (Chr 1), D1b (Chr 2), F (Chr 13) and G (Chr 18) were consistently detected in at least three individual environments and the average data over all environments. Significant QTL × QTL interactions were not detected. However, significant QTL × environment interactions were detected for all the QTLs which were repeatedly detected. Some QTLs reported previously were confirmed, and seven new QTLs (two for oleic acid, two for linoleic acid and three for linolenic acid) were identified in this study. Comparisons of two-locus and three-locus combinations indicated that cumulative effects of QTLs were significant for all the three unsaturated fatty acids. QTL pyramiding by molecular marker-assisted breeding would be an appropriate strategy for the improvement of unsaturated fatty acids in soybean.  相似文献   

8.
T. Guo  J. Ren  K. Yang  J. Ma  Z. Zhang  L. Huang 《Animal genetics》2009,40(2):185-191
A whole-genome scan was performed on 660 F2 animals including 250 barrows and 410 gilts in a White Duroc × Erhualian intercross population to detect quantitative trait loci (QTL) for fatty acid composition in the longissimus dorsi muscle and abdominal fat. A total of 153 QTL including 63 genome-wide significant QTL and 90 suggestive effects were identified for the traits measured. Significant effects were mainly evident on pig chromosomes (SSC) 4, 7, 8 and X. No association was detected on SSC3 and 11. In general, the QTL detected in this study showed distinct effects on fatty acid composition in the longissimus muscle and abdominal fat. The QTL for fatty acid composition in abdominal fat did not correspond to those identified previously in backfat and the majority of QTL for the muscle fatty acid composition were mapped to chromosomal regions different from previous studies. Two regions on SSC4 and SSC7 showed significant pleiotropic effects on monounsaturated (MUFA) and polyunsaturated fatty acid (PUFA) in both longissimus muscle and abdominal fat. Another two QTL with significant multi-faceted effects on MUFA and PUFA in the longissimus muscle were found each on SSC8 and SSCX. Chinese Erhualian alleles were associated with increased ratios of MUFA to saturated fatty acid at most of the QTL detected, showing beneficial effect in terms of human health.  相似文献   

9.
Fine mapping and imprinting analysis for fatness trait QTLs in pigs   总被引:10,自引:0,他引:10  
Quantitative trait loci (QTL) for fatness traits were reported recently in an experimental Meishan × Large White and Landrace F2 cross. To further investigate the regions on pig Chr 2 (SSC2), SSC4, and SSC7, 25 additional markers from these regions were typed on 800 animals (619 F2 animals, their F1 parents, and F0 grandfathers). Compared with the published maps, a modified order of markers was observed for SSC4 and SSC7. QTL analyses were performed both within the half-sib families as well as across families (line cross). Furthermore, a QTL model accounting for imprinting effects was tested. Information content could be increased considerably on all three chromosomes. Evidence for the backfat thickness QTL on SSC7 was increased, and the location could be reduced to a 33-cM confidence interval. The QTL for intramuscular fat on SSC4 could not be detected in this half-sib analysis, whereas under the line cross model a suggestive QTL on a different position on SSC4 was detected. For SSC2, in the half-sib analysis, a suggestive QTL for backfat thickness was detected with the best position at 26 cM. Imprinting analysis, however, revealed a genome-wise, significant, paternally expressed QTL on SSC2 with the best position at 63 cM. Our results suggest that this QTL is different from the previously reported paternally expressed QTL for muscle mass and fat deposition on the distal tip of SSC2p. Received: 15 October 1999 / Accepted: 21 February 2000  相似文献   

10.
Refinement of previous QTL on porcine chromosome 12 for fatty-acid composition and a candidate gene association analysis were conducted using an Iberian × Landrace cross. The concentrations of ten fatty acids were assayed in backfat tissue from which four metabolic ratios were calculated for 403 F2 animals. Linkage analysis identified two significant QTL. The first QTL was associated with the average chain length ratio and the percentages of myristic, palmitic and gadoleic acids. The second QTL was associated with percentages of palmitoleic, stearic and vaccenic acids. Based upon its position on SSC12, fatty acid synthase was tested as a candidate gene for the first QTL and no significant effects were found. Similarly, gastric inhibitory polypeptide ( GIP ) and acetyl-coenzyme A carboxylase alpha ( ACACA ) were tested as candidate genes for the second QTL using three SNPs in GIP and 15 synonymous SNPs in ACACA cDNA sequences. Two missense SNPs in GIP showed significant effects with palmitoleic and stearic fatty-acid concentration. Highly significant associations were found for two SNPs in ACACA with stearic, palmitoleic and vaccenic fatty-acid concentrations. These associations could be due to linkage disequilibrium with the causal mutations.  相似文献   

11.
An autosomal scan of the swine genome with 119 polymorphic microsatellite (ms) markers and data from 116 F2 barrows of the University of Illinois Meishan x Yorkshire Swine Resource Families identified genomic regions with effects on variance in carcass composition and meat quality at nominal significance (p-value <0.05). Marker intervals on chromosomes 1, 6, 7, 8 and 12 (SSC1, SSC6, SSC7, SSC8, SSC12) with phenotypic effects on carcass length, 10th rib backfat thickness, average backfat thickness, leaf fat, loin eye area and intramuscular fat content confirm QTL effects identified previously based on genome wide significance (p-value <0.05). Several marker intervals included nominally significant (p-value <0.05) dominance effects on leaf fat, 10th rib backfat thickness, loin eye area, muscle pH and intramuscular fat content.  相似文献   

12.
For 22 carcass traits, we identified 16 QTLs (based on data for pig resource population no. 214, including 180 F2 hybrids of 3 Yorkshire boars and 8 Meishan sows) and mapped them with the use of 39 microsatellite marker loci on chromosomes 4, 6, 7, 8 and 13. Five QTLs were highly significant (P < or = 0.01 at chromosome level): for skin weight (on chromosome 7 at SW1856 and on chromosome 13 at SW1495), skin percentage (on chromosome 7 between SW2155 and SW1856 and on chromosome 13 between SW1495 and SW520), and ratio of leg and butt to carcass (on chromosome 4 at SW1996). The remaining 11 QTLs were significant (P < or = 0.05 at chromosome level): for backfat thickness at shoulder, loin eye width, loin eye height, fat meat weight, lean meat weight, skin weight, bone weight, skin percentage, fat meat percentage, and ratio of lean meat to fat meat. The proportion of phenotypic variance explained by these QTLs ranged from 0.06% (QTL for loin eye width on chromosome 8 between SW1037 and SW1953) to 18.04% (QTL for ratio of lean meat to fat meat on chromosome 7 between SW252 and SW581). Seven of the QTLs reported here are novel.  相似文献   

13.
DArT and SSR markers were used to saturate and improve a previous genetic map of RILs derived from the cross Chuan35050 × Shannong483. The new map comprised 719 loci, 561 of which were located on specific chromosomes, giving a total map length of 4008.4 cM; the rest 158 loci were mapped to the most likely intervals. The average chromosome length was 190.9 cM and the marker density was 7.15 cM per marker interval. Among the 719 loci, the majority of marker loci were DArTs (361); the rest included 170 SSRs, 100 EST-SSRs, and 88 other molecular and biochemical loci. QTL mapping for fatty acid content in wheat grain was conducted in this study. Forty QTLs were detected in different environments, with single QTL explaining 3.6-58.1% of the phenotypic variations. These QTLs were distributed on 16 chromosomes. Twenty-two QTLs showed positive additive effects, with Chuan35050 increasing the QTL effects, whereas 18 QTLs were negative with increasing effects from Shannong483. Six sets of co-located QTLs for different traits occurred on chromosomes 1B, 1D, 2D, 5D, and 6B.  相似文献   

14.
The genetic control of the synthesis of stearic acid (C18:0) and oleic acid (C18:1) in the seed oil of sunflower was studied through candidate-gene and QTL analysis. Two F2 mapping populations were developed using the high C18:0 mutant CAS-3 crossed to either HA-89 (standard, high linoleic fatty acid profile), or HAOL-9 (high C18:1 version of HA-89). A stearoyl-ACP desaturase locus (SAD17A), and an oleoyl-PC de-saturase locus (OLD7) were found to cosegregate with the previously described Es1 and Ol genes controlling the high C18:0 and the high C18:1 traits, respectively. Using linkage maps constructed from AFLP and RFLP markers, these loci mapped to LG1 (SAD17A) and to LG14 (OLD7) and were found to underlie the major QTLs affecting the concentrations of C18:0 and C18:1, explaining around 80% and 56% of the phenotypic variance of these fatty acids, respectively. These QTLs pleiotropically affected the levels of other primary fatty acids in the seed storage lipids. A minor QTL affecting both C18:0 and C18:1 levels was identified on LG8 in the HAOL-9×CAS-3 F2. This QTL showed a significant epistatic interaction for C18:1 with the QTL at the OLD7 locus, and was hypothesized to be a modifier of Ol. Two additional minor C18:0 QTLs were also detected on LG7 and LG3 in the HA-89×CAS-3 and the HAOL-9×CAS-3 F2 populations, respectively. No association between a mapped FatB thioesterase locus and fatty acid concentration was found. These results provide strong support about the role of fatty acid desaturase genes in determining fatty acid composition in the seed oil of sunflower. Received: 7 December 2000 / Accepted: 21 May 2001  相似文献   

15.
Quantitative trait locus analysis of fatty acid concentrations in maize.   总被引:5,自引:0,他引:5  
A study was conducted to determine the number and chromosomal location of quantitative trait loci (QTL) influencing the concentration of five fatty acids in 200 F2S1 lines derived from an Illinois High Oil (IHO) by Illinois Low Oil (Early Maturity) (ILO(EM)) cross. Restriction fragment length polymorphism (RFLP) analysis was performed on the 200 S1 lines and concentrations of palmitic (16:0), stearic (18:0), oleic (18:1), linoleic (18:2), and linolenic (18:3) acids were determined in self-pollinated kernels harvested from plants grown in replicated field trials during 1992 and 1993. A series of 74 cDNA and genomic clones were used and these revealed 80 polymorphic loci spaced, on average, 24 cM apart throughout the maize genome. Analysis of variance detected significant (p < 0.05) associations between several RFLP loci and the concentration of each fatty acid. A total of 15 RFLP loci clustered in 12 chromosomal regions were associated with the concentration of 16:0, 17 loci clustered in 10 regions were associated with the concentration of 18:0, 12 loci clustered in eight regions were associated with the concentration of 18:1 and 18:2, and 17 loci clustered in eight regions were associated with the concentration of 18:3. Multiple linear regression models consisting of four RFLP loci explained 24 and 62% of the total phenotypic and genotypic variation (R2) among the 200 F2S1 lines for 16:0, five loci explained 51 and 71% of the variation for 18:0, three loci explained 67 and 79% of the variation for 18:1, two loci explained 67 and 81% of the variation for 18:2, and seven loci explained 52 and 78% of the variation for 18:3 in these 200 F2S1 lines. The ratio of 18:1 to 18:2 was tightly interrelated as the same QTL were associated with the concentrations of 18:1 and 18:2. A quantitative trait locus that explained 63% of the phenotypic variation in the ratio of 18:1 to 18:2 is tightly linked to umc65 on chromosome 6 in the region of the linoleic acid1 locus.  相似文献   

16.
A paternally expressed QTL for muscle growth and backfat thickness (BFT) has previously been identified near the IGF2 locus on the distal tip of pig chromosome 2 (SSC2p) in three experimental F2 populations. Recently, a mutation in a regulatory element of the IGF2 gene was identified as the quantitative trait nucleotide (QTN) underlying the major QTL effect on muscle growth and BFT in crosses between Large White and Wild Boar or Pietrain. This study demonstrates that the IGF2 mutation also controls the paternally expressed QTL for backfat thickness in a cross between Meishan and European Whites. In addition, a comparison of QTL of backfat thickness measured by Hennessy grading probe (HGP) and by ultrasound measurement (USM) was made. In the USM analyses, the IFG2 mutation explains the entire QTL effect on SSC2p, whereas in the HGP analysis the presence of a second minor QTL can not be excluded. Finally, this study shows that this particular IGF2 mutation does not cause the paternally expressed QTL for teat number mapping to the same region of SSC2p as the BFT QTL.  相似文献   

17.
Several quantitative trait loci (QTL) have been detected on SSC1qter (Sus scrofa chromosome 1qter), including QTL for the number of vertebrae, as reported in our previous study. To provide the tools for analysis of QTLs on SSC1qter, we constructed a comparative map of swine and human. In addition, we identified 26 swine STSs and mapped 16 of them on SSC1qter using the INRA - University of Minnesota porcine radiation hybrid (IMpRH) panel. We screened a BAC library using these swine STSs and developed 35 new polymorphic microsatellite markers from the BAC clones, of which 26 were informative in our reference family. We also mapped nine microsatellite markers we had isolated previously. Consequently a total of 44 new polymorphic microsatellite markers were located within a 60-cM region of SSC1qter, spanning from SW1092 to the telomere.  相似文献   

18.
A high-resolution radiation hybrid map of porcine chromosome 6   总被引:2,自引:0,他引:2  
A high-resolution comprehensive map was constructed for porcine chromosome (SSC) 6, where quantitative trait loci (QTL) for reproduction and meat quality traits have been reported to exist. A radiation hybrid (RH) map containing 105 gene-based markers and 15 microsatellite markers was constructed for this chromosome using a 3000-rad porcine/hamster RH panel. In total, 40 genes from human chromosome (HSA) 1p36.3-p22, 29 from HSA16q12-q24, 17 from HSA18p11.3-q12 and 19 from HSA19q13.1-q13.4 were assigned to SSC6. All primers for these gene markers were designed based on porcine gene or EST sequences, and the orthologous status of the gene markers was confirmed by direct sequencing of PCR products amplified from separate Meishan and Large White genomic DNA pools. The RH map spans SSC6 and consists of six linkage groups created by using a LOD score threshold of 4. The boundaries of the conserved segments between SSC6 and HSA1, 16, 18 and 19 were defined more precisely than previously reported. This represents the most comprehensive RH map of SSC6 reported to date. Polymorphisms were detected for 38 of 105 gene-based markers placed on the RH map and these are being exploited in ongoing chromosome wide scans for QTL and eventual fine mapping of genes associated with prolificacy in a Meishan x Large White multigenerational commercial population.  相似文献   

19.
Quantitative trait loci (QTL) that control seed oil content and fatty acid composition were studied using a recombinant inbred population derived from a cross between the Arabidopsis ecotypes Landsberg erecta and Cape Verdi Islands. Multiple QTL model mapping identified two major and two minor QTL that account for 43% of the variation in oil content in the population. The most significant QTL is at the bottom of chromosome 2 and accounts for 17% of the genetic variation. Two other significant QTL, located on the upper and lower arms of chromosome 1, account for a further 19% of the genetic variation. A QTL near to the top of chomosome 3 is epistatic to that on the upper arm of chromosome 1. There are strong QTL for linoleic (18:2) and linolenic (18:3) acids contents that colocate with the FAD3 locus, another for oleic acid (18:1) that colocates with FAD2 and other less significant QTL for palmitic (16:0), stearic (18:0), and eicosaenoic (20:1) acids. The presence of the QTL for seed oil content on chromosome 2 was confirmed by the generation of lines that contain a 22-cM region of Landsberg erecta DNA at the bottom of chromosome 2 in a background containing Cape Verdi Islands in other regions of the genome that had been shown to influence oil content in the QTL analysis.  相似文献   

20.
Ai H  Ren J  Zhang Z  Ma J  Guo Y  Yang B  Huang L 《Animal genetics》2012,43(4):383-391
Growth and fatness are economically important traits in pigs. In this study, a genome scan was performed to detect quantitative trait loci (QTL) for 14 growth and fatness traits related to body weight, backfat thickness and fat weight in a large-scale White Duroc × Erhualian F(2) intercross. A total of 76 genome-wide significant QTL were mapped to 16 chromosomes. The most significant QTL was found on pig chromosome (SSC) 7 for fatness with unexpectedly small confidence intervals of ~2 cM, providing an excellent starting point to identify causal variants. Common QTL for both fatness and growth traits were found on SSC4, 5, 7 and 8, and shared QTL for fat deposition were detected on SSC1, 2 and X. Time-series analysis of QTL for body weight at six growth stages revealed the continuously significant effects of the QTL on SSC4 at the fattening period and the temporal-specific expression of the QTL on SSC7 at the foetus and fattening stages. For fatness traits, Chinese Erhualian alleles were associated with increased fat deposition except that at the major QTL on SSC7. For growth traits, most of White Duroc alleles enhanced growth rates except for those at three significant QTL on SSC6, 7 and 9. The results confirmed many previously reported QTL and also detected novel QTL, revealing the complexity of the genetic basis of growth and fatness in pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号